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It has been shown recently that the Jarzynski equality is generalized under nonequilibrium feedback control
�T. Sagawa and M. Ueda, Phys. Rev. Lett. 104, 090602 �2010��. The presence of feedback control in physical
systems should modify both the Jarzynski equality and the detailed fluctuation theorem �K. H. Kim and H.
Qian, Phys. Rev. E 75, 022102 �2007��. However, the generalized Jarzynski equality under forward feedback
control has been proved by considering that the physical systems under feedback control should locally satisfy
the detailed fluctuation theorem. We use the same formalism and derive the generalized detailed fluctuation
theorem for nonequilibrium driven systems under feedback control. We find that the feedback control in a
physical system should preserve the detailed fluctuation theorem if the system has the same feedback infor-
mation measure in forward and reverse directions.
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I. INTRODUCTION

There are very few relations in statistical dynamics which
are used to calculate the equilibrium thermodynamic proper-
ties for the systems driven arbitrarily far from equilibrium
�1–3�. In particular, the Jarzynski’s equality �1� and the
Crooks detailed fluctuation theorem �2� can be used to cal-
culate equilibrium free-energy differences from nonequilib-
rium work measurements. Consider a system initially in
equilibrium at temperature �inverse� �=1 /kBT �kB is the
Boltzmann constant� which is externally driven from its ini-
tial state to final state by nonequilibrium process. The work
W performed on the system satisfies the detailed fluctuation
theorem P�W� / P�−W�=exp���W−�F��, where P��W� is
the work probability distribution in forward �+� and reverse
�−� directions and �F is the free-energy difference between
its final and initial equilibrium states. The Jarzynski equality,
�exp�−�W��=exp�−��F�, is the integrated version of the de-
tailed fluctuation theorem. The average �¯ � is over a statis-
tical ensemble of realizations of a given thermodynamic pro-
cess. These two nonequilibrium work relations have been
verified in experiments �4,5� as well as in simulations �6,7�
and widely used in many branches of science �see, e.g.,
�8,9��.

The evolution of the physical systems can be modified or
controlled by the repeated operation of an external agent
called controller �10,11�. The action of the controller is to
regulate the system dynamics and increase its performance.
The controller can operate on the system blindly or it can use
information about the state of the system. The former is
known as the open loop controller and the latter one is called
the feedback or closed loop controller. The feedback control-
ler measures the partial performance of the system, and its
action on the system depends on the measurement outcome
�12�. For example, in a single molecule atomic force micros-
copy experiment, the external agent is an electric feedback
circuit which detects the motion of the cantilever and ma-
nipulates the control force proportional to its velocity �13�.

The proper utilization of the information about the state of
the system in feedback control effectively improves the sys-
tem performance �10–14�. If the experiments or simulations
have been performed under feedback control, both the
Jarzynski equality and the fluctuation theorem should be ex-
tended into more general forms �13�. Since the work that
performed on a thermodynamic system can be lowered by
feedback control �12–14�, this feedback mechanism can be
helpful in simulations for sampling rare trajectories and in
calculating precise free-energy differences �15�.

Recently, the Jarzynski equality is generalized to an ex-
perimental condition in which the system is driven between
two equilibrium states via a nonequilibrium process under
forward feedback control �16�. The equilibrium free-energy
difference for the driven system �which locally satisfies the
detailed fluctuation theorem� under nonequilibrium feedback
control can be calculated from the generalized Jarzynski
equality �16�

�e−�−I� = 1, �1�

where �=��W−�F� and I is the mutual information mea-
sure obtained by the feedback controller �16�. The average is
taken from the work distribution in the forward direction
with feedback control.

The presence of feedback control in physical system
modifies both the Jarzynski equality and the fluctuation theo-
rem �13�. However, the generalized Jarzynski equality �Eq.
�1�� under forward feedback control has been proved by con-
sidering that the physical systems under feedback control
should locally satisfy the detailed fluctuation theorem �16�.
In this paper, we use the same formalism and derive the
generalized detailed fluctuation theorem for nonequilibrium
driven systems under feedback control. In order to calculate
the free-energy differences precisely in simulations, one re-
quires information of work distribution in both forward and
reverse directions �17–19�. In this aspect, one needs the gen-
eralized detailed fluctuation theorem under nonequilibrium
feedback control.*mpn@imsc.res.in
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II. DETAILED FLUCTUATION THEOREM
UNDER FEEDBACK CONTROL

The feedback control enhances our controllability of
small thermodynamic systems �10–14�. At any given time,
the controller measures the partial state of the system. The
result of the measurement determines the action of the con-
troller. The additional information on the system provided by
the measurement further determines the state of the system.
Suppose that the controller performs a measurement on a
stochastic thermodynamic system at time tm. Let �m be the
phase-space point of the system at that time, P��m� its prob-
ability, and y the measurement. Depending on the controller
measurements, the outcome y can occur with a probability
P�y� �16�. The information obtained by the controller can be
characterized by the mutual �feedback� information measure
�16,20�,

I�y,�m� = ln�P�y��m�
P�y� 	 , �2�

where P�y ��m� is the conditional probability of obtaining the
outcome y on the condition that the state of the system is �m.
The above equation can be rewritten as

eI�y,�m� =
P�y��m�

P�y�
. �3�

In experiments and simulations, the free-energy difference
between two equilibrium states can be calculated in general
by pulling the system from one equilibrium state to another
state along a switching path. The path connecting the two
states in the time period � will be parametrized using the
variable �, with 0	�	1. The switching rate describes the
nature of the switching process to be an equilibrium �infi-
nitely slow� or nonequilibrium �fast�. If the experiments are
performed under feedback control, the switching control pa-
rameter � depends on the outcome y after tm �16�. That is,
whenever the controller makes measurements, there is a cor-
responding change in the switching parameter for the next
time step, which is denoted as ��t;y�. Between every stage of
the controller measurements, the value of the outcome y is to
be fixed and the corresponding switching parameter ��t;y�
does not change. In this time interval for each stage of ��t;y�,
we consider that the system should locally satisfy the de-
tailed fluctuation theorem �16�,

P��t;y�
���t��

P��t;y�
† ��†�t��

= e����t��, �4�

where P��t;y�
���t�� is the probability of obtaining the outcome

y in the forward direction with a switching protocol ��t;y�,
and P��t;y�

† ��†�t�� is the probability of obtaining the same out-
come y �16� in the reverse direction of phase point, �†�t�,
with the corresponding switching protocol ��t;y�

† . Here,
����t�� is the work value obtained in the forward direction
and its time reversal work value

���†�t�� = − ����t�� . �5�

Let PF�X̃�
 PF[���̃� , I�ỹ , �̃�] be the joint probability of

obtaining the work value ���̃� for a given feedback informa-

tion I�ỹ , �̃� of the measurement outcome ỹ in the forward
direction. The particular outcome ỹ may often occur in dif-
ferent realizations of the repeated experiment. Analogous to
previous studies �21,22�, this �joint� probability can be ob-
tained from the nonequilibrium ensemble of variable �for-
ward� switching trajectories as

PF�X̃� =� P�y���m� �P��t;y��
���t��
�I�y�,�m� �

− I�ỹ,�̃��
�����t�� − ���̃��dy�D���t�� , �6�

where 
�x� is the Dirac delta function which has a property

�−x�=
�x�. It should be noted that y� and �m� in the above
equation are dummy variables, and they have appropriate
values for each outcome of the controller measurements �see
Eq. �3��.

Combining Eqs. �3� and �4�, Eq. �6� is modified as

PF�X̃� =� e����t��+I�y�,�m� �P�y��P�
�t;y��
† ��†�t��
�I�y�,�m� �

− I�ỹ,�̃��
„����t�� − ���̃�…dy�D���t�� ,

PF�X̃� = e���̃�+I�ỹ,�̃�� P�y��P�
�t;y��
† ��†�t��
�I�y�,�m� �

− I�ỹ,�̃��
„����t�� − ���̃�…dy�D���t�� . �7�

Let PR�X̃†�
 PR[−���̃� , I�ỹ† , �̃�] be the joint probability

of obtaining the work value −���̃� for a given feedback in-

formation I�ỹ† , �̃� of the measurement outcome ỹ† in the
reverse direction. This �joint� probability can be obtained
from the nonequilibrium ensemble of variable �reverse�
switching trajectories as

PR�X̃†� =� P�y���m� �P�
�t;y��
† ��†�t��
�I�y�,�m� �

− I�ỹ†,�̃��
„���†�t�� + ���̃�…dy�D��†�t�� . �8�

In what follows, we will use above equations and derive the
generalized detailed fluctuation theorem under feedback con-
trol either in the forward direction �16� or in both directions.

A. Feedback control in forward and reverse directions

If the system has the same feedback control in both direc-
tions, then under the controller measurement condition,

I�ỹ† , �̃�= I�ỹ , �̃�, and using Eq. �3�, we can rewrite Eq. �8� as

PR�X̃†� = eI�ỹ,�̃�� P�y��P�
�t;y��
† ��†�t��
�I�y�,�m� �

− I�ỹ,�̃��
„���†�t�� + ���̃�…dy�D��†�t�� . �9�

Since 
�−x�=
�x� and D��†�t��=D���t�� �16�, combining
Eqs. �5� and �9� in Eq. �7� we can obtain the generalized
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detailed fluctuation theorem under feedback control in both
directions as

PF�X̃� = e���̃�+I�ỹ,�̃�PR�X̃†�e−I�ỹ,�̃�,

PF�X̃�

PR�X̃†�
= e���̃�. �10�

The above equation can be written simply as

PF��,I�
PR�− �,I�

= e�. �11�

Although the feedback control in classical systems in gen-
eral modifies the detailed fluctuation theorem, our result
shows that for a given feedback information measure I in
both directions, the physical system under repeated measure-
ments of the feedback controller does not modify the detailed
fluctuation theorem. Since the feedback control enhances our
controllability of small thermodynamic systems, the proper
choice of feedback mechanism in free-energy simulations
can be useful for precise free-energy estimates �15�.

B. Feedback control in the forward direction

If the system has feedback control only in the forward
direction, the generalized detailed fluctuation theorem under
forward feedback control can be obtained from the following
reverse experimental condition. Based on the information
about forward switching protocols, without feedback control,
we can perform the same variable switching protocol experi-
ment in the reverse direction �16�. This is equivalent to op-
eration of the open loop controller in the reverse direction on
the system. In such a case, P�y� ��m� �= P�y�� in the reverse
direction, and the open loop controller implicitly has infor-
mation about the forward feedback information measure

I�ỹ , �̃� for the corresponding switching parameter ��t;y��
† in

the reverse direction �see Eqs. �3� and �4��. Then, we can
write Eq. �8� as

PR�X̃†� =� P�y��P�
�t;y��
† ��†�t��
�I�y�,�m� �

− I�ỹ,�̃��
„���†�t�� + ���̃�…dy�D��†�t�� .

�12�

Similar to the earlier derivation, using Eqs. �5� and �12� in
Eq. �7� we can obtain the generalized detailed fluctuation
theorem under forward feedback control as

PF�X̃� = e���̃�+I�ỹ,�̃�PR�X̃†� ,

PF�X̃�

PR�X̃†�
= e���̃�+I�ỹ,�̃�. �13�

In order to prove the generalized Jarzynski equality under
forward feedback control, we measure the quantity

�e−�−I� =� PF�X̃�e−���̃�−I�ỹ,�̃�dỹd�̃ .

From Eq. �13�,

�e−�−I� =� PR�X̃†�dỹd�̃ = 1, �14�

we obtained the generalized Jarzynski equality under for-
ward feedback control �16�. In order to get more insight into
the forward mutual information measure, we calculate the
quantity

�e−�� =� PF�X̃�e−���̃�dỹd�̃ .

Using Eq. �13�, the average of above equation can be written
as

�e−�� =� PR�X̃†�eI�ỹ,�̃�dỹd�̃ =� PR�X�̃†�dỹd�̃ = � ,

�15�

where �=�PR�X�̃†�dỹd�̃ is the feedback control characteris-
tic, which is a measure of the correlation between the dissi-

pation and the information �16�. PR�X�̃†�= PR�X̃†�eI�ỹ,�̃� is the
special case �16� of the joint probability distribution in the
reverse direction.

Even though there is no feedback control in the reverse
direction, due to the implementation of variable �reverse�
switching protocols in accordance with forward feedback
control experiment, we can also obtain the forward mutual
information measure from the reverse direction as

I�ỹ,�̃� = ln�PR�X�̃†�

PR�X̃†�
	 . �16�

III. CONCLUSION

We have derived the generalized detailed fluctuation theo-
rem under nonequilibrium feedback control. The central
finding of our result �Eq. �11�� shows that for the same feed-
back information measure, the repeated measurements of the
feedback controller in both directions do not modify the de-
tailed fluctuation theorem. It is well known that the exponen-
tial average in one direction limits the accurate calculation of
free-energy differences in simulations. The knowledge of
measurements from both directions usually gives improved
results. Thus, the generalized detailed fluctuation theorem
can be very useful in free-energy simulations for systems
driven under nonequilibrium feedback control.
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In a recent investigation of quantum fluctuation theorem,
it was shown that the action of intermediate projective quan-
tum measurements does not affect the fluctuation theorem
�23�. It would be interesting to carry out an investigation
of how the repeated controller measurements in quantum
systems with feedback control can affect the quantum

fluctuation theorem.
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