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In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas
identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using
multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After
generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the
minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This
equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising
model.
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I. INTRODUCTION

The standard paradigm in Monte Carlo integration is to
estimate a ratio. In the prototypical scenario, a simulation is
used to obtain the fraction of randomly sampled points which
lie within an encompassing reference region. The integrand
of interest is then estimated by multiplying this fraction with
the known reference area.

In general, more sophisticated algorithms retain the fea-
ture that they estimate ratios of normalizing constants �1� or
partition functions �2�. Furthermore, the efficiency of all
these integration techniques depends on the degree of over-
lap between the target integrands. Hence, much effort has
been devoted to obtaining intermediate functions which
bridge the integrands of interest.

Estimating absolute integrals allows one to completely
forgo intermediate functions �3�. One class of methods for
estimating absolute normalizing constants is based on draw-
ing from an un-normalized density using Monte Carlo or
molecular dynamics techniques and estimating the normal-
ized probability by density estimation �4� or by hypotheti-
cally reconstructing samples from scratch �5�. For many sys-
tems, however, efficiently estimating these probabilities
remains a challenge.

Recently, Adib introduced another class of theorems,
which he dubbed the replica gas identities, which can be
used to estimate absolute integrals �6�. These identities are
based on the simple physical idea of measuring the volume
of a container by filling it with a specified density of ideal
gas, and then counting the number of particles. Similarly, an
integrand can be estimated by creating multiple noninteract-
ing copies �or replicas� of a system that fill a region with a
specified density, and then counting the number of replicas.
Adib also described a complementary and more abstract
identity relevant to simulations with a fixed number of rep-
licas. A variant of this latter identity, which is particularly
applicable to existing parallel tempering �7� �also known as
replica exchange� simulations, will be the focus of the
present work.

II. THEORY

In this work, we shall consider integrals of the form

Z = �
�

dx��x� , �1�

where � is the support of the integral and ��x� is a non-
negative function of a d-dimensional vector x �see Ref. �6�
for a generalization to integrands with negative values�. The
function ��x� can be regarded as an un-normalized probabil-
ity density. For many equilibrated physical systems with the
energy function E�x�, ��x�=e−E�x� describes the relative
probability of observing x, and Z is the normalizing constant
or partition function. Discrete sums can be treated analo-
gously.

Suppose that we have multiple replicas of a system on the
same support, each independently sampling from their own
respective distributions. This situation exists in jump-
walking �8� as well as parallel tempering �7� simulations.
The replica gas identities couple these copies together by
means of transition functions T�x� �x�, which are normalized
conditional probability distributions �such that T�x� �x��0
for all x ,x��� and ��dx�T�x� �x�=1 for x��� that one can
sample from and evaluate. Appropriate transition functions
include candidate-generating functions routinely used in
Markov chain Monte Carlo simulations, such as a Gaussian
or uniform distribution centered at x.

A. Two replicas

For simplicity, we shall first treat the case where the num-
ber of replicas is fixed at two. One replica samples from ��x�
and the other samples from an auxiliary distribution �̃�x�
�which has the auxiliary integral Z̃=��dx�̃�x��. The density
�̃�x� is arbitrary and may be ��x� itself, but usually corre-
sponds to ��x� at a different temperature �e.g., �̃�x�=��x��,
where � is a constant�. In this case, the following identity �6�
holds:*daveminh@gmail.com
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Z =

�
�

dx��̃�x�/Z̃��
�

dx�T�x��x���x�,x���x��

�
�

dx��̃�x�/Z̃��
�

dx����x��/Z���x�,x�T�x��x�

�
	���x��
�̃,T

	�T�x��x�
�̃,�
, �2�

where the expectation 	O�x ,x��
 f ,g of an observable O�x ,x��
means that x and x� are sampled from the distributions f and
g, respectively. In the numerator of the equation above, x is
sampled from �̃�x�, x� is sampled using the transition func-
tion, and ��x�� is evaluated. In the denominator, x is also
sampled from �̃�x�, but x� is drawn from the replica with
density ��x��, and T�x� �x� is evaluated. The identity essen-
tially follows from the definitions of these expectations
	O�x ,x��
 f ,g. If both sides are divided by Z �dividing the
��x�� term in the numerator is especially convenient�, then it
is straightforward to see that the equation yields 1=1. Equa-
tion �2� also includes an arbitrary weighting function �
���x� ,x�; any function is valid as long as the denominator
is nonzero. The choice �=1 reduces the expression to Adib’s
original identity.

The replica gas identity can be made into an estimator by
replacing the expectations with sample means. While many
choices of � will yield statistically consistent expressions,
some choices will lead to more efficient estimators than oth-
ers. Here, we will optimize � by minimizing the asymptotic

variance in estimates of �� ln Z, which we shall denote by �̄.
Our procedure will closely follow that of Bennett �9�, who
minimized the error in an estimator for the ratio of partition
functions, and yield an analogous estimator.

In the large-sample limit, �̄ will be Gaussian about the
true value of �. Using error propagation based on a first-order
Taylor series expansion, the asymptotic variance is

�2��̄� =
	�2��x��2
�̃,T

NT	���x��
�̃,T
2 +

	�2T�x��x�2
�̃,�

N�	�T�x��x�
�̃,�
2 −

1

NT
−

1

N�

=

��2T�x��x����x��e−�

NT
+

T�x��x�
N�


�
�̃,�

	�T�x��x�
�̃,�
2 −

1

NT
−

1

N�

,

�3�

where NT and N� are the numbers of independent samples
used to estimate 	O�x ,x��
�̃,T and 	O�x ,x��
�̃,�, respectively.
The second line is obtained by writing both expectations in
terms of 	O�x ,x��
�̃,� and combining terms.

As multiplying � by a constant does not change the value

of �2��̄�, we can use a constraint where 	�T�x� �x�
�̃,� �and
hence the denominator� is constant. The variance �Eq. �3�� is
then minimized using Lagrange multipliers, leading to the
optimal �,

�� � � 1

NT
��x��e−� +

1

N�

T�x��x�
−1

. �4�

Notably, �� includes the sought quantity �. The estimator
obtained by substituting this function into Eq. �2� can either
be solved by self-consistent iteration, as originally described
by Bennett �9�, or by finding the zero of an implicit function
obtained by rearrangement,

�
l=1

N� 1

1 +
N�

NT

��xl��
T�xl��xl�

e−�̄

− �
m=1

NT 1

1 +
NT

N�

T�xm� �xm�
��xm� �

e�̄

= 0, �5�

which is similar to an expression described by Shirts et al.

�10�. The variance in �̄ in Eq. �5� may be estimated by sub-
stituting the appropriate � into Eq. �3�.

By substituting �� into Eq. �3�, multiplying by a factor of
unity,

1 +
NT

N�

T�x��x�
��x��

e�

1 +
NT

N�

T�x��x�
��xl��

e�

, �6�

and separating the expression into two expectations, we ob-
tain the following formula for the variance:

�2��̄� = ��l=1

N� 1

2 + 2 cosh�� ln
NT

N�

T�xl��xl�
��xl��



+ �

m=1

NT 1

2 + 2 cosh�� ln
NT

N�

T�xm� �xm�
��xm� �


�
−1

−
1

NT
−

1

N�

,

�7�

which is analogous to an extant expression for the error in
Bennett’s method �10�. It is important to note that this
asymptotic expression for the variance may not accurately
reflect the confidence intervals around estimates from finite
sample sizes.

B. Multiple replicas

When samples are drawn from K replicas with integrands
�k�x� and partition functions Zk for k=1, . . . ,K, the follow-
ing generalized replica gas identity is applicable:

Zt =

�
k�t

	�k�t�x��
�k,Tk

�
k�t

	�kTk�x��x�
�k,�t

. �8�

Here, �t�x� and Zt are the targeted integrands and integrals,
respectively. The sums run over all replicas which are not t.
As in Eq. �2�, the choice �k=1 yields an identity originally
described by Adib �6�.

We now consider the optimization of � in the case where

K�2. The asymptotic variance of �̄t is
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�2��̄t� =

�
k�t

1

NTk

�	�k
2��x��2
�k,Tk

− 	�k��x��
�k,Tk

2 �

�
k�t

	�k��x��
�k,Tk

2

+

�
k�t

1

N�k

�	�k
2Tk�x��x�2
�k,� − 	�kTk�x��x�
�k,�t

2 �

�
k�t

	�kTk�x��x�
�k,�t

2
�9�

=

�
k�t
��k

2Tk�x��x�� 1

NTk

��x��e−� +
1

N�k

Tk�x��x�
�
�k,�t

��
k�t

	�kTk�x��x�
�k,�t�2

−

�
k�t

� 1

NTk

+
1

N�k


	�kTk�x��x�
�k,�t

2

��
k�t

	�kTk�x��x�
�k,�t�2 . �10�

Unlike in the case where K=2, the second term in the above
variance expression does not reduce to a constant. Here, we
show, however, using a procedure similar to Veach and
Guibas �11,12� that it is bounded by a constant:

�
k�t

� 1

NTk

+
1

N�k


	�kTk�x��x�
�k,�t

2

��
k�t

	�kTk�x��x�
�k,�t�2

	

max� 1

NTk

+
1

N�k


�
k�t

	�kTk�x��x�
�k,�t

2

��
k�t

	�kTk�x��x�
�k,�t�2

	

max� 1

NTk

+
1

N�k


��
k�t

	�kTk�x��x�
�k,�t�2

��
k�t

	�kTk�x��x�
�k,�t�2

= max� 1

NTk

+
1

N�k


 . �11�

Thus, if we find a set of functions for �k that minimize the

first term in ���̄t�, no other choices for �k can decrease the
variance by more than max�1 /NTk

+1 /N�k
�.

Minimization of the first term in Eq. �9� by Lagrange
multipliers leads to an optimized set of �k analogous to Eq.
�4�. As with K=2, substitution of this �k leads to an estima-
tor for the integral which can be solved either self-
consistently or by finding the zero of an implicit function,

�
k�t ��l=1

N�k 1

1 +
N�k

NTk

��xl��
Tk�xl��xl�

e−�̄

− �
m=1

NTk 1

1 +
NTk

N�k

Tk�xm� �xm�
��xm� �

e�̄� = 0.

�12�

The corresponding variance may be estimated by substituting
the appropriate �k into Eq. �9�. As in the two-replica sce-
nario, the resulting asymptotic variance estimate may not
correctly reflect the confidence intervals from finite simula-
tion data.

III. DEMONSTRATION ON A TWO-DIMENSIONAL
ISING MODEL

The original and optimized forms of the replica gas
identity were demonstrated by estimating the partition
function of a two-dimensional 32
32 spin Ising model,
using parameters similar to those previously described
�6�. As in a typical Ising model simulation in the absence
of an external field, the energy of a spin configuration x
was given by E�x�=−�	k,l
xkxl, a sum over all pairs of
neighbors �13�. Periodic boundary conditions were used.
Simulations were performed for 26 replicas at the tempe-
ratures �−1=0.5,0.6, . . . ,3.0. Configurations were equili-
brated using 250 iterations in which a cluster move,
Wolff’s generalization �14� of the Swendsen-Wang algo-
rithm �15�, was followed by attempted replica ex-
changes �7� between adjacent temperature pairs �alter-
nating between ���1 ,�2� , ��3 ,�4� , . . . , ��K−1 ,�K�� and
���2 ,�3� , ��4 ,�5� , . . . , ��K−2 ,�K−1���. Equilibration was
followed by 105 production steps using Monte Carlo trial
moves generated by a transition function T�x� �x� that flips
each spin with probability pflip=1 /N, where N is the total
number of spins. The transition function was the same for
every replica. After every 100 steps of production, a replica
exchange was attempted between a random replica and
its higher-temperature neighbor, energies of each confi-
guration were stored, T�x� �x� was used to sample configura-
tions from 	O�x ,x��
�k,T �these are distinct from the Mar-
kovian chain�, and transition probabilities between the
different configurations were calculated using T�x� �x�
= �pflip��x�−x��1− pflip�N−�x�−x�, where �x�−x� is the number of
spin mismatches �6�. The estimate from the original form
of the replica gas identity �Eq. �8�� was used as an initial
point for finding the zero of the optimized form �Eq. �12��
using the fzero method in MATLAB 7.8 �R2009a�. MATLAB

was used to perform all of the calculations described in this
paper.

For this system, we find that both estimators have similar
and relatively accurate efficiencies at lower temperatures
�Fig. 1�. Closer to and above the critical temperature
�kBT=2.269�, however, the optimized estimator �Eq. �12��
has less variance and bias than the original estimator �Eq.
�8�� with unit weight. Nonetheless, the high-temperature es-
timates are substantially worse than those at low tempera-
tures.
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IV. DISCUSSION

Ultimately, the quality of the optimized expression is sub-
ject to the same fundamental limitations as Adib described
with the original estimator �6�. For the convergence of aver-

ages to not be dominated by rare events, �a� most configura-
tions generated by the transition function should fall in typi-
cal regions of phase space for the target distribution and �b�
most pairs of configurations from different replicas should
have substantial density in T�x� �x�. These requirements hold
true in the low-temperature regime, where the spins are rela-
tively ordered and a local transition function suffices, but are
not met at higher temperatures, where configurations have
disordered spins. As Adib mentioned, convergence may be
improved by fine tuning the simulation procedure or choos-
ing a more suitable transition function.

Overcoming this sampling limitation is not the intent of
the current work. Rather, the purpose is to improve the
analysis of a given data set. While the resulting expression
�Eq. �12�� is more complex, the increased difficulty of imple-
mentation is no greater than using the Bennett acceptance
ratio �9� relative to unidirectional estimates of free-energy
differences and does not require sampling from more en-
sembles. Expected statistical efficiency gains should make
this investment worthwhile.
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FIG. 1. �Color online� Comparison of logarithmic partition func-
tion estimates: the exact Kaufman formula �dashed line�; the origi-
nal replica gas identity, Eq. �8� with �=1 �upward triangles�; and
the optimized form, Eq. �12� �downward triangles�. Markers and
error bars indicate the mean and standard deviation of 1000 inde-
pendent simulations. Inset: magnification around the critical
temperature.
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