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Statistical properties of directed avalanches
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A two-dimensional directed stochastic sandpile model is studied both numerically and analytically. One of
the known analytical approaches is extended by considering general stochastic toppling rules. The probability
density distribution for the first-passage time of stochastic process described by a nonlinear Langevin equation
with power-law dependence of the diffusion coefficient is obtained. Large-scale Monte Carlo simulations are
performed with the aim to analyze statistical properties of the avalanches, such as the asymmetry between the
initial and final stages, scaling of voids and the width of the thickest branch. Comparison with random walks
description is drawn and different plausible scenarios for the avalanche evolution and the scaling exponents are

suggested.
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I. INTRODUCTION

Sandpile models of self-organized criticality (SOC) have
received considerable interest as the simplest models de-
scribing avalanchelike dynamics, observed in many systems
in nature. In 1987 Bak, Tang and Wiesenfield (BTW) [1]
proposed a simple cellular automaton model of sandpile evo-
lution, which is deterministic and isotropic. The BTW model
became a paradigmatic model for studies of SOC but, despite
its rather simple definition and the great interest, there is still
no rigorous derivation of the full set of critical exponents in
two dimensions.

Starting with the first analytical attempts to derive the
scaling exponents of the isotropic sandpile model with deter-
ministic toppling rules, the following program was usually
performed [2,3]. One starts with coarse graining of the mi-
croscopic particle dynamics, keeping the main underlying
symmetries. This gives rise to nonlinear stochastic differen-
tial equations containing a diffusion term and noise term(s).
The nonlinearity comes from the step function which de-
scribes the threshold condition for avalanche initiation. As a
rule, a simple nonlinear term is left to mimic the discrete step
function. The noise terms are of two kinds: an internal, con-
servative noise, which accounts for the integrated out micro-
scopic degrees of freedom; the external, nonconservative
noise turns out to be the relevant one for the dynamics of the
system. The resulting equations can be analyzed by means of
the dynamic renormalization group to extract values of the
critical exponents [2,3].

The establishment of the Abelian properties of the model
[4] enhanced its analytical tractability and some important
characteristics of the stationary state have been obtained ex-
actly, see, e.g., [5-7].

Another essential simplification arises from the introduc-
tion of directed toppling rules, which makes models math-
ematically simpler. Indeed, in 1989 Dhar and Ramaswamy
[8] introduced and solved exactly in all dimensions a di-
rected version of the BTW sandpile model. Later, Manna [9]
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presented the first sandpile with stochastic toppling rules.
The model is isotropic, with multiple toppling of sites within
an avalanche. Notably, the presence of stochastic elements
does not alter the Abelian structure of the model.

A lot of work was done to compare analytically and nu-
merically deterministic and stochastic directed sandpiles
with the aim to define their universality classes. The exis-
tence of multiple topplings seems to be the main difficulty
for obtaining exact solutions, even for directed stochastic
sandpiles, which explains why there are very few analytical
works on these models. The early theoretical works suggest
that the original deterministic BTW sandpile and the stochas-
tic Manna sandpile belong to the same universality class
[10-12]. However, further computer simulations of directed
sandpile models have shown that the deterministic and sto-
chastic models belong to two different universality classes,
in agreement with the analytical results obtained by Pac-
zusky and Bassler [13] and by Kloster, Maslov, and Tang
[14].

Here we confine ourselves to the discussion of two-
dimensional directed sandpiles with stochastic toppling rules
and boundary dissipation. The reader interested in the iden-
tification of the universality classes for one-dimensional di-
rected models is referred to [15] and references therein. The
aim of our investigations is to study in more detail the mor-
phology of large directed avalanches and its effect on their
statistical properties during the entire evolution. To this end
we introduce an approach—evaluation of basic characteris-
tics over ensembles of avalanches with (almost) fixed time
duration, less than the lattice size in the temporal direction.
This approach opens the perspective of defining new sets of
scaling laws for the final stage of the avalanche evolution.
We hope also our results to shed light on the possibility of
alternative values of the scaling exponents.

In Sec. II we fix the notation by defining the scaling laws
usually used to describe the statistical properties of directed
avalanches. Here we also give a short overview of the con-
temporary estimates of the scaling exponents by means of
Monte Carlo simulations. The two analytic theories [13,14],
which predict exponents in agreement with the numerical
results, are reviewed in the first two subsections of Sec. III.
Then in Sec. III C, we report an extension of the existing
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theory to directed sandpiles with stochastic toppling rules
which allow, with arbitrary probability, toppling of one par-
ticle, as well as toppling of two particles at a time. The
approach of [14] is generalized with the derivation of a
Langevin equation in this case. We prove that, as expected,
the above generalization of the toppling dynamics changes
only the numerical coefficient in front of the position-
dependent diffusion constant and does not alter the univer-
sality class of the model. Next, the fundamental solution of
the Fokker-Planck equation, corresponding to power-law de-
pendence with exponent 0= y<1 of the diffusion coeffi-
cient, is found. By using conventional methods, we have
obtained there from an explicit expression for the probability
density of the first-passage time distribution and, in particu-
lar, its power-law exponent 7,=(3-2v)/(2-27). In Sec.
IV A we comment on the validity of the random walk de-
scription of basic statistical parameters of directed ava-
lanches. It is shown that the conditional time-dependent av-
erage values of the avalanche front width and number of
unstable sites, averaged over avalanches of almost fixed
length, can be characterized by power-law exponents at the
terminal point, different from the exponents at the initial
point. A number of original results of computer simulations,
which contradict the simple random walk picture, are pre-
sented too. A finite-size scaling analysis of avalanche char-
acteristics in restricted ensembles of avalanches with dura-
tion in intervals of the form [7,1.017], where T=1000,
2000, 4000, and 8000, is given in Sec. IV B. Here we present
also data on the finite-size effects on the different scaling
exponents. Section V contains a critical discussion of the
existing theories and some alternatives allowing for values of
the critical exponents different from the established ones.
The paper closes with a summary of the main results.

II. DESCRIPTION OF DIRECTED AVALANCHES.
OVERVIEW OF MONTE CARLO RESULTS

Two-dimensional directed sandpile models are usually de-
fined on a square lattice of linear size L, either with the
standard orientation, or rotated by the angle of /4. To each
site of the lattice an integer variable z;, measuring the num-
ber of sand grains (height) or energy quanta, is assigned.
Grains are added to randomly chosen sites, thus increasing
their height by one, z;—z;+1. When the height at a given
site becomes larger than or equal to a threshold value z,., that
site topples. The case of standard orientation has been con-
sidered, e.g., by Vazquez [16] and by Pastor-Satorras and A.
Vespignani [17]. Topplings are directed along a fixed prin-
ciple axis x; of the lattice, defined usually as “downward”
and considered as virtual time axis. In the case of determin-
istic rules, z.=3 and when a site in a row x; topples, it sends
three grains to the nearest neighbor and each of the two
next-nearest neighbor sites in the next row x;+ 1. In the sto-
chastic version, z.=2 and two grains are sent to two sites
randomly chosen among the above three neighbors in the
row x;+1. The toppling rules of this model are defined as
exclusive if the two energy grains are always distributed on
different sites (ESDS) and nonexclusive (NESDS) if the dy-
namics rules allow the transfer of two energy grains onto the
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FIG. 1. Schematic representation of the rotated by 7r/4 square
lattice and the directed toppling rules. The bottom boundary of the
lattice is open. In previous works only two particles were allowed to
topple.

same site. The boundary conditions are periodic in the trans-
verse direction x, and open at x;=L (boundary dissipation).
The dynamics is locally conservative since no energy grains
are lost during the toppling events.

Alternatively, Alcaraz and Rittenberg [18] considered di-
rected stochastic sandpiles defined on the rotated by /4
square lattice, see Fig. 1 for example. The direction of propa-
gation is down the diagonal of the squares, and the bottom
boundary is open. The grains are added always at the top
site. The avalanche threshold is z.=2 and when a site
topples, the following four events can take place with differ-
ent probabilities: two particles are transferred to the (a) left
or (b) right nearest neighbor in the downstream layer, only
one particle is transferred to the (c) left or (d) right nearest
neighbor in the next layer.

Directed avalanches are characterized by the total number
of toppled particles s (called “size”), the time duration #
(called “length”) and transversal extent x (called “width”).
According to finite-size scaling (FSS), the asymptotic form
of the corresponding probability distribution densities is
given by

ps(s) = s77sg(s/s.), (1)
pt) = 7if(t/,), (2
p(x) = x""w(x/x,), (3)

where the exponents 7,, 7,, and 7, characterize the critical
behavior and define the universality classes to which the
models belong; s, t., and x,. are finite-size cutoff parameters.
In the thermodynamic limit (L— o), the characteristic ava-
lanche size, length and width diverge as s.~ L, t,.~L?, and
x.~ L"¢, respectively, where D defines the fractal dimension
of the avalanche cluster, z and { are dynamical critical expo-
nent (z=1 for directed sandpiles). The average avalanche
size corresponds to the number of topplings needed for a
grain to reach the boundary; i.e., (s) ~ L. On the other hand,
by using expression (1) for the density of the size probability
distribution, one obtains
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(s) = f s'7Tsg(sL7P)ds ~ LP7). (4)
1

Hence, the relationship D=1/(2—7,) follows, which indi-
cates that not all of the above exponents are independent.
Indeed, conservation of probability, i.e., equality of the inte-
grated right-hand sides of the scaling Egs. (1)-(3), yields:
7,—1=D(7,—1)=(7,—1)/{ [13]; the first of these equalities
in combination with (2—7,)D=1 implies the result 7,=D.

Numerical simulations of directed models with different
toppling rules on two-dimensional lattices of size ranging
from L=64 to L=2048 were done by Vazquez [16]. The
results for the scaling exponents, obtained by the moment
analysis technique after averaging over 10® avalanches,
showed that the Manna and random-threshold directed mod-
els share the same universality class.

Large-scale Monte Carlo simulations of directed sandpile
models with stochastic toppling rules have been reported by
Pastor-Satorras and Vespignani in [17]. Tt was found that the
stochastic and deterministic models belong to different uni-
versality classes. In the two-dimensional case with boundary
dissipation, their estimates of the critical exponents for two
types of dynamics, with exclusive (ESDS) and not exclusive
(NESDS) toppling rules, are [17]

ESDS:7,=1.43(1), D=174(1),

7,=171(3), z=0.99(1),

NESDS:7,=1.43(1), D=1.75(1), 7,=1.74(4),

2=0.99(1).

These results show that the ESDS and NESDS models are in
the same universality class of the stochastic directed sand-
piles (SDS). The results for deterministic directed sandpiles
(DDS) are in agreement with the exact solution by Dhar and
Ramaswamy [8] and show that the DDS and SDS models
belong to different universality classes. The critical behavior
was shown to be the same in the cases of bulk and boundary
dissipation. The computer simulations were done for lattice
sizes ranging from L=100 to L=6400 and statistical distri-
butions were obtained by averaging over 107 avalanches. The
spatial structure of the avalanches for both the DDS and SDS
models was studied with the aim to understand the difference
in their critical behavior. It seems that the difference can be
explained by the presence of multiple toppling in SDS. In
particular, the fractal dimension of the avalanche cluster is
higher for the stochastic models (D=7/4) than for the deter-
ministic ones (D=3/2).

The most recent Monte Carlo simulations have been done
by Alcaraz and Rittenberg [18] on the rotated by /4 square
lattice, see Fig. 1. Their results, estimated for samples of up
to 1.2 10% avalanches of sizes up to 30 000, show that the
two-dimensional directed stochastic model belongs to a uni-
versality class with o,=1.780 = 0.005. If the estimated error
bars are correct, then this result is in contradiction with the
analytical predictions [13,14], as well as with the previous
numerical estimates [17].
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We have also performed numerical simulations of a di-
rected sandpile model on the lattice shown in Fig. 1. Our
stochastic dynamics allows for the toppling of one or two
particles with equal probabilities. The probability distribu-
tions for different parameters of the avalanches were studied,
with a special focus on the spatial structure of finite-size
avalanches and the statistical asymmetry between the initial
and final stages of their evolution. Some of our new numeri-
cal results are presented in Secs. IV A, IV B, and V.

III. ANALYTIC APPROACHES

First we review two of the more recent analytical works
which predict values of the scaling exponents in full agree-
ment with the results of computer simulations reported in
[17]. In [13] a continuous Langevin equation for the propa-
gation of avalanches was derived and, on its basis, the expo-
nents characterizing avalanches were calculated. In [14] an
approach based on the analysis of the change in the total
number of topplings from layer to layer was developed. The
central result of this work is a stochastic equation which
describes an unbiased random walk with a variable step size,
proportional to the cubic root of the current position of the
random walker. With the aid of some assumptions on the
avalanche structure, an analytical derivation of the fractal
dimension D of the unstable avalanche cluster and the expo-
nent 7, of the avalanche length distributions was given.

Next, we extend the theory in [14] by deriving a Langevin
equation for more general toppling rules and relaxing the
conjecture for diffusionlike growth with time of the number
of unstable sites in the avalanche. Finally, we solve the
Fokker-Planck equation for a continuous random walk with
fractional power-law dependence of the diffusion coefficient
and derive an explicit expression for the first-passage time
distribution.

A. Theory of Paczusky and Bassler

It should be noted that the multiple topplings in Abelian
directed stochastic sandpiles have a different origin than
those in the undirected BTW model. In the latter case they
appear because of the wave nature of the avalanches [5]. In
the Abelian models belonging to the SDS universality class
multiple topplings occur due to the accumulation of many
particles at an unstable site. Then, such a site can relax by a
succession of topplings of particles in pairs or one-by-one.
Alternatively, one may consider toppling of the number of
excessive particles at once, provided the probability of the
composite event is taken into account. Anyway, the possible
collection of many particles at a site makes the unstable ava-
lanche cluster three-dimensional, which is a serious compli-
cation of the problem.

One of the few analytical studies of Abelian directed sto-
chastic sandpiles is devoted to a directed version of the
Manna model introduced by Paczusky and Bassler [13].
They consider a rotated by /4 square lattice with periodic
boundary conditions in the transverse direction. The coordi-
nate in the direction of propagation is denoted by ¢, where
0=r¢=T. To each site (x,7) of the lattice an integer variable
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z(x,1) is assigned. The grains are added to a randomly cho-
sen site x; on the top row #=0, so that z(x;,0) —z(x;,0)+1.
When the height z(x,7) at a site (x,¢) becomes larger than the
critical value z.=1, the site topples, z(x,r)—z(x,r)—2, and
with probability 1/4 the two particles go to the same left or
right nearest neighbor in the layer 7+ 1, or with probability
1/2 each of the two nearest neighbors z(x—1,7+1) and z(x
+1,2+1) receives exactly one particle. In the case of bound-
ary dissipation, no grains are lost during the toppling events,
except at the open boundary 7=T.

In [13] it was shown that the critical state of the above
described SDS is a product measure state with average den-
sity p=1/2. The critical dynamics is described as a kind of
generalized branching process propagating in an uncorre-
lated random medium. Since the number of grains that leave
any unstable site is always even, sites which receive an even
number of grains do not change the flux of particles. On the
other hand, sites that receive an odd number of grains in-
crease or decrease the flux by one unit, depending on
whether they were occupied or empty in the initial stable
configuration. The process is critical and the increase or de-
crease occurs with equal probability. Moreover, on the aver-
age each site will receive 1/2 of the grains going into its
upstream nearest neighbors. The random deviations from the
mean values are considered to arise from two kinds of noise
in the evolution equation for the number of grains n(x,?)
added to site (x,7). Thus, the presence or absence of a grain
at a given site (x,7) is a source of nonconservative noise.
Since the flux may change by one unit only, the nonconser-
vative noise n(x*1,7) enters into the evolution equation
with a unit step function 6, as a prefactor (called threshold
function). The other source of noise is due to the random
(binomial) distribution of the grains outgoing from a top-
pling site to its downstream nearest neighbors—that is a con-
servative noise described by a stochastic current j(x = 1,7).
The first two moments of the stochastic current follow di-
rectly from the binomial distribution. By expanding to lead-
ing order in gradients and time derivatives in the discrete
evolution equation, the following stochastic differential
equation was derived,

ot Lo oo 2SS0 e s, (5)
2 ax

Here, by the central limit theorem, the noise terms j(x,z) and
77(x,1) are both Gaussian with zero mean values and second
moments given by

1
(e, ylx’, 1)) = = 8x = x") 8lr = 1'),

Gx,0)j(x" 1))y =n(x,0)8x —x") 8t -1"). (6)

By using dimensional analysis, the authors of [13] con-
clude that the conservative noise is irrelevant and ignore the
second term in the right-hand side of Eq. (5). Next, they
argue that since in the region covered by the avalanche
n(x,t)>0 then 6(n(x,7r))=1 and their final result is the de-
scription of the avalanche dynamics by the linear Edwards-
Wilkinson (EW) equation [19].
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% = %Vzn(x,t) +27(x,1) (7)

with the initial condition n(x,0)=&(x).

From dimensional analysis the authors derive xc~ti/2.
Next, they assume that the maximum number of topplings,
n., scales with the transverse extent of the avalanche as the
roughness of the one-dimensional interface in the EW theory
scales with the system size, i.e., nc~xi/2~ti/4. Hence, the
characteristic area a and size s of the avalanches obey the
scaling laws a~x.t,~ 2> and s~nxt.~1""* [13]. Because
all the geometric characteristics associated with avalanches
exhibit scaling behavior, it was assumed that the distributions
of avalanche sizes, time durations and transversal spatial ex-
tent obey the power scaling laws [Eqgs. (1)-(3)]. Since D
=7/4, from the relations between the scaling exponents it
follows that 7,=10/7, 7,=7/4, and 7.=5/2.

B. Theory of Kloster, Maslov, and Tang

Kloster, Maslov, and Tang [14] proposed a similar to [13]
study of the SDS model on the same lattice and, by using
different analytical tools, obtained the same set of exponents.
The model is defined on the same rotated square lattice with
periodic boundary conditions in the transversal direction x ;
=x;—Xx, and open boundary conditions along the diagonal
coordinate x;=x;+x,. The sand is added to a randomly cho-
sen site on the top row with x;=0 and falls off at x;=L. The
stochastic toppling rules are the same as in [13], see the
previous subsection.

The total number of topplings in the layer x; is denoted by
N(xH)=Ean(xl,x”), where n(x,x)) is the number of top-
plings of site (x,,x;). Hence, the number of grains passed
from layer x; to the next layer x;+1 is 2N(x;). A site which
gets an even number 2k of grains from a previous layer will
always topple exactly k times, and will transfer the same 2k
grains of sand to the next layer. Such sites, which do not
change the total number of topplings N(x;) from layer to
layer, are called passive sites. On the other hand, any site
which receives an odd number 2k+1 of grains from the pre-
vious layer has the same chance to topple k times (if z=0
before the transfer) or k+1 times (if it had z=1). Such sites
lead to decrease or increase by one of the total number of
topplings and are called active sites. The main equation of
[14] relates the change in the total number of topplings from
layer x,—1 to layer x; to the number of active sites in the
latter layer,

N(L(XH)
N(x)) = N(x—1) +3 > &

a=1

where all the random variables ¢, take values —1 or +1 with
equal probability and independently of each other. The two
realizations of the random number &, correspond to whether
the active site labeled by a had z=0 or z=1 before the ava-
lanche has reached it. Written in the continuum limit the
main equation becomes
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where 7(x;) is a normally distributed random variable with
zero mean and unit variance. Equation (8) describes an un-
biased random walk N(x;) with a variable step %v’Na(x”). By
assuming N(x)) ~x* and N,(x))~xjs, one obtains N,(x))
~ N(x;)®'®, and the solution of Eq. (8) yields a=(1+a,)/2
and 7,=1+a, where 7, is the exponent of the density of the
probability distribution for the avalanche length, p,(x)
~x; ™. From the definition of the avalanche size s
=Eﬂ1N(i)~xd+a~x|? , the exponent relation 7,=D for gen-
eral directed sandpiles follows.

Next, to evaluate the exponent «,, the authors of [ 14] note
that because the grains are distributed independently, any site
which has at least one toppled neighbor in the previous layer
is equally likely to receive an even or odd number of par-
ticles, and the probability to become active site is 1/2. The
exponent ¢, defines how the number of distinct sites that
topple at least once, scales with the layer number x;. Argu-
ments, based on the assumption that for sufficiently large x;
the number of active sites is proportional to the number of
toppled sites, N,(x;) ~N(x), and that the topplings in the
layer x; are spread over the transversal direction according to
the diffusion equation, N(x“)fvx‘}/z, lead to the value «,
=1/2, hence a=3/4 and 7,=D=7/4. The exponent for the
avalanche size distribution is then 7,=1+(7,—1)/D=10/7.
Notably, since a,/(2a)=1/3, the step of the random walk
described by Eq. (8) varies as a cubic root of the position.

As explained in [14], the difference between « and «,
comes from the presence of multiple toppling and a—«, de-
termines how the average number of topplings n,,,(x)) at a
given site /in the xjth layer scales with x;:n,,~N/(2N,)
~x(TYa=x, "

z&n impH()I“[ant feature of the stochastic directed models is
that the set of toppled sites can have holes (inclusions of
stable sites). In [14] it is supposed that these holes would
mostly be concentrated near the boundaries of the avalanche
in any given layer, while the core of the avalanche will be
relatively holes free. As mentioned above, a site at a layer x;
would typically topple nmp(xu)~xd/4 times within one ava-
lanche. Since any of the 2n,,, grains can go to each of the
two nearest neighbors independent of others, for large n,,,
the situation where one of the neighbors would receive less
than two grains and remain stable is exponentially unlikely.
It is concluded that the creation of a new hole is exponen-
tially suppressed. Therefore, for sufficiently large x; the num-
ber of active sites which is proportional to the number of
toppled sites, should scale as Na~x‘}/ 2,

The authors of [14] have presented also results of their
own numerical simulations on lattices up to x;~ 100 000.
The estimate of the exponent « agrees well with the analyti-
cal prediction, while the value of «, is less clear. The locally
determined exponent is appreciably higher than 1/2 in the
region between x;~ 100 and x;~ 10 000, reaching there the
value of 0.6, but then goes down to the theoretical result «
=1/2 in the end of the simulation range (x;~ 100 000).

The above analytical results are in good agreement with
the simulation results of Pastor-Satorras and Vespignani [17],
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as well as with the results of our own Monte Carlo simula-
tions.

C. Derivation of a general Langevin equation

It is important to establish whether the results obtained in
[13,14] are robust with respect to changes in the toppling
rules. Here we consider the more general stochastic dynam-
ics which allows an unstable site to send one particle to the
next layer with probability u; and two particles with prob-
ability uy=1-p;. In the first case the particle goes to the left
or to the right nearest neighbor with equal probability /2,
and in the second case with equal probability u,/3 the two
particles go to the right or to the left nearest neighbor, or
each of the two nearest neighbors receives just one particle.
Obviously, the toppling rules in [14] correspond to wu,=0,
Mmr=1. Here we shall develop the analytical theory for arbi-
trary values of the probabilities w;, w@,. In the computer
simulations we have chosen u;=u,=1/2.

Following [14], we define active sites and passive sites
depending on whether becoming unstable they do decrease/
increase the particle flow to the next layer (active sites) or do
not (passive sites). Let us now consider the probability for a
given unstable site to remain with O or 1 particles after top-
pling. If the site has an even number 2k, k=1, of particles,
then

k-1
2k-p-2
PQ2k—0)=2 ( ! )u?(k"’ !
p=0 p

M2
1+ py

(1+ w3,

k-1
2U-p—1
P(2k—>1)=2( P )M?(k"’)‘lﬂ’z’
p=0 p

1
R

If the site has an odd number 2k+1, k=1, of particles, then:

(1-u3h. (9)

k- p-1
P(Zk +1— O) = E ( p )Iu,%(k_p)_llu,(zp'"l)
p

p=0
M2 2k
=——(1- ,
1+M2( Mo
k
2k —
PRk+1—1)=2 ( p)u%“"”ué: (1+ 3"
p=0 p 1+:U“2
(10)

Obviously, if 0<u, <1 and if the avalanche dynamics is
dominated by unstable sites with multiple topplings (k> 1),
then the probability for a site with height n>1 to become
empty is approximately P(n—0)=pu,/(1+u,), while the
probability of remaining with one particle is approximately
P(n—1)=1/(1+ w,), independently of the (large) number n
of particles before toppling. On the other hand the stationary
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density of particles is p.(u,)=1/(1+u,) for any directed
sandpile on acyclic graph [18]. Consequently, a given site is
empty with probability u,/(1+ u,) and occupied with prob-
ability 1/(1+ u,). Now we recall that a passive site is a site
which has been empty (occupied) in the stationary state and,
after becoming unstable, has toppled to the same empty (oc-
cupied) stable state. Therefore, any unstable site at the ava-
lanche front is passive with probability

Po(o) =[1 = p(pep) IP(n — 0) + p (1) P(n — 1)
RREY"S
(14 )

Similarly, any unstable site is active and increases the par-
ticle current by one with probability

(11)

M
(1+ )

which equals the probability of any unstable site to be active
and decrease the particle current by one

P (12) = p(2) P(n — 0) = (12)

_ M
(1+ uy)?

Expressions (11)—(13) hold true with exponential accu-
racy, terms of the order wj being neglected when u, <1 and
the occupation number n— <. It should be noted that expres-
sions of the same form have been derived in [18], see Eq.
(41) there, for a one-dimensional stochastic directed model,
by using an algebraic approach and asymptotic solution of
recurrence relations.

Let U(¢) denote the set of unstable sites in the front of the
avalanche at time #=x;. Then the number of particles N,(7)
transferred from layer ¢ to layer 7+ 1 satisfies the equation

N, =N,(t-1)+ 2 ¢ (14)

ieU(r)

P_(pa) =[1 = ppa) IP(n — 1) = (13)

Here {; are N,(1)=|U(t)| identically distributed random vari-
ables which take the values —1,0,1 with probabilities
P_(u2), Po(pa) , P, (1), respectively.

Assuming that ¢;,i=1,2,...,N,(7), are independent, and
that asymptotically N, (f) —ce, by the central limit theorem
we obtain the convergence in distribution

N, (I) d

1
—N(0,1
mN(t)%{ 0.

where 0?=2u,/(1+ u,)? is the variance of ¢;, and M(0,1) is
the normal distribution with zero expectation value and unit
variance. Under the above assumptions the continuum-time
limit in Eq. (14) yields the stochastic equation,

dN (t) \/2/¢L2 ’l_
_d;L T+, VN,(0)7(2), (15)

where 7(t) is a N(0,1) distributed random variable.

The stochastic equation derived in [14] is a special case of
our Eq. (15) which corresponds to stochastic dynamics with
even number of topplings only, i.e., with u;=0, u,=1. Then,
from Egs. (9) and (10) one obtains,
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P2k —0)=PQ2k+1—1)=1,

P(2k — 1)=P(2k+1—0)=0.

In this case the stationary density of particles is pc(l):%.
Active sites N,(r) are only those sites, which become un-
stable upon receiving an odd number of particles—on the
average one half of the unstable sites at time z, N,(z)
= éN”(t). If a site was occupied (empty) in the stable configu-
ration and at time ¢ receives 2k+ 1 particles, then it certainly
increases (decreases) the flux of particles by one unit, due to
P(2k+2—0)=1 [P(2k+1—1)=1]. These events occur with
equal probability P, (1)=P_(1)= }1, as follows from Egs. (12)
and (13) at u,=1. Finally, an unstable site is passive with
probability P0(1)=%, see Eq. (11) at u,=1. The stochastic
equation derived in [14] follows from our Eq. (15) upon the
substitution N,(1)=2N(#),N,(t)=2N,(¢) and u,=1,

) (16)
dt

In order to complete the theory one needs two kinds of
additional conjectures, A and B. The first one (A) has to
relate the number of unstable sites N,(7) to the number of
transferred particles N,(¢) in the growth phase of the ava-
lanche. The second one (B) should assess the asymmetry
between the growth and decay stages of the avalanche evo-
lution and its effect on the overall exponents for finite-size
avalanches.

General formulations of conjecture A follow from the
definition of the fractal dimension of the avalanche cluster

> N, ~ P = Ny (1) ~ P, (17)
t'=1

and the assumption N,(¢) ~1“, where, in the stage of ava-
lanche growth, D>1 and w>0. Hence, one obtains N,(r)
~[N,(1)]?®-1) and Eq. (15) becomes

dN,(t) 24,

" 1+[Nmmwww (18)

This equation describes an unbiased random walk with a step
size varying according to the power law N,(#)” with expo-
nent y=w/2(D-1). The value of the exponent y has to be
determined either theoretically, or from computer simula-
tions data.

D. Derivation of the first-passage time distribution

Let us consider a Langevin equation describing a
continuous-time random walk ¢ with a power-law depen-
dence |7 of the diffusion coefficient,

dé(r)

"= Dl o). (19)

where D, is a numerical factor, the exponent y e [0, 1), and
7(tr) is a normally distributed random variable with zero
mean and unit variance. In the particular case
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/
_ NieHp

y=p2(D-1), (20)

we recover Eq. (18). The corresponding Fokker-Planck (FP)
equation for the time-dependent distribution density W(z,x)
of the random variable ¢ on the positive real axis 0 =x <<
reads

iW=L W, with L =D2ﬁx27 (21)
ot FPW, FP Oo7x2 .

The nonstationary solutions of Eq. (21) can be obtained by
the method of separation of variables [20],

W(t,x) = e™Mf(x), (22)

which leads to the problem

P
D%@x”f(x) = - M) (23)

on 0=x<, with A\>0. The functions f.,,(x) which solve
Eq. (23) for the continuous spectrum —\ <0 are

iy ‘-7) . (24)

fox) = Cx”2_27],,( —x
7 (1- 9Dy

where J, is the Bessel function of the first kind and order
v=[2(1-1v)]"". For >0 this solution satisfies the boundary

P(x,t

x1/2—27(x/)1/2 *
X =———— | anJ,
2(1-y)Dgy Jo
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conditions [20]: (a) xzyfw\(x) —0 as x— 0 (absorbing wall at
x=0) and (b) the probability current

) == DR N £, ) 25)

vanishes as x— oo (reflecting wall at x=00).
Our first aim is to derive the transition probability density
P(x,t|x",t") which solves Eq. (21) with the initial condition

P(x,t'|x",t") = 8(x — x") (26)

x',t")=0. We recall that

and the boundary condition P(0,¢

P(x,t|x",t") as a function of x’ and ¢’ satisfies the backward
Kolmogorov equation
d , 5 &
—F =L,,P, with L}P=D0(x’)27m. (27)

The separation of variables ansatz now leads to the problem

’ &2 N !
Dy(x')* S )= M) (28)
on 0=x' <, with A >0, which is solved by
fiaa)=C'(x")"2r (L(x’)'”)- (29)
& "\(1- D,

Finally, taking into account the closure equation for the
Bessel functions, we arrive at the expression (1>1'),

N N
—)\xl—y)]v<L(xr)l—y)e—x(t—t’)
(1-9D, (1= 9Dy

x1/2—2'y(x/)1/2 <

= 5, ,.eXp
2(1-y)Di(t~1")

where I, is the modified Bessel function of the first kind and
order v=[2(1-v)]"". It is readily seen that at y=0 (then v
=1/2) and D3=1/2 one recovers the transition probability
density for the ordinary Brownian motion with one absorb-
ing wall at x=0.

Now, the density of the first-passage time probability dis-
tribution, under the initial conditions x’ =1, t'=0 appropriate
for avalanches, is

(9 o0
pt)=— —f dxP (x,t|1,0)

12-2y

d 1 fw
== 5 XX
at2(1 - y)Dgt J

y ( 20741 )I ( 2x1=7 )
exp| — »
P\" a2 ) M\ a1 - 20

x2(1—'y)+ (x/)2(l—y) )I < z(xx/)l—y )

- 30
41 = yPDRa—) )\ 4 = 903 - 1) (0
|
t—(1+V) ( 2 )
= a2 SXPl T 31
T() (D> ™ DY (B1)
Hence, we obtain the simple result
3-2
Tl = —’y, (32)
2-2y

which yields the well known exponents 7,=3/2 at y=0, and
7,=7/4 at y=1/3; at y=1/2 the value 7,=2 has been
checked numerically.

IV. NUMERICAL RESULTS
A. On the random walk description

It is interesting to note that the proper value of the expo-
nent D=7/4 follows from elementary random walk consid-
erations. If one supposes that the leftmost and rightmost un-
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FIG. 2. Interpretation of the fractal dimension D=1.75 of the
unstable avalanche cluster in terms of simple random walks: LP
=LXLY2x LV,

stable sites of the avalanche front perform simple random
walks, one to the left and the other to the right of the direc-
tion of propagation, then the front width will grow with the
avalanche length L as L'2. Similarly, take the upper line of
an avalanche cross section which describes the height distri-
bution of the unstable sites at a given moment of time. It
could also be considered as a positive simple random walk.
About the middle of the avalanche the length of this walk is
of the order of L!2, hence the maximum height of the un-
stable sites will scale as L'*. Therefore, the volume of the
unstable avalanche cluster is of the order L4, see Fig. 2 for
illustration.

Our computer simulations are done for a directed stochas-
tic sandpile model on the lattice shown in Fig. 1. The trans-
versal direction is labeled by x and in the direction of propa-
gation ¢ (along the diagonal of the squares) the lattice ends
up with open boundary conditions. A new avalanche is initi-
ated by adding particles to the top site of the lattice (1,1).
When the height at a given site (x,7) equals or exceeds z,
=2 it topples. The toppling rules are more general than the
ones used in the earlier theoretical studies [13,14]. Namely,
with probability u; only one particle is transferred to the
next layer, with equal probability 1/2 to the right neighbor or
to the left one. With probability u,=1-u, two particles are
transferred to the nearest neighbors in the next layer; with
equal probability 1/3 the two particles go to the left neighbor,
to the right neighbor, or each of the two neighbors in the next
layer gets one particle. Nevertheless, as we have shown in
Sec. IlII C, the generated avalanches belong to the same uni-
versality class. In order to study the statistical properties of
directed avalanches, especially, to analyze their structure
from the initial to the final stage of development, simulations
for lattice sizes L=1000 to L=15 000 were performed, with
averaging over 10° to 10° realizations depending on the ran-
dom events studied.

The simulation programs and statistical accuracy were
tested by data collapse analysis of the integrated avalanche
size distribution density, see Eq. (1),

P(s) := f ) ps(x)dx.

An independent test was provided by the numerical esti-
mation of the exponent 7, for the avalanche size distribution.
The value 7,=1.432(2) obtained for a finite lattice of 3200
time layers and evaluated by linear approximation to the data
in the interval of sizes from 200 to 1000, deviates from the
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FIG. 3. Trace of a typical avalanche in space (x)-time (7).

exact analytical result 10/7=1.428 57... for infinite lattices
by some 4 X 1073.

The real picture of an avalanche evolution happened to be
more complicated than the simple random walk description
would suggest, as one can see from the trace of a typical
avalanche shown in Fig. 3. Obviously, one has to take into
account branching and creation of voids, as well as dying out
of branches and collapse of voids, processes which may lead
to asymmetry in the quantitative description of the different
stages of the avalanche development.

Actually, the statistical behavior of the leftmost and right-
most sites of the avalanche front cannot be described as an
average displacement of a simple random walk. Indeed, as it
is shown in Fig. 4, the front width may grow only by one or
two sites at a time step, but from time to time it shrinks down
by a large number of sites.

To assess the effect of the above factors on the averaged
avalanche characteristics, we have numerically estimated the
average values of the front width, the number of unstable
sites and the number of toppled particles (momentary size) as
a function of time (or the layer position) for a sample of
1000 realizations of avalanches of duration between 8000
and 8080. The latter sample was drawn out of some 2.5
X 107 nonzero avalanches.

4
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FIG. 4. (Color online) Jumps of the front width at successive
moments of time in an avalanche of length 4 028.
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FIG. 5. (Color online) Average front width as a function of the
time step for 1000 avalanches of duration between 8000 and 8080
compared with the average position (rescaled by the factor 0.83) of
simple random walks of the same length. Power-law fits yield ex-
ponent 0.57(1) for the avalanches in the initial stage and 0.41(2) in
the final stage. For the random walks the corresponding exponents
are 0.48(1) and 0.46(2).

The asymmetry in the time distribution of the average
front width is best seen in comparison with the symmetric
average displacement of simple random walks, see Fig. 5.
The average values were estimated from samples of 1000
realizations of avalanches and 10000 of simple random
walks, both of duration between 8000 and 8080. The sample
of random walks was drawn out of some 2.3 X 10® nonzero
realizations. Clearly, the curves significantly deviate from
each other.

Note that the conditional average characteristics of the
avalanches, such as the front width, number of unstable sites,
number of toppled particles, under the condition that the ava-
lanche must terminate at time 7', have to smoothly increase in
the growth phase, reach a maximum (or maxima) and then
decrease to zero at time r=7. Therefore, one can expect a
power-law behavior only for small times and for times close
to 7. An example of such asymptotic power-law behavior is
provided by Alcaraz and Rittenberg [18]. They have shown
that the conditional average position (x), 7 of simple random
walks at time 0<<r<<T, under the condition that t_heir first
passage time is 7, obeys the scaling law (x), 7=VDTf(t/T).
By using the Stirling approximation for the factorials, for
values x<t<T and x*<T, one obtains (x), 7ot There-
fore, in this case one has a simple power-law only as
asymptotic behavior. Naturally, for more complicated sto-
chastic processes, which lead in the continuum limit to sub-
diffusive or superdiffusive behavior, one should expect a dif-
ferent from 1/2 exponent.

Since we do not pursue an accurate estimation of the scal-
ing exponents, we prefer to use the transparent method of
fitting segments of the curves in the growth and terminal
stages of the avalanche development with the aid of the non-
linear curve fit program from the Data Analysis and Graph-
ing Software ORIGINPRO 7.5. The intervals to be fitted were
chosen of length 0.057, where T is the total avalanche dura-
tion, so that the left interval is 1 =7=0.057, and the right
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FIG. 6. (Color online) Temporal distribution of the average
number of unstable sites for 1000 avalanches of time duration be-
tween 8000 and 8080 compared with the average position (rescaled
by the factor 0.708) of simple random walks of the same length.
Power-law fits yield exponent 0.58(1) for the avalanches in the
initial stage and 0.54(1) in the final stage. For the random walks the
corresponding exponents are 0.48(1) and 0.46(2).

one is 0.95T=r=T. The choice of the value 0.057 is based
on two criteria: (a) intervals of such a length contain a suf-
ficient number of points even for the smallest 7=1000 we
study, and (b) the values of the avalanche characteristics at
t=0.05T and t=0.95T lie between 1/4 and 1/2 of their maxi-
mum values for all the considered time durations 7=1000,
2000, 4000, 8000. The second criterion makes possible a
sound identification of the interval 1 =¢=0.057 with the ini-
tial growth stage and the interval 0.957 =¢=T with the final
decay stage in the avalanche evolution. The error bars for the
exponents given by the fitting program were typically of the
order 1073, However, the exponents evaluated in ensembles
of avalanches of (almost) fixed duration, especially at the
terminal point (actually an interval of length 0.017 in which
all the 1000 avalanches terminate), are rather sensitive to the
choice of the fitted interval—its length and position. To get
more realistic estimates, the values obtained for the interval
[1,0.057] ([0.95T,T]) were compared with those for the
slightly shifted [0.0057,0.0557] ([0.9457,0.995T]) and
shortened [1,0.045T] ([0.955T,T]) intervals. As a rule, the
error bars for the exponents in the terminal stage are larger
due to the stochastic scatter in the exact avalanche durations.

One expects the number of unstable sites at a given mo-
ment of time to be proportional to the current width of the
avalanche front. Figure 6 presents a comparison between the
time distribution of the average number of unstable sites and
the average displacement for 10 000 simple random walks,
both of length between 8000 and 8080. The asymmetry is
less pronounced than in the case of the front width. It is
appreciable in the initial and middle stages of the avalanche
development, while in the final stage the two curves almost
merge. This feature can be explained by supposing that when
a branch of a well developed avalanche dies out, only a
rather small fraction of the unstable sites is lost. Indeed, the
jump size distribution for the number of unstable sites (not
shown here) is significantly steeper in the positive direction,
but its asymmetry is less pronounced than in the case of the
front width.
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FIG. 7. Profiles of the front of a long avalanche, which reaches the open boundary of a lattice of size 15 000, taken at intervals of time

Ar=500.

We note also that the height distribution of the unstable
sites at a given moment of time cannot be described by a
simple random walk too. The profiles shown in Fig. 7 exem-
plify that during some stages of evolution the height distri-
bution represents a sequence of random walks, separated by
intervals of stable sites. It is not clear whether the number of
these separate walks remains bounded when the length of the
avalanche increases infinitely.

Although some of the above discussed features pertain to
individual realizations of avalanches only, and are smeared
out in the statistical description, they still affect the probabil-
ity distributions. For example, the exponents of the power-
law conditional distributions for the front width and the num-
ber of unstable sites in finite-size avalanches differ in the
growth and decay stages. In spite of the apparent asymmetry
in the avalanche development, it seems insufficient to affect
the fractal dimension D of the total avalanche cluster.

A new and quite interesting result yields the comparison
of the time-dependence of the average number of toppled
grains and the conditional average position of random walks
with step size varying according to the theory [14]. To this
end we have evaluated numerically the corresponding distri-
butions, as a function of time, under the condition that the
length of both the avalanches and random walks belongs to
the interval L e (8000,8080), see Fig. 8. Evidently, the
curves for the avalanches and the random walks remain
fairly close to each other during the entire time evolution.

B. Finite-size scaling analysis

Here we report results on the data collapse, under suitable
finite-size scaling transformations, for the time-dependent
front width, Fig. 9, number of unstable sites, Fig. 10, and
number of toppling particles, Fig. 11, evaluated in restricted
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FIG. 8. (Color online) Average number of topplings in a layer
for avalanches of length between 8000 and 8080 compared with the
average position (rescaled by a factor 0.83) of random walks of the
same length with step size varying as the cubic root of the current
position.
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FIG. 9. (Color online) Finite-size data collapse for the temporal
distribution of the avalanche front width for avalanches with dura-
tion 7=1000, 2000, 4000, and 8000. The scaling function is
TOS5F(1/T).

ensembles of avalanche duration in the intervals [7,1.017],
where 7=1000, 2000, 4000, and 8000.

In all three cases the data collapse is rather good in the
wings of the conditional distributions which are, presumably,
described by power laws. This collapse is an important evi-
dence for the existence of finite-size scaling laws describing
the entire avalanche evolution. The largest deviations are ob-
served in the region about the maximum value, where we
expect large fluctuations due to branching and formation of
holes in the process of evolution.

The most asymmetric distribution is the one of the ava-
lanche front width, see Fig. 9. This can be attributed to the
diffusive growth of almost compact front in the early growth
stage, and the abrupt extinction of side branches in the final
decay stage. This scenario will be further analyzed in Sec. V.

The finite-size effects on our estimates of the scaling ex-
ponents for the front width growth and decay are shown in
Fig. 12. The trend downward with the increase of T is prob-
ably due to corrections to scaling. However, the points are

Rescaled
number of
unstable
sites

Scaling function: T°'57U(t/T)

T T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
1000t/T

FIG. 10. (Color online) Finite-size data collapse for the tempo-
ral distribution of the number of unstable sites for avalanches with
duration 7=1000, 2000, 4000, and 8000. The scaling function is
797Ut/ T).
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FIG. 11. (Color online) Finite-size data collapse for the temporal

distribution of the number of topplings for avalanches with duration
T=1000, 2000, 4000, and 8000. The scaling function is 7°785(¢/T).

two few for making reliable estimates of the limit 7— o°.

The temporal distribution of the number of unstable sites,
shown in Fig. 10, shows less asymmetry. Accordingly, the
evaluated exponents in the growth and decay stages are
rather close to each other and, unexpectedly, a crossover
from larger exponents at the terminal point to larger expo-
nents at the initial point takes place between 7=2000 and
T=4000, see Fig. 13.

In the case of the temporal distribution of the number of
topplings, the growth and decay exponents (not shown) are
very close to each other, their error bars overlap, and the
slight trend upward tends to the value of 0.75 with the in-
crease of 7. Obviously, data for still longer avalanches are
necessary for evaluation of the above exponents in the limit
T— o0,

V. DISCUSSION AND SUMMARY

It seems that the existing theoretical approaches, leading
to continuous stochastic equations, yield the exact values of
the exponents characterizing avalanches in directed stochas-

0.65 -
0.60 /4///1\
o
0.55 1 —4— Stage of growth
050 I
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0.45 / I
1
0.40 1 —p— Stage of decay
0.35
0.30 . . ' ' .
1E-4 264 4E-4 6E-4 8E4 1E3
Log(t/T)

FIG. 12. Finite-size dependence of the exponents for the ava-
lanche front width.
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FIG. 13. Finite-size dependence of the exponents for the number
of unstable sites.

tic sandpiles. However, we point out that the derivation of
these exponents is not rigorous.

In the theory of [13] the nonlinearity in the stochastic
differential Eq. (5), due to the presence of the threshold step
function, is removed without analysis of its relevance. Thus,
the derivation of the scaling exponents is based on the linear
EW equation which models the stochastic kinetics of a grow-
ing surface [19]. It describes surface roughening, caused by
the fluctuations in the flux of deposited atoms, which obeys a
dynamic scaling law. In the case under consideration, the
solution of the EW equation in the interval |x|=<L displays
root mean square fluctuations wy(¢) of the number of grains
n(x,1) transferred to site (x,7) which obey the finite-size scal-
ing law

wi (1) = [n*(,0)) = (n(x,0))°]" = LW(WLY).  (33)

Here (-) denotes averaging over the noise, « is the roughen-
ing exponent and { the dynamic exponent; the scaling func-
tion W has the asymptotic behavior W(u)~u? as u—0,
being the growth exponent, and W(u)— const as u—o°. In
the one-dimensional EW universality class with uncorrelated
noise, the values of the exponents are a=1/2, B=1/4, and
{=a/B=2. The dynamic exponent { describes how the time
t, of crossover from growth to saturation scales with the
system size, t,~ L.

The crucial point in the theory of [13] is the identification
of the scaling law for the maximum number of topplings, 7.,
with Eq. (33) taken at Locx, and 7,5 ¢,, where x,. and ¢, are
the characteristic width and length of the directed ava-
lanches, respectively. Thus one obtains n,.~ Wx(,(tc) ~xi/ % and
xc~ti/ 2. This result readily follows from simple arguments.
For times t=¢,~ L?, the profile of n(x,), considered on a
space interval of fixed length L, flattens out, n(x,1)=n,(z),
and the diffusion term in the linear EW Eq. (7) becomes
negligible. What remains is a Langevin equation for the vari-
able n; (1) which provides a continuous-time description of
the simple random walk performed by n;(r). Hence, the scal-
ing nc~xi/2 follows after identifying n, with the root mean
fluctuations of n;(z) and the interval L with x.,.
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In the theory of [14] the value 1/2 of the exponent in the
scaling relationship N, (r) ~ "2, which we denote by w, can
be justified on the following grounds.

(a) Let the front F(¢) of an avalanche at time ¢ be defined
as the set of sites between the leftmost and rightmost un-
stable (at that moment of time) sites, and the front width u(z)
be the distance between these sites. The average width {(u(r))
of the avalanche front is supposed to grow with time ¢ as the
average distance from the origin of a simple random walk,
i.e., for sufficiently large times it is proportional to '/,

(b) The core of the avalanche at any given time is rela-
tively hole free, so that asymptotically the number of un-
stable sites N,(f)~1"2, i.e., w=1/2. In such a case, taking
into account that D=7/4, one obtains the result [14]

w

Tap-1) (34)

1
Y 3

We think that the above arguments miss the following
point: the evolution of individual long avalanches, excluding
relatively short initial and final stages, has a somewhat self-
similar, pulsating nature. Actually, a long period of propaga-
tion is characterized by interchanging processes of growth in
width, height and flow of particles with the processes of
decay, when the avalanche parameters decrease to rather
small values. At such “bottlenecks” the evolution is no
longer governed by a dense front of sites with large number
of topplings, and the appearance of holes and separation of
branches becomes probable, see Figs. 3 and 7.

We can suggest another plausible scenario for the ava-
lanche evolution, based on the following conjecture: the av-
erage number of unstable sites N,(f) grows with time ¢ with
exponent w<<1/2. Such a behavior may have at least two
different origins.

(i) The strong asymmetry between the jumps up (just by
one lattice spacing) and down (occasionally, by a large num-
ber of lattice spacings), which is due to dying out of some of
the branches of the avalanche, may change the exponent w in
the scaling relationship N, () ~¢“, most probably to a lower
value. The decrease in w, however, leads to a decrease in the
diffusion exponent v, see Eq. (34).

(ii)) We observe that contrary to the arguments of [14],
creation of “holes” (regions of stable sites) is quite probable,
see Fig. 7 where profiles of the front of a long avalanche,
taken at different moments of time, are shown. As the ava-
lanche advances, the holes in its front either collapse or lead
to the creation of “branches”—offsprings of the avalanche
“backbone” which propagate and die out on their own.

To evaluate the effect of the holes formation on the ava-
lanche propagation, we have defined width w,(7) of the
backbone (thickest branch) of an avalanche at a moment of
time ¢ as follows: the front F(¢) of an avalanche at time ¢, is
split into subsets {S\}C F(¢) of “A—dense” unstable sites,
separated by gaps of stable sites, so that: (a) the distance
between any pair of closest toppling sites in every subset
SiA(t) is less than A>1 and (b) the distance (gap) between
any two subsets S (#) and S}(¢) is equal to or larger than A.
Then, the largest value w,(f)=max; diamS}(7) is registered
and averaged over a sample of long enough avalanches. The
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FIG. 14. (Color online) Average front width and backbone width

as a function of time in the growth stage of 1000 avalanches lasting
longer than 12000. The best power-law fits are shown by thin lines.

averaged over 1000 realizations of avalanches longer than
12 000 width of the backbone (w,(¢)) is shown in Fig. 14 for
A=10 at times r=1,2,...,4500. For comparison, the time
behavior of the average front width (u(z))=(diamU(z)) is
shown as well. Obviously, while (u(z)) ~ /> with fairly good
accuracy, the width of the backbone scales as (wx(z))
~ 1Y) with (10)=0.47 appreciably less than 1/2.

Finally, one can conjecture that the avalanche lifetime T
equals the lifetime of its backbone. In such a case one may
argue that the stochastic time behavior of growing ava-
lanches is governed by Eq. (18) with w somewhat smaller
than 1/2. Of course, this hypothesis can be pursued further
provided w(A) saturates at some value w* as A grows, but
remains much less than (u(z)). However, such a study is out
of the scope of the present work. We just mention that a
decrease in w below 1/2 will cause a decrease in the expo-
nent of the diffusion coefficient y below 1/3, which, taking
for granted D=7/4, will lead to 7,<<D=7/4, see Eq. (32).
Such a shift would be in the direction opposite to the one
suggested by the most recent computer simulation results
[18].

The relevance of Abelian symmetry and stochasticity in
directed sandpiles has been discussed in [21]. There a special
exponent «. has been introduced for the time dependence of
the trace of avalanche boundary sites (called scars). This
exponent is related by the equality a,.=D,, to the avalanche
width exponent D,,. It is then argued that for Abelian deter-
ministic models D,,=1/2 by mapping avalanche boundaries
onto simple random walks, and for the Abelian stochastic
models the same value D,=1/2 holds due to the lack of
correlations in the unstable patterns. In our study we ques-
tion the assumption of compactness of avalanches and go
deeper than the avalanche boundaries by introducing the no-
tion of A-dense avalanche backbone. We can conclude that
the relationship between the spatial structure of directed ava-
lanches and their statistical characteristics needs further in-
vestigations.

It would be interesting to carry out a similar study for an
Abelian model with a tunable degree of anisotropy which
continuously interpolates between the isotropic and directed
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sandpiles. Then one could check the hypothesis that the uni-
versality class remains the same for all systems with nonva-
nishing degree of anisotropy. In the case of the Oslo model
such program has been fulfilled in [22].

Finally, we summarize our main contributions.

(1) We have extended the theory of Kloster-Maslov-Tang
[14] in two important aspects:

(a) The existing theory was based on the simplest case
when unstable sites may transfer only an even number of
particles to the next layer. This simplification makes possible
an easy identification of the active sites (those which change
the flux by one) as the sites which receive an odd number of
particles from the previous layer, i.e., on the average such are
1/2 of all unstable sites in the layer. Our extension introduces
a new probabilistic element by allowing the unstable sites to
transfer both even and odd number of particles with prob-
abilities [Egs. (9) and (10)]. So, it is by no means obvious
that the probability of two-particles toppling u, will enter
only into the coefficient of the diffusion term and will not
change its exponent, see Eq. (18).

(b) It is shown that the conjectured in Ref. [14] simple
diffusionlike growth with time of the number of unstable
sites, N, (t)t'2, can be replaced by a more general power
law N, (z)cr®. Such an extension is necessary because our
simulation data show that, contrary to the arguments in [14],
the avalanche front is not compact, see Figs. 3 and 7, and its
boundaries do not perform simple random walks, as is evi-
dent from Figs. 3 and 4. The deviation from the simple ran-
dom walk picture of the front width persist in the data aver-
aged over the ensemble of 1000 avalanches of almost fixed
duration, as shown in Fig. 5.

(2) A new result, and of special interest in its own right, is
the solution of the Fokker-Planck equation with a diffusion
coefficient in the form of a singular power-law function of
the spatial coordinate. It turned out possible to integrate it
completely and, rather surprisingly, to obtain a simple ex-
pression for the density of the probability distribution for the
lifetimes of unbiased random walks with a step size varying
with the current position &(¢) as |&(z)|?, see Sec. III D.

(3) Our simulations and their analysis did not aim at the
precise evaluation of scaling exponents. Our main goal was
to advance a novel approach in the study of avalanches—
evaluation of their properties in an ensemble of avalanches
with almost fixed (within tolerance of 1%) time duration,
less than the lattice size in the temporal direction. This made
possible the study of statistical properties of similar ava-
lanches during their complete evolution. In particular, we
have quantitatively evaluated the asymmetry between the
time dependence of the front width and the number of un-
stable sites in the initial and final stages of development in an
ensemble of 1000 avalanches with lifetimes in the interval
between 8000 and 8080. Up to our knowledge, we have
shown for the first time that the terminal stage of the ava-
lanche evolution can be described by power-law exponents
different from those for the growth stage.

(4) By using the method of data collapse we have estab-
lished the existence of finite-size scaling laws describing the
entire evolution of avalanches. It was found that the whole
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temporal profile of the number of topplings is very well de-
scribed by the theory of Kloster, Maslov, and Tang as a ran-
dom walk with step size varying as the cubic root of the
displacement.

(5) To quantitatively assess the effect of possible devia-
tions from compactness of avalanches on their lifetime dis-
tribution, we introduced the notion of “A-dense” avalanche
backbone. Quite surprisingly, we have found that for A=10
the backbone, averaged over 1000 avalanches lasting for
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more than 12 000 time steps, grows with time subdiffusively
with exponent about 0.47.
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