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In the past decade low-temperature Glauber dynamics for the one-dimensional Ising system has been several
times observed experimentally and occurred to be one of the most important theoretical approaches in a field
of molecular nanomagnets. On the other hand, it has been shown recently that Glauber dynamics with the
Metropolis flipping probability for the zero-temperature Ising ferromagnet under synchronous updating can
lead surprisingly to the antiferromagnetic steady state. In this paper the generalized class of Glauber dynamics
at zero temperature will be considered and the relaxation into the ground state, after a quench from high
temperature, will be investigated. Using Monte Carlo simulations and a mean field approach, discontinuous
phase transition between ferromagnetic and antiferromagnetic phases for a one-dimensional ferromagnet will
be shown.
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I. INTRODUCTION

Glauber dynamics for the Ising spin chain has been
known for almost 50 years �1�, but only recently it became a
really hot topic, not only from a fundamental, but also an
applicative point of view �2–8�. It is well known that a
purely one-dimensional �1D� system exhibits long-range or-
dering only at zero temperature T=0 K. Nevertheless, in
some situations long relaxation times for the magnetization
reversal with decreasing temperature can be observed, and
finally at significantly low temperatures, the material can be-
have as a magnet. The phenomenon of slow magnetic relax-
ation is considered as one of the most important achieve-
ments of molecular magnetism, opening exciting new
perspectives including that of storing information �9,10�.
Slow relaxation of the magnetization, predicted in the 1960s
by Glauber in a chain of ferromagnetically coupled Ising
spins �1�, in materials composed of magnetically isolated
chains was observed for the first time in 2001 �2�. In 2002,
this new class of nanomagnets was named single-chain mag-
nets �SCM� �3� �for a recent review see �8�� and the Glauber
dynamics for the one-dimensional Ising spins system became
one of the most important theoretical approaches for SCM.

Within the Glauber dynamics for Ising spins with a spin
s=1 /2, in a broad sense, each spin is flipped Si�t�→−Si�t
+1� with a rate W��E� per unit time and this rate is assumed
to depend only on the energy difference implied in the flip.
In this paper we consider the generalize class of zero-
temperature dynamics defined as

W��E� = � 1 if �E � 0,

W0 if �E = 0,

0 if �E � 0,
� �1�

which occurred to be very interesting not only from an ap-
plicative perspective, but also from a theoretical point of

view as an example of nonequilibrium dynamical systems
with many attractors �11�. The zero-temperature limits of the
original Glauber dynamics �1� and Metropolis rates �12� �two
the most popular choices� are respectively W0

G=1 /2 and
W0

M =1.
Glauber dynamics was originally introduced as a sequen-

tial updating �SU� process �1�. Also Monte Carlo method,
used frequently for various models in statistical physics, as
proposed originally by Metropolis et al. �12�, is essentially
SU process. Evolution under dynamics defined by Eq. �1�
with random sequential updating is already well known in a
case of one-dimensional system and can be derived analyti-
cally �11�. For any nonzero value of the rate W0 ferromag-
netic steady state is reached and the dynamics belongs to the
universality class of the zero-temperature Glauber model �1�.
The particular value W0=0 corresponds to the constrained
zero-temperature Glauber dynamics ��11� and references
therein�. In the constrained zero-temperature Glauber dy-
namics, the only possible moves are flips of isolated spins
and therefore the system eventually reaches a blocked con-
figuration, where there is no isolated spin �11�, i.e., for W0

=0 the relaxation time to the ferromagnetic steady state is
infinite.

The case of the synchronous updating, in which all units
of the system are updated at the same time, is much more
interesting. Moreover, clear evidence of a relaxation mecha-
nism which involves the simultaneous reversal of spins has
been shown experimentally for magnetic chains at low
temperatures �15�.

In �20� more general form of zero-temperature Glauber
dynamics has been investigated than one defined by Eq. �1�.
They have studied a model with two parameters � and �,
which can be presented at T=0 analogously to Eq. �1� as
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W��E� = �
��1 + �� if �E � 0,

�

2
�1 − �� if �E = 0,

0 if �E � 0,
� �2�

where again W��E� denotes the flipping rate per unit time. To
fulfill the condition W��E�� �0,1�, as seen from Eq. �2�, the
following relations have to be satisfied,

− 1 � � �
1 − �

�
,

� − 2

�
� � � 1. �3�

Above relations correspond to the region between thick lines
in Fig. 1. In �20� the region denoted by the gray color in Fig.
1 has been investigated �i.e., ��0, �� �0,1��. Comparing
Eqs. �1� and �2� we can easily derive the following relations:

� = W0 +
1

2
,

� =
1/2 − W0

1/2 + W0
, �4�

which are parametric expression of the upper bold line of
Fig. 1. In this paper we consider one-parameter model de-
fined by Eq. �1� with W0� �0,1� and therefore we are able to
investigate only upper bold line of Fig. 1 defined by Eq. �4�.

II. SIMULATION AND MEAN FIELD RESULTS

We consider the chain of L Ising spins �i= �1
�i=1,2 , . . .L� with the periodic boundary conditions. In the

initial state each lattice site is occupied independently by a
randomly chosen value +1 or −1, both equally probable
�high temperature situation�. In every time step all spins are
considered simultaneously, but each spin is flipped indepen-
dently with probability W��E� defined by Eq. �1�. It occurs
that for all W0� �0,1� system eventually reaches one of the
two final states—ferromagnetic steady state or antiferromag-
netic limit cycle. If we measure the density of active bonds
�bond is active if connects two sites with opposite spins�:

� =
1

2L
�
i=1

L

�1 − �i�i+1� , �5�

we obtain in the final state �st=1 �antiferromagnetic state� or
�st=0 �ferromagnetic state�.

The time evolution of the mean value �averaged over 104

samples� of the density of active bonds measured in Monte
Carlo steps �MCS� is presented in Fig. 2. This is seen that for
W0�0.5 the average number of active bonds decreases in
time and eventually the system reaches the ferromagnetic
steady state ����	�	= ��st	=0�, while for W0�0.5 it increases
and eventually antiferromagnetic limit cycle is reached
����	�	= ��st	=1�. Results presented in Fig. 2 show that for
W0=0.5 there is a phase transition between ferromagnetic
and antiferromagnetic phase.

This phase transition can be predicted using the mean
field approximation �MFA� analogously as it was done in
�20�. In �20� the mean field equations for the density of ac-
tive bonds and magnetization have been derived,

d�

dt
= 2����1 − 3� + 2�2� ,

0.5 1 1.5
−1
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FIG. 1. Thick lines correspond to equations �= �1−�� /� and
�= ��−2� /�. The region between these two lines corresponds to the
condition W��E�� �0,1� �see Eq. �2��. In �20� the region denoted
by the gray color has been investigated �i.e., ��0, �� �0,1��. In
this paper we consider one-parameter model defined by Eq. �1� and
therefore we are able to investigate only upper bold line defined by
Eq. �4�.
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FIG. 2. �Color online� The time evolution of the mean value of
the density of active bonds ��	 measured in Monte Carlo steps for
the lattice size L=160 is presented. Averaging was done over 104

samples. For W0�0.5 the mean number of active bonds decreases
in time to 0 �ferromagnetic steady state� and for W0�0.5 increases
to 1 �antiferromagnetic limit cycle�.
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dm

dt
= − ��m�m2 − 1� . �6�

Using relations �4� we can easily rewrite above equations in
the case of our one-parameter model,

d�

dt
= �1 − 2W0���1 − 3� + 2�2� ,

dm

dt
= 
W0 −

1

2
�m�m2 − 1� . �7�

As we see there are three types of fixed points,

mst = � 1 and �st = 0,

mst = � 0 and �st = 1/2,

mst = � 0 and �st = 1.

In �20� only two first types have been considered:
�i� �st=0 �ferromagnetic state with mst=−1,1�
�ii� �st=1 /2 �so called active phase�.
However, there is a third fixed point �st=1, mst=0,

which corresponds to antiferromagnetic steady state found in
our computer simulations.

Let us first consider stability of the magnetization fixed
points. For W0�0.5 we can easily check that �mst�=1 �ferro-
magnetic order� is an absorbing state, since from Eq. �7�,

dm

dt
� 0 for m � �− 1,0� → mst = − 1,

dm

dt
� 0 for m � �0,1� → mst = 1. �8�

Analogously, for W0�0.5 we obtain from Eq. �7� that mst
=0,

dm

dt
� 0 for m � �− 1,0� → mst = 0,

dm

dt
� 0 for m � �0,1� → mst = 0. �9�

Therefore, MFA equation for magnetization predicts the
phase transition for W0=0.5 between ferromagnetic phase
�mst�=1 and phase with magnetization equal zero.

Now we can check stability of the MFA equation for ac-
tive bonds. For W0�0.5 we obtain from Eq. �7� that �st
=1 /2 is the stable point �active phase �20��:

d�

dt
� 0 for � � �0,1/2� → �st = 1/2,

d�

dt
� 0 for � � �1/2,1� → �st = 1/2. �10�

Analogously, for W0�0.5 we can easily check that

d�

dt
� 0 for � � �0,1/2� → �st = 0,

d�

dt
� 0 for � � �1/2,1� → �st = 1. �11�

As we see there is a contradiction in a simple MFA equa-
tions. Considering only equation for m one can easily check
that for W0�0.5 there is a ferromagnetic absorbing state
�mst�=1, while for W0�0.5 we obtain mst=0, which might be
associated with antiferromagnetic phase �if simultaneously
�st=1� or active phase �if simultaneously �st=0�. However, if
one considers the MFA equation for � it occurs that for W0
�0.5 �st=0.5 �active phase�, while for W0�0.5 �st=0 in a
case of � between 0 and 0.5 �ferromagnetic phase� or �st
=1 in a case of � between 0.5 and 1 �antiferromagnetic
phase�.

Inconsistency in equations is clearly visible for W0�0.5,
in which �mst�=1 and simultaneously �st=0.5 �instead of �st
=0, which is valid for ferromagnetic phase�. For W0�0.5
MFA results are more reasonable, since mst=0 and �st=0 or
1. Of course only the second possibility is consistent and
corresponds to antiferromagnetic phase. Contradiction which
is present in MFA equations follows from MFA equation for
the density of active bonds. This is understandable since, due
to the Eq. �5�, correlations between neighboring sites �which
are not considered in a simple MFA� are essential for �.

Nevertheless, summing up above considerations, MFA
equations suggest discontinuous phase transition for W0
=0.5 between ferromagnetic and antiferromagnetic phase.
This should be noticed that the transition value W0=0.5 cor-
responds to the original Glauber dynamics �1�.

In the case of discontinuous phase transition one would
expect the phase coexistence. We have provided computer
simulations to confirm this mean field result and indeed co-
existence of ferro- and antiferromagnetic phases can be ob-
served near the transition point W0=0.5 �see Fig. 3�. For
W0=0.5 both types of clusters �ferro- and antiferromagnetic�
are nearly the same size and after a long-time competition
between them eventually one of two possible steady states is
reached. Because for W0=0.5 both of them are equally prob-
able we see the constant value of the average density of
active bonds in Fig. 2. Let us now investigate the phase
transition more quantitatively using Monte Carlo simula-
tions.

Following �14,20�, we use as an order parameter the mean
value of the density of active bonds. We provide Monte
Carlo simulations and wait until the system reaches the final
stationary state. Dependence between order parameter in the
stationary state ��st	 and the flipping probability W0 is pre-
sented in Fig. 4, showing again clearly discontinuous phase
transition for W0=0.5 in agreement with the mean field re-
sult. In the case of W0�0.5 the ferromagnetic steady state is
obtained with probability 1 �for the infinite system L=	�.
For W0�0.5 the antiferromagnetic state is always reached,
i.e., the stationary states losses any remnants of the ferro-
magnetic Ising interactions.

One of the most important issues connected with the
coarsening is the relaxation time 
, i.e., time needed to reach
the ground state. In this paper we measure the relaxation
time starting from the random initial conditions and counting
how many Monte Carlo steps is needed to reach the steady
state ��=1 or �=0�. We average over N=104 samples and
calculate the mean relaxation time,
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�
	 =
1

N
�
i=1

N


i, �12�

where 
i is the relaxation time of ith sample. In Fig. 5 �
	
divided by the square of the lattice size L as a function of the
flipping probability W0 is shown. This is seen that for W0

=0.5 the mean relaxation time scales as �
	
L2, which is
well known result in a case of sequential updating �16,17�.
The dependence between the mean relaxation time �
	 and
the flipping probability W0 is nonmonotonical. For W0→0
the relaxation time grows rapidly �18,19�, which can be un-
derstood recalling that �
	 if infinite for W0=0 �11�. For in-
creasing W0 the mean relaxation time decreases up to a cer-
tain point W0

min�L�. However, due to the phase transition in
W0=0.5, for W0� �W0

min�L� ,0.5� it grows again, resulting
nonmonotonic behavior shown in Fig. 5. The maximum peak
is narrower with the growing lattice size, which is expected
behavior for the phase transition. The minimal value W0

min�L�
depends on the system size L as W0

min�L�=−2.5 /L+0.5 and
therefore limL→	 W0

min�L�→0.5. The mean relaxation time
for this minimal value scales with the system size as
�
�W0

min�	
L2, i.e., with the same exponent as for the tran-
sition point W0=0.5.

The most important question here is the one concerning
the origin of the phase transition. As it was mentioned above,
in the case of Metropolis flipping rate �W0=1� the system
reaches antiferromagnetic limit cycle, instead for the ferro-
magnetic steady state �13,14�. It can be easily understood,
because for the flipping probability W0=1, the case of syn-
chronous updating is fully deterministic �see an example be-
low�:

¯↑↑↑↓↓↓ ¯ ,

¯↑↑↓↑↓↓ ¯ ,

¯↑↓↑↓↑↓ ¯ ,

¯↓↑↓↑↓↑ ¯ ,

¯↑↓↑↓↑↓ ¯ . �13�

FIG. 3. The time evolution of the Ising spins chain of the length
L=160 is presented. Black points represent active bonds and thus
black regions correspond to antiferromagnetic and white to ferro-
magnetic clusters. Coexistence of both types of clusters is visible
for W0�0.5. For W0=0.5 both types of clusters are nearly the same
size and there is a long-time competition between them leading
eventually to one of two possible steady states �ferromagnetic or
antiferromagnetic�
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FIG. 4. �Color online� Density of active bonds �st in stationary
state as a function of flipping probability W0 �so called exit prob-
ability� averaged over 104 samples. In the thermodynamical limit
L→	 for W0�0.5 ferromagnetic steady state is reached with prob-
ability one ��st=0� and for W0�0.5 antiferromagnetic steady state
is reached with probability one ��st=1�. Note that, the transition
value W0=0.5 corresponds to the original Glauber dynamics.
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FIG. 5. �Color online� The mean relaxation times �
	 divided by
the square of lattice size L as a function of flipping probability
W0� �0.48,0.52�. Averaging was done over 104 samples. Note that
for W0=0.5 relaxation time scales with the system size as �
	
L2.
However, for W0�0.5 scaling exponent differs from known value
�=2 �see Fig. 6�.
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On the other hand, only for W0=1 updating is really syn-
chronous. For decreasing W0 only isolated spins are con-
cerned really synchronously, since in the case of isolated
spins �E�0 �see Eq. �1�� the flip is provided with the prob-
ability 1. Flipping of isolated spins leads clearly to growth of
ferromagnetic domains. Let us introduce for a while a nota-
tion L�E=0 for the number of spins that flipping would not
change the energy and L�E�0 for the number of spins that
flipping would decrease the energy. The flip for �E=0 is
realized with the probability W0 and for �E�0 with the
probability 1, which means that on average L�E�0+W0L�E=0
is flipped in a single time step. In the case of W0=1, as
mentioned above, the antiferromagnetic order is reached. On
the other hand, for W0=1 /L�E=0 on average only one not
isolated spin �i.e., with �E=0� is flipped in a single time step,
similarly to the case of the sequential updating for the system
without isolated spins. Thus, because in the case of sequen-
tial updating ferromagnetic steady state is reached, one can
expect also ferromagnetic order in the case of synchronous
updating for small values of W0. Clearly the phase transition
must occur somewhere between the antiferromagnetic order,
preferred by a fully synchronous updating �W0=1�, and the
ferromagnetic steady state, preferred by sequential updating
�W0=1 /L�E=0�.

As mentioned above, for W0=0.5 and W0=W0
min�L� the

mean relaxation time scales with a system size as 
L2. We
have checked also the scaling for other values of W0. For all
values of W0 the mean relaxation time scales with the system
size nearly as �
	
L� with ��2 �see Fig. 6�. However, for
different values of W0 the scaling exponent � slightly varies.
The dependence between scaling exponent and the flipping

probability is presented in Fig. 7. The shape of the curve
��W0� mimic the shape of �
�W0�	.

III. SUMMARY

In this paper we have been investigating the relaxation of
the Ising spins chain under the generalized class of Glauber
dynamics at zero-temperature. Within such a dynamics, the
flipping probability in a case of conserved energy is given by
arbitrary value of W0� �0,1� �review in a case of sequential
updating can be find in �11��. We have proposed to use syn-
chronous updating for such a generalized class of zero-
temperature dynamics. Our motivation for this work came
from recent experiments showing slow relaxation in mag-
netic chains at low temperatures �2–8,15�. We have shown
by Monte Carlo simulations that there is a phase transition
for W0=0.5, which correspond to the value originally pro-
posed by Glauber �1�:

�i� for W0�0.5 ferromagnetic fixed point �mst= �1, �st
=0� is stable

�ii� for W0�0.5 antiferromagnetic fixed point
�mst=0, �st=1� is the stable one.

Following �20� we were able to obtain the mean field
result which also suggests phase transition between ferro-
and antiferromagnetic phases for W0=0.5.
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