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Large fluctuations have received considerable attention as they encode information on the fine-scale dynam-
ics. Large deviation relations known as fluctuation theorems also capture crucial nonequilibrium thermody-
namical properties. Here we report that, using the technique of uniformization, the thermodynamic large
deviation functions of continuous-time Markov processes can be obtained from Markov chains evolving in
discrete time. This formulation offers theoretical and numerical approaches to explore large deviation proper-
ties. In particular, the time evolution of autonomous and nonautonomous processes can be expressed in terms
of a single Poisson rate. In this way the uniformization procedure leads to a simple and efficient way to
simulate stochastic trajectories that reproduce the exact fluxes statistics. We illustrate the formalism for the
current fluctuations in a stochastic pump model.
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I. INTRODUCTION

Many natural phenomena are successfully described at the
mesoscopic level in terms of Markovian random processes
�1–3�. Examples of such jump processes range from birth-
and-death processes in stochastic chemical kinetics and
population dynamics �2,3� to kinetic processes in quantum
field theory �4� and in quantum optics �5�. In some simple
systems, such processes can be rigorously derived from the
underlying deterministic or quantum dynamics by introduc-
ing an appropriate partition of the phase space �6� or in some
scaling limit �7�.

The study of these continuous-time Markov processes re-
mains, however, challenging. The so-called uniformization
technique �8� has been introduced to help the analysis of
such continuous-time processes. The uniformization proce-
dure transforms a continuous-time Markov process into a
discrete-time Markov chain, facilitating all subsequent analy-
sis. The term uniformization comes from the fact that the
original continuous-time process can be reinterpreted as in-
volving a homogeneous Poisson process along with transi-
tions described by the derived Markov chain. This scheme is
especially used for the study of the transient properties of the
dynamics, but it can also be applied to study other important
quantities such as first-passage times �9,10�. Uniformization
has also been used to simulate the behavior of complex sys-
tems such as chemical reaction networks �11,12� or evolu-
tionary models �13�. Interestingly, a similar approach was
developed in the context of quantum dynamics �14–17�,
where Poisson processes provide a generalization of the
Feynman-Kac formula �18,19� to quantum systems with dis-
crete internal degrees of freedom.

Fundamental properties of stochastic and deterministic
dynamical systems can be expressed in terms of large devia-
tion functions, which characterize the occurrence of rare
fluctuations or extreme events in random systems. In this
framework trajectories are categorized by dynamical order
parameters such as the number of configuration changes.
Analogous to the partition function in equilibrium statistical

mechanics, the large deviation function is a measure of the
number of trajectories accessible to the system. Critical phe-
nomena such as scale invariance of trajectories or dynamical
phase transitions can be uncovered from the knowledge of
the large deviation function. In addition, it gives access to the
statistical properties �averages and fluctuations� of the dy-
namical order parameters. In this sense large deviations can
be said to capture the fine details of the dynamics.

Landford �20� was the first to formulate equilibrium sta-
tistical mechanics in terms of large deviations, where they
provide a generalization of Einstein’s fluctuation theory and
allow the calculation of entropies and free energies. Large
deviations were next considered in nonequilibrium statistical
physics by Ruelle and Bowen in their analysis of the dy-
namical properties of chaotic systems �21�. This formalism
was further developed to relate the dynamical properties of
these systems to their transport properties �6�. In this way
large deviations provide a rigorous formulation of statistical
mechanics, as reviewed in Refs. �22,23�. More recently, re-
lations known as fluctuation theorems �24–27� �see �28� for a
review� revealed that thermodynamical quantities obey sym-
metry relationships when accounting for the large fluctua-
tions in the time evolution �rare trajectories�. Large deviation
relations thus play a fundamental and unifying role in char-
acterizing the dynamical and statistical properties of equilib-
rium and nonequilibrium systems �23�.

The dissipation rate and the thermodynamic currents play
an important role in nonequilibrium statistical thermodynam-
ics �2,3�. The dissipation is related to the irreversible entropy
production and the efficiency of free energy conversion into
useful work. The thermodynamic currents describe the fluxes
of matter or energy flowing through the system. Their re-
sponse and fluctuation properties are therefore of fundamen-
tal interest, especially, for the exploration of nanoscale sys-
tems.

In this paper, we introduce the uniformization procedure
of continuous-time Markov processes and show that it can be
applied to recover the large deviation functions. We illustrate
the construction for two thermodynamic quantities of inter-
est, the dissipation rate �24,25,29–31� and the thermody-
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namic currents �32,33�. We then analyze the time evolution
of autonomous and nonautonomous systems. We obtain a
formulation in terms of a single Poisson process, which of-
fers new insights at the theoretical and numerical levels. In
particular, we show that the simulation of time-dependent
systems such as stochastic pumps can be achieved in an ef-
fortless and efficient way.

II. MARKOV PROCESSES AND UNIFORMIZATION

Continuous-time Markov processes are ruled by an evo-
lution equation, called the master equation, for the probabil-
ity to find the system in a coarse-grained state j at time t,

dpj�t�
dt

= �
i

�pi�t�Wij − pj�t�Wji� . �1�

The quantities Wij denote the rates of the transitions i→ j
allowed by the dynamics. The master equation can be written
in matrix form as

dp�t�
dt

= p�t�L̂ , �2�

where we introduced the operator L̂ with elements L̂ij =Wij

for i� j and L̂ii=−� jWij otherwise. Under general assump-
tions �3� the system evolves toward a unique stationary state
pst satisfying dpst /dt=0.

The concept of uniformization of a Markov process has
been introduced to help the study of such continuous-time
random processes �8�. It transforms the continuous-time pro-
cess into another system evolving in discrete time while pre-
serving many key properties of the dynamics. The construc-
tion proceeds as follows:

Introducing the inverse time step

� � max
i

�L̂ii� �3�

we define the transition matrix Û��� by Ûij =Wij /� for i� j,

and Ûii=1−� jWij /� otherwise. In matrix form it reads

Û��� � Î +
L̂

�
, �4�

where Î is the identity matrix. It is readily verified that Û���
is a proper transition matrix, i.e., � jÛij =1 and Ûij �0 for all
i , j and all ��maxi�Lii�. The uniformized Markov chain thus
evolves over the same state space �i	 but in discrete time
steps of size �t=1 /�, with the correspondence t=n��t
=n /�. For simulation purposes the time step �t should be
chosen as large as possible, so that the optimal value of �
satisfies the equality in Eq. �3�.

The probability distribution ���n� over the uniformized
system evolves according to the discrete-time evolution
equation

���n� = ���n − 1�Û��� . �5�

Remarkably, the stationary state �st of the uniformized sys-
tem exactly corresponds to the stationary state pst of the

original system: pstÛ���=pst�Î+ L̂ /��=pst so that �st=pst for
all values of �.

The uniformization procedure thus provides a discrete-
time formulation of the original dynamics that preserves the
steady state distribution. It is not, however, an exact mapping
of the dynamics as several other properties may depend on
the parameter � �e.g., the topological entropy�. In the next
section, we show how to relate the large deviation functions
obtained from the original continuous-time process to those
obtained from the uniformized system.

III. LARGE DEVIATION FUNCTIONS FROM
UNIFORMIZED DYNAMICS

Large deviation functions play an increasingly important
role in many different fields �23�. They describe the occur-
rence of rare events, i.e., the large fluctuations away from the
mean behavior. Recent developments have highlighted sym-
metry properties in the large fluctuations of far-from-
equilibrium thermodynamic quantities �28�. Here we study
two such variables: the dissipation rate and the thermody-
namic currents. We show that, in both cases, the generating
functions obtained in continuous time can be exactly recov-
ered from those arising in the discrete-time domain.

We first consider the dissipation rate S�t�. S�t� is a fluctu-
ating quantity measuring the dissipation occurring along a
specific trajectory of the system. In the present context

S�t� � ln
�
traj

Wij/Wji� . �6�

Its large deviation function I is defined as �34�

Prob�S�t�/t = ��  e−tI��� �t → �� . �7�

Instead of studying the large deviation function �7� directly,
we develop our analysis at the level of the generating func-
tion, which is defined via the Legendre transform G���
=max��I���−���. Alternatively, the generating function asso-
ciated with Eq. �7� can be expressed as the limit

G��� = lim
t→�

−
1

t
ln�e−�S�t�� . �8�

The generating function allows us to obtain all cumulants of
the dissipation by taking successive derivative with respect
to � : ��Sn��= �−1�n−1dnG /d�n�0�. The average in Eq. �8� is
calculated as �e−�S�t��= �g��t��1, where �x�1=�i�xi� is the
L1-norm. The vector g��t� satisfies the initial condition
g��0�=p�0� for all � and evolves according to �29�

dg��t�
dt

= g��t�L̂� �9�

with the operator L̂� given by

L̂� =�Wij
1−�Wji

� if i � j

− � j
Wij otherwise.�

Accordingly, the generating function �8� is given by minus

the largest eigenvalue of the operator L̂�. Note that for �
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=0 we recover the evolution operator L̂= L̂�=0 for the prob-
ability distribution p�t�.

We now consider the uniformized process �Eq. �5��. The
analog of the generating function �8� is defined as

Ḡ��� = lim
n→�

−
1

n
ln�e−�S̄�n�� �10�

with S̄=ln��trajUij /Uji�=ln��trajWij /Wji�=S, which now

evolves in discrete time. Similarly, Ḡ can be obtained as
minus the largest eigenvalue of the operator

Û� =� �1/��Wij
1−�Wji

� if i � j

1 − �1/��� j
Wij otherwise�

or

Û� = Î +
L̂�

�
. �11�

In turn we recover the generator of the time evolution when

�=0: Û= Û�=0.
To establish the connection between the generating func-

tions �8� and �10�, we derive the explicit relation between the
eigenvalues 	n and 	̄n of the two processes. Using the rela-
tion �11� between the original and the uniformized process,
we see that the eigenvalue equation reads

det�L̂� − 	nÎ� = det��Û� − �Î − 	nÎ� = 0 �12�

or

det�Û� − Î�	n/� + 1�� = 0. �13�

This last expression reveals that if 	n is an eigenvalue of the

original operator L̂�, then 	̄n=	n /�+1 is an eigenvalue of

the discrete-time evolution operator Û�. Therefore all eigen-
values are simply scaled by a factor � and shifted by the
unity. In addition, all eigenvectors can be verified to be
strictly identical between the two processes �35�. We thus
arrive at our main result: The generating function �10� of the
uniformized system is related to the original generating func-
tion �8� by the linear transformation

Ḡ��� = G���/� + 1. �14�

The corresponding large deviation functions are thus related

through the scaling Ī���= I���� /�. This result demonstrates
that the large fluctuations can be exactly obtained from the
discrete-time dynamics of the uniformized process. This sim-
plifies many theoretical and numerical formulations, as will
be discussed in the next sections.

We next consider the thermodynamic currents, which
measure the transport of matter and energy inside the system
and their exchanges with the environment. They are ex-
pressed as

J�t� = �
traj


�t���t − tjump� , �15�

where 
= �1 if a transition contributes to the current in the
positive or negative direction, respectively, and zero other-
wise �33� �see also Sec. V�. A similar derivation can be ob-
tained for the generating function Q of the currents, leading

to Q̄=Q /�+1. This conclusion stems from the observation
that the physical quantities of interest �entropy production,
thermodynamic currents� do not affect the diagonal terms of
the corresponding large deviation operators �no entropy and
no currents are generated when no jumps occur�.

This strong correspondence is unanticipated. Indeed, the
generating function �8� is equivalently expressed as a path
integral over all possible trajectories,

G = lim
t→�

−
1

t
ln �

traj
P�traj�exp�− �S�traj�� . �16�

The probability of a trajectory reads

P�traj� = p0�
i

exp��ti+1 − ti�L̂ii�Wii+1 �17�

and depends on the exact transition times �t1 , t2 , . . . , tn , . . .�.
Thus, in principle, the large deviations should reflect the fine
temporal structure �the time intervals between jumps,

weighted by the corresponding factors L̂ii� of the continuous-
time process. Now, in discrete time, the probability of the

same path reads 0�iÛii+1���, irrespective of its temporal
structure, while the dissipation is identical in both formula-

tions �S̄=S�. Yet, the result �14� shows that, in the discrete-
time domain, the generating function is simply scaled by the
discretization parameter �. In this sense, all information on
the large deviations is contained in the discrete-time dynam-
ics �Eq. �5��. More generally, all eigenvalues being closely
related to those of the original process, we expect the
continuous- and discrete-time dynamics to present strong
connections. We explore this question in the next section.

IV. FINITE-TIME DYNAMICS AND SIMULATION
ALGORITHMS

In the previous section we demonstrated that the study of
the large deviation functions can be performed using the
discrete-time dynamics �Eq. �5��. These functions are defined
in the infinite-time limit; here we further develop the link
between the two descriptions and analyze the finite-time re-
gime.

The detailed connection with the continuous-time evolu-
tion is accomplished through the following construction. The
solution of the system �Eq. �9�� can be written as

g��t� = p�0�eL̂�t = p�0�e−�tÎ+�tÛ���� = e−�t�
k=0

�
��t�k

k!
p�0�Û�

k��� ,

�18�

where we used that g��0�=p�0� in the first equality, the rela-
tion �11� in the second equality, and the commutativity of the
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identity operator in the third equality. The last expression
provides a robust way of numerically evaluating the finite-
time generating functions �36�. Indeed, as opposed to the

operator L̂�, the operator Û� and its powers Û�
k have non-

negative elements only. This in turn implies that the last
expression has no additions of numbers with opposite signs.
This is an advantageous feature because additions of num-
bers with opposite sign increase round-off errors consider-
ably �37�.

A revealing interpretation of the previous formula can be
gained from the following consideration. Recall that the time
evolution of the probability distribution p�t�=g�=0�t� is re-
covered in the special case �=0. Introducing the number of
transitions N�t� during the time interval �0, t�, Eq. �18� with
�=0 can be interpreted as

Prob�j,t� = �
k,i

Prob�j,t�i,0 and N�t� = k� � Prob�N�t� = k� ,

�19�

where

Prob�j,t�i,0 and N�t� = k� = �Ûk�ij��� �20�

is the probability to be in state j at time t given the initial
state i at time t=0 and a number of transitions k occurring
during the time interval t. The probability to observe a num-
ber of transitions N�t�=k during the time interval t reads

Prob�N�t� = k� = e−�t ��t�k

k!
, �21�

i.e., it satisfies a Poisson process of mean �t. This formula-
tion is remarkable for it implies that we can express the
original stochastic process in terms of a single homogeneous
Poisson rate. Alternatively, this Poisson distribution can be
interpreted as arising from the sum of independent exponen-
tial distributions. In this case the system jumps to another

state j with probability Ûij��� after a random waiting time
exponentially distributed with mean 1 /�, regardless of the
current state i �hence the name uniformization�.

Building on this interpretation, we can devise alternative
strategies to compute quantities of interest such as the tran-
sition probabilities p�t� or the generating function g��t�. In-
deed, we can sample the space of trajectories using the fol-
lowing algorithm:

Simulation algorithm for autonomous processes

�1� Generate a random number N sampled from a Poisson
distribution of mean �t.

�2� Generate a random trajectory of length N according to

the discrete-time process Û���.

Equations �19�–�21� ensure that this construction gener-
ates the correct probability distribution. Note that the present
scheme completely bypasses the random exponential waiting
times needed in the traditional formulation �38� while re-
maining exact. Equation �18� also guarantees that, for ��0,
using these randomly generated trajectories leads to the exact
generating function. In addition to its simplicity, the present

algorithm uses an mean number of random numbers equal to
1+�t to generate a trajectory of length t. In contrast,
Gillespie’s algorithm �38� requires 2t�L� random numbers in
average, where �L�= �1 / t��i�L̂ii��0

t pi���d� is the mean waiting
time between jumps. Accordingly, when the inverse time step
� can be chosen such that ��2�L� the present formulation is
expected to outperform Gillespie’s algorithm.

Importantly, this algorithm can be generalized to encom-
pass time-dependent Markov processes. Consider a time-
dependent system described by an evolution operator L̂�t�
and choose ��maxi,t�L̂ii�t��. Then the space of trajectories
can be sampled by iterating the following steps:

Simulation algorithm for nonautonomous processes

�1� Generate a waiting time � exponentially distributed
with a mean 1 /�, independently of the current state i.

�2� Update the current time: t← t+�.
�3� Jump to a state j randomly selected with probability

Ûij�� , t�.

The total number of jumps is also given by the Poisson
process �Eq. �21��, but here it is necessary to keep track of
their exact timings due to the time dependence of the system.
Note that the optimal value of � for simulation purposes is

given by �=maxi,t�L̂ii�t�� as it minimizes the number of steps
needed to generate a trajectory. It can thus be directly esti-
mated from the knowledge of the transition rates.

Remarkably this representation avoids the need to con-
sider inhomogeneous, time-dependent waiting times. This
feature is especially important as generating random num-
bers according to a distribution of the form

�L̂ii�t��exp��t0
t L̂ii���d�� is difficult and approximate in most

situations of interest �see next section�. In contrast, step 1
only requires exponential random numbers. As shown in the
Appendix, the same construction applies to the generating
functions as well. We illustrate these exact simulation meth-
ods in the next section.

V. EXAMPLE: FLUXES IN STOCHASTIC PUMPS

In this section we illustrate our results on a model of
stochastic pumping. Such models play an increasingly im-
portant role, e.g., in the study of molecular motors. They
remain, however, very difficult to simulate stochastically due
to their time dependence.

We consider a model system motivated by an experiment
by Leigh et al. �40� and analyzed by Astumian �41� and
Rahav et al. �42�. The system consists in thermally activated
transitions among three states, depicted by the wells and en-
ergy levels in Fig. 1, with rates Wij =ke−��Bij−Ei�. We will take
k ,�=1 to set the units of time and energy. The system satis-
fies the Kolomogorov condition W12W23W31=W13W32W21
and is thus assumed to be at equilibrium initially. Here we
induce nonzero currents by periodically varying the tempera-
ture of the system:

��t� = 1 + A sin
2
t

T
� . �22�

We consider the pumped flux
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��t� = �
0

t

J���d� �23�

induced by this temperature variation. Its fluctuations can be
described by the moment generating function

F��t� = �e−���t�� . �24�

All moments of the pumped flux distribution can be obtained
by calculating derivatives with respect to �,

��n�t�� = �− 1�n�dnF�t�
d�n �

�=0
. �25�

The generating function �24� can be expressed as F�= �f��1 in
terms of the vector f� satisfying

df��t�
dt

= f��t�Ĥ��t� , �26�

where

Ĥ��t� =� Wij�t�e−�
ij if i � j

− � j
Wij�t� otherwise.�

The quantity 
ij =−
 ji takes the value �1 if the transition i
→ j generates a positive �negative� current, and zero other-
wise �33�. We recover the time evolution operator for �=0:

L̂= Ĥ�=0.
We first perform stochastic simulations in the equilibrium

state without time-dependent driving. The solid line in Fig. 2
shows the moment generating function of the integrated cur-
rent �12�t=10�=�0

t=10J12���d�, obtained by numerical inte-
gration of Eq. �26�. The circles and pluses denote the results
of 50 000 random trajectories of length t=10, sampled ac-
cording to Gillespie’s and the uniformized algorithm, respec-
tively. Being exact, both approaches present an excellent
agreement with the solution of the system �Eq. �26��. The
average number of random numbers needed is, however, dif-
ferent. As discussed in the previous section, we expect the
uniformized dynamics to outperform Gillespie’s algorithm
when the waiting times have the same order of magnitude.

For this set of parameters, the ratio between the largest and
the lowest waiting time is around 3. Yet, Gillespie’s algo-
rithm requires 2�L��0.5996 random numbers per unit time
and per trajectory, which is larger than ��0.5335 for the
uniformized dynamics.

We now turn to the situation in presence of the time-
dependent driving �Eq. �22��, for which we observe a drastic
difference between the two approaches. We implemented the
simple time-dependent uniformized algorithm described in
Sec. IV, while the time-dependent Gillespie algorithm was
implemented as follows. When the system is in state i at time
t, a random transition time �� t is generated according to the
distribution

Ri�t;�� = �L̂ii����Pi�t;�� = �L̂ii����exp��
t

�

L̂ii�s�ds� .

�27�

To sample this time-dependent distribution, we generate a
uniform random number r between �0,1� and solve the equa-
tion Pi�t ;��−r=0. Note that finding the zero of this equation
involves a finite number of evaluation of the functions P,
which in turn implies the evaluation of that many integrals.
Finally, we update the current time �t←�� and select a new

state j� i with probability L̂ij�t� / �L̂ii�t��.
We show in Fig. 3 the generating function F��T� after one

cycle. Here also, both algorithms display a similar degree of
accuracy. Their computational cost is, however, very differ-
ent, as revealed in Table I. Although the uniformized algo-
rithm requires more transitions in average, Gillespie’s algo-
rithm requires the generation of random numbers following
distributions of the form Eq. �27�, which is a computationally
intensive task. For this reason, the uniformized algorithm
was running �300 times faster than Gillespie’s algorithm

Energy

Configuration

E1 E2

E3

B12

B23

B31

FIG. 1. �Color online� A model of stochastic pump. The particle
makes thermal transitions among three states with energies Ei, over
barriers with energies Bij. The temperature is varied in time to in-
duce currents.

−1 −0.5 0 0.5 1
1

1.1

1.2

1.3

λ

F
λ

(t
=

10
)

Gillespie
Uniformization

FIG. 2. �Color online� Fluctuations of the integrated flux
�12�t�=�0

t J12���d� at equilibrium �i.e., without driving�, as mea-
sured by its moment generating function �24�. The current is mea-
sured in terms of 
12=−
21=1 and zero otherwise. The well depths
take the values �E1 ,E2 ,E3�= �−1.5,−1.75,−2.25� and the barriers
�B12,B23,B13�= �−0.3,0.5,0�. The solid line denotes the numerical
solution of the system �Eq. �26��. The circles and pluses correspond
to the simulation of 50 000 trajectories using Gillespie’s and the
uniformization algorithm, respectively.
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�39�. Changing the parameters always lead to comparable
improvements.

A similar improvement is expected for many nonautono-
mous systems. In such systems, the computational bottleneck
is the generation of random numbers following time-
dependent distributions of the form Eq. �27�. This requires
finding the zero of an equation, whose evaluation requires
the calculation of integrals, for each transition. In contrast
the uniformized algorithm only requires exponential random
numbers, providing a more straightforward and efficient
implementation.

VI. CONCLUSIONS

We have described a mapping from general continuous-
time Markov processes to discrete-time Markov chains that
presents several key features. First, all eigenvectors of the
original dynamics, including the steady state, are strictly pre-
served. Second, all eigenvalues are related by a linear trans-
formation. Third, it offers an interpretation of the time evo-
lution in terms of a single homogeneous Poisson rate
�uniformization�.

We have demonstrated that this uniformization procedure
also preserves the generating functions of the original pro-

cess. In particular, we have analyzed the generating functions
of the dissipation rate and of the thermodynamic currents.
More generally, this conclusion will hold true for all physical
quantities that only vary during the transitions between states
of the system. Although the generating functions evolve ac-
cording to generalized operators that do not present a transi-
tion matrix structure, the time-discrete dynamics preserves
the associated generalized eigenvectors while the eigenval-
ues are related via a linear transformation. Thus, for the pur-
pose of studying generating functions, it is sufficient to focus
on the uniformized dynamics exclusively.

This framework provides important simplifications for the
theoretical and numerical analysis of large deviation func-
tions. In particular, it allows the implementation of efficient
numerical techniques to study the dynamics and fluctuations
of Markov processes. We have illustrated the derived simu-
lation algorithms on a model of stochastic pumping. The
fluxes pumped by a time-dependent driving have a consider-
able importance in many applications but their stochastic
simulation has remained a challenge. As we have shown, the
present approach offers important advantages both at the
level of simplicity and efficiency, especially, for nonautono-
mous systems. Remarkably, we have observed a two-order of
magnitude improvement in the simulation of a stochastic
pump. This approach thus provides a powerful tool to study
ratchets and pumps �43� and, more generally, all time-
dependent systems such as temperature-programmed desorp-
tion experiments �44� or driven quantum dots �45�.

Theoretical insights can also be gained from this formu-
lation. For instance, it reveals that the temporal aspect of
continuous-time trajectories—even for inhomogeneous
processes—does not contain information on the large devia-
tion functions. To explore the scope of this conclusion, the
next natural step is to consider semi-Markovian processes for
which the waiting times between jumps exhibit arbitrary dis-
tributions. In this case the generating function is given by the
solution of an equation involving the Laplace transforms of
the waiting time distributions �46�. However, when the wait-
ing times are not exponentially distributed �i.e., the non-
Markovian case�, this equation cannot be written as an eigen-
value problem any longer. As a result, even tough some
uniformization procedure can be derived in this case as well
�47�, the generating functions cannot be obtained from any
discrete-time dynamics. In this situation the generating func-
tions are shaped by the precise form of the waiting time
distributions, even for homogeneous processes. The present
approach thus provides a systematic way to disentangle the
contributions of the non-Markovianity to the large deviation
functions.
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APPENDIX: UNIFORMIZATION OF NONAUTONONOUS
SYSTEMS

In this appendix we extend the uniformization procedure
for nonautonomous processes �48� to the case of the gener-

−1 −0.5 0 0.5 1
1
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λ
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λ
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T
)

Gillespie
Uniformization

FIG. 3. �Color online� Fluctuations of the integrated flux
�12�T�=�0

TJ12���d� over one cycle of the temperature driving Eq.
�22�, as measured by its moment generating function �24�. The driv-
ing period T=2 and its amplitude A=0.1. All other parameters are
identical to those in Fig. 2. The solid line denotes the numerical
solution of the system �Eq. �26��. The circles and pluses correspond
to the simulation of 50 000 trajectories using Gillespie’s and the
uniformization algorithm, respectively.

TABLE I. Computational cost �per trajectory and per unit time�
for the simulation of Fig. 3. In the time-dependent case the number
of random numbers is given by �2 / t��i�0

t pi����Lii����d� for
Gillespie’s algorithm and by 2� for the uniformized algorithm.

Gillespie Uniformization

Random numbers 0.3 0.6

Integrals 28.09 0

Simulation time 321.18 1
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ating function operator. We consider a time-dependent Mar-

kov process characterized by an evolution operator L̂�t�. The
vector g��t� evolves according to

dg��t�
dt

= g��t�L̂��t� �A1�

with L̂��t�=Wij
1−��t�Wji

��t� if i� j and −� jWij�t� otherwise.

Due to the noncommutativity of the operator L̂�t� at different
times, the solution to this evolution equation is expressed as
the Peano-Baker series �49�

g��t� = p�0��
k=0

� �
0

t

ds1�
s1

t

ds2 ¯

� �
sk−1

t

dskL̂��s1�L̂��s2� ¯ L̂��sk� . �A2�

Introducing ��maxi,t�L̂ii�t�� the operator Û�t�= Î+ L̂�t� /� de-
fines a transition matrix at all times. Its continuation for �
�0 reads

Û��t� = Î +
L̂��t�

�
�A3�

and describes the evolution of the moment generating func-
tion. Substituting formula �A3� into the series �Eq. �A2�� and
using that

�
0

t

ds1�
s1

t

ds2 ¯ �
sk−1

t

dsk =
tk

k!
, �A4�

we obtain, after some manipulations,

g��t� = p�0�e−�t�
k=0

�
��t�k

k!
�

0

t

ds1�
s1

t

ds2 ¯

� �
sk−1

t

dsk
 k!

tk �Û��s1�Û��s2� ¯ Û��sk� . �A5�

This expression has the following interpretation. The terms
e−�t��t�k /k! are Poisson probabilities. The integration ac-
counts for all possible sets of time points at which events in
the Poisson process can take place. The term k ! / tk corre-
sponds to the density introduced by the Poisson process, for
which the probability density of k events is uniformly dis-
tributed in the interval �0, t�. Expressing the Poisson prob-
abilities as the sum of independent exponential random times
of mean 1 /� we deduce the simulation algorithm presented
in main text. Moreover, expression �A5� implies that the gen-
erating function will be adequately sampled.
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