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We study a continuous quasi-two-dimensional order-disorder phase transition that occurs in a simple model
of a material that is inhomogeneously strained due to the presence of dislocation lines. Performing Monte Carlo
simulations of different system sizes and using finite size scaling, we measure critical exponents describing the
transition of �=0.18�0.02, �=1.0�0.1, and �=0.10�0.02. Comparable exponents have been reported in a
variety of physical systems. These systems undergo a range of different types of phase transitions, including
structural transitions, exciton percolation, and magnetic ordering. In particular, similar exponents have been
found to describe the development of magnetic order at the onset of the pseudogap transition in high-
temperature superconductors. Their common universal critical exponents suggest that the essential physics of
the transition in all of these physical systems is the same as in our simple model. We argue that the nature of
the transition in our model is related to surface transitions although our model has no free surface.
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Real solids are commonly in a strained state. This can be
due to a variety of reasons, ranging from forces applied upon
them to the presence of structural defects, to ongoing phase
transformations. Such strains affect the ordering processes of
the materials �1–6�. Therefore, understanding the extent of
these effects is important. In this paper, we study the con-
tinuous order-disorder phase transition in a model of a
strained material. The strain field we consider results from a
“wall of dislocations,” that is, a linear array of parallel edge
dislocation lines. This particular arrangement of defects is
relatively common in crystals, as it often occurs because of
surface treatments. The resulting strain is inhomogeneous,
and order develops inhomogeneously in the material, with
ordered regions growing in quasi-two-dimensional layers
around a central cylindrical rod-shaped nucleus �1�. Each
layer orders at a different critical temperature. In order to
study the critical behavior of this process, we consider a
mesoscopic spin model in which the coupling between spins
reflects the strain field induced by the dislocation walls. Per-
forming several simulations of systems with different sizes
and using finite size scaling, we are able to measure the
critical exponents characterizing the transition. The critical
exponents found are comparable with exponents that have
been measured experimentally in a variety of materials, and
for different types of transitions �1,2,7–14�. Notably, similar
critical exponents have recently been measured for the mag-
netic ordering transition that accompanies the onset of the
pseudogap state in high Tc superconductors �15–18�. These
exponents are also compatible with those found in multicriti-
cal surface transitions �19�, although in our case the expo-
nents describe bulk measurements.

Assuming that atoms interact more strongly where they
are pushed closer together and more weakly where they are
pulled apart, a phenomological model that captures the effect
of strain on ordering due to a dislocation line can be con-
structed �1�. Assuming the defects are arranged in walls ex-
tending in the y direction with the lines parallel to z, it is
found that the local relative critical temperature change �c�r��
is

�c�r�� �
Tc��r�� − Tc

Tc
�

b

2l

1 − 2�

1 − �

sin�2	y

h
�

cosh�2	x

h
� − cos�2	y

h
� ,

�1�

where r� is the normal vector pointing from the closest dislo-
cation line, b is the magnitude of the Burgers vector, l is the
unit of length used, � is Poisson’s ratio, h is the local average
distance between defects, Tc��r�� is the local transition tem-
perature and Tc is the transition temperature for a defect-free
crystal. This results in inhomogeneous ordering in which or-
dered regions nucleate and grow in the vicinity of the dislo-
cation lines via the addition of quasi-two-dimensional �quasi-
2D� layers around nuclei with the shape of narrow
cylindrical rods �1�. Here we study the universal critical scal-
ing properties of this ordering process.

To identify the essential physics that controls the scaling
properties of this ordering behavior, we studied a zero-field
three-dimensional �3D� Ising model on a simple cubic lattice
with periodic boundary conditions and nonconstant coupling
Jij between nearest neighbor spins i and j. The Hamiltonian
is

H = − �
	ij


Jijsisj , �2�

where si= �1 is the value of the ith spin and 	ij
 indicates
sum over the nearest neighbor spins on the lattice. The spins
simply represent the state of local order. The value of the
coupling Jij is chosen in order to reflect the strain field giving
rise to Eq. �1� in the following way. First note that in a
“regular” Ising model, with constant coupling J0, the critical
temperature is proportional to the coupling constant,

J0 =
Tc

a
, �3�

where a is some proportionality constant. Also, from Eq. �1�
it follows that, given a �c�r��,
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Tc��r�� = Tc�1 + �c�r��� . �4�

Therefore, from Eqs. �3� and �4�, the parts of the system that
become critical at a given temperature Tc� are those that have
a coupling

J�r�� =
Tc��r��

a
=

Tc

a
�1 + �c�r��� = J0�1 + �c�r��� .

Thus, given the arbitrarity of J0 and of the other proportion-
ality constants, we set

J�r�� = 1 +

sin�2	y

h
�

cosh�2	x

h
� − cos�2	y

h
� ,

where we take h to be the size of the system in the y direc-
tion. To reproduce the effects of the strain of a wall, we use
the above expression only for the coupling between spins in
the x and y directions, while we set the coupling of the spins
along z at 1. The simulated systems contained a single dis-
location line in the center. The replicas due to the periodic
boundary conditions used effectively turned it into a wall of
lines. Notice that while the strain field due to a single dislo-
cation line is long-range, the one due to a wall is short
ranged �1�. However, the field of a wall maintains the dipole-
like nature of the field of a single line, with the effect of
promoting the order on one side of the system, while sup-
pressing it on the other. The order parameter in our simula-
tions was given by the ensemble averaged absolute value of
the magnetization per spin,

	�m�
 =
1

N��i

si� ,

where N is the total number of spins.
Using the Wolff algorithm �20�, which is a cluster flipping

algorithm �21�, we performed extensive Monte Carlo simu-
lations of this model. The cylindrical ordered regions grow
with decreasing temperature as the surfaces of the cylinders
order in a fashion consistent with earlier predictions �1�. Fig-
ure 1 shows the order parameter in an x-y cross section of a
45
91
40 system, averaged over z, at a temperature of
4.49 in units of the Boltzmann constant kB. As anticipated,
order is increasingly enhanced with proximity to the disloca-
tion line on one-half of the system. On the other half, in-
stead, order is increasingly suppressed. Also notice that the
contour lines closely follow the predicted shape, shown in
Fig. 6 of Ref. �1� and computed by numerically solving the
following parametric equations for a particular value of �c,

y�x� =
h

	
arctan	 ��	2 + �c
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��
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h
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h
��
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h
�� � .

We find that the ordering occurs via a continuous transi-
tion. To measure the critical exponents, we simulated sys-
tems of different sizes and estimated their values using finite
size scaling �22�. The observables measured were the mag-
netization order parameter and the ensemble averaged total
energy, given by Eq. �2�. From the fluctuations of magneti-
zation and energy we also calculated the magnetic suscepti-
bility � and the specific heat c. The measurements were
taken at the same time over the entire system and over an
arbitrarily chosen quasi-two-dimensional layer, correspond-
ing to a fixed, chosen value of �c. For each value of the
temperature we took ensemble averages over a number of
system updates between 106 and 108. The whole system sizes
were 59
23
13, 109
43
25, and 205
83
50, while
the circumferences of the x-y cross sections of the quasi-two-
dimensional layers measured were 50, 102, and 200, corre-
sponding to �c=0.9. The sizes of the systems in the x direc-
tion were chosen so that the coupling between spins was
within 10−6 of unity at the boundaries.

To perform data collapses using finite size scaling, we
define the scaled reduced temperature t̃ as

FIG. 1. �Color online� �A� Magnetization order parameter 	�m�

for the x-y cross section, averaged over sites in the z direction, of a
45
91
40 system at a temperature of 4.49 kB. The order-
enhanced and order-suppressed zones are shown in blue �dark� and
yellow �light�, respectively. �B� Contour plot of the same data. The
contour lines are in a step of 0.025. The innermost line in the blue
�dark� order-enhanced region corresponds to 0.55.
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t̃�t� = L1/�t ,

where L is the length of the largest dimension of the system
considered, which in our case corresponds to the length in

the x direction, � is the correlation length critical exponent
and t� T−Tc / Tc is the reduced temperature. With this defi-
nition of t̃, the scaling functions for the order parameter, the
magnetic susceptibility and the specific heat are, respec-
tively,

	�m̃�
�t̃� = L�/�	�m�
�t̃� ,

�̃�t̃� = L−�/���t̃� ,

c̃�t̃� = L−�/�c�t̃� ,

where �, �, and � are the corresponding critical exponents.
The data collapses for the quasi-two-dimensional layer,
shown in Fig. 2, allow estimates of the critical indices of �
=0.18�0.02, �=1.0�0.1, �=0.10�0.02, and �=2.0�0.1,
with a critical temperature of 6.7�0.2. The errors were con-
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FIG. 2. �Color online� Finite size scaling data collapses for a
quasi-two-dimensional layer at the surface of an ordered cylindrical
nucleus. The black circles correspond to an x-y cross section cir-
cumference of 50, the red squares to a circumference of 102 and the
green diamonds to a circumference of 200. The critical exponent
�=2.0 and the critical temperature is Tc=6.7. �A� Magnetization
scaling function 	�m̃�
 vs �t̃� using the long-range order critical ex-
ponent �=0.18. �B� Susceptibility scaling function �̃ vs scaled re-
duced temperature t̃ using the critical exponent �=1.0. �C� Specific
heat scaling function c̃ vs. t̃ using the critical exponent �=0.10.
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FIG. 3. �Color online� Finite size scaling data collapses for the
whole system. The black circles correspond to a size of 59
23

13, the red squares to a size of 109
43
25, the green diamonds
to a size of 205
83
50 and the blue triangles to a size of 417

167
101. The critical exponent �=2.0 and the critical tempera-
ture is Tc=4.50. �A� Magnetization scaling function 	�m̃�
 vs �t̃� us-
ing the long-range order critical exponent �=0.18. �B� Susceptibil-
ity scaling function �̃ vs scaled reduced temperature t̃ using the
critical exponent �=1.1.
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servatively estimated as the range over which a reasonable
scaling collapse was achieved.

Similarly, the measurements of the whole systems, whose
data collapses are shown in Fig. 3, allow the values of the
critical exponents to be estimated as �=0.18�0.02, �
=1.1�0.2, and �=2.0�0.25, with a critical temperature of
4.50�0.05. We could not produce a good scaling collapse
for the specific heat. Note that we get essentially the same
exponents for the whole system that we do for the quasi-two-
dimensional layer. This reveals that the nature of the transi-
tion of the whole system is essentially the same as that of a
quasi-two-dimensional layer. At any given temperature, there
is a part of the system that is critical. The biggest of these
parts corresponds to the measured critical temperature for the
whole system. Also notice that the susceptibility for the
smallest system does not scale well near the peak, presum-
ably due to finite size effects. The size of the error bars on
the data shown in Figs. 2 and 3 is substantially smaller than
the size of the symbols.

The exponents characterizing the transition are compat-
ible with those corresponding to the, so-called, “special”
multicritical point in surface critical phenomena. In particu-
lar, the value �=0.18 was reported in Refs. �19,23� and is
consistent with prior theoretical calculations based on scaling
�19,24�. Also, the measured mean-field value of the exponent
�=1 is expected at the multicritical point �25�. Furthermore,
using the “bulk” 3D-Ising value for the critical exponent �
=0.632 in the scaling laws, as in Ref. �19�, the hyperscaling
relation predicts �=0.104, which is compatible with the one
we measured. Note, however, that while these previous stud-
ies considered systems with an actual surface, our model
does not have free layers. In fact, the quasi-two-dimensional
layers whose ordering we studied are in the midst of the
system. Nevertheless, the ordering in our system does occur
in a quasi-two-dimensional layer at the surface of the already
ordered region.

Similar exponents have also been measured for a number
of different types of transitions in a variety of physical sys-

tems, ranging from structural transitions, to the percolation
of excitons in polymeric matrices, to magnetic order in frus-
trated materials �1,2,7–14�. In particular, as mentioned ear-
lier, there have been recent observations of magnetic order-
ing at the onset of the pseudogap transition in high-Tc
superconductors in which similar critical exponents have
been measured �15–18�. Given the scale invariant nature of
critical phenomena, the fact that the phase transition in our
model apparently has the same set of critical exponents sug-
gests that the essential physics is the same in both systems,
and that our results may be relevant to the open question of
the nature of the pseudogap state itself. Intriguingly, recent
experiments have shown that the onset of the pseudogap
state is accompanied by local modulations of atomic dis-
placement that generate significant inhomogeneous strains
�26,27�. This suggests that, like the quasi-two-dimensional
ordering process we have considered, the pseudogap transi-
tion occurs because of inhomogeneous strain.

Assuming this is true and noting that the pseudogap tran-
sition precedes the onset of high-Tc superconductivity �17�, it
appears that some strain is required for the development of
high-Tc superconductivity. However, strain is also known to
adversely affect superconductivity �28–31� and too much
strain suppresses it altogether �18�. The optimal doping con-
centration of the high-Tc superconductor YBa2Cu3O7−� oc-
curs at only ��0.08. Such a small deviation from an exact
stoichiometry presumably introduces enough strain to cause
a pseudogap transition while causing only minor adverse ef-
fects. This supports the idea that the pseudogap state is a
physically direct precursor to superconductivity, even though
its cause competes with it, consistent with some of the origi-
nal ideas concerning the mechanism of high-temperature su-
perconductivity �32,33�.

The authors are grateful to Simon C. Moss for many help-
ful discussions. This work was supported by the NSF
through Grant No. DMR-0908286 and by the Texas Center
for Superconductivity at the University of Houston �TcSUH�.

�1� C. I. Del Genio et al., Phys. Rev. B 81, 144111 �2010�.
�2� C. I. Del Genio et al., Phys. Rev. B 79, 184113 �2009�.
�3� J. H. Li, D. W. Stokes, J. C. Wickett, O. Caha, K. E. Bassler,

and S. C. Moss, J. Appl. Phys. 107, 123504 �2010�.
�4� O. Caha, V. Holý, and K. E. Bassler, Phys. Rev. Lett. 96,

136102 �2006�.
�5� J. H. Li et al., Phys. Rev. Lett. 95, 096104 �2005�.
�6� I. M. Dubrovski� and M. A. Krivoglaz, Zh. Eksp. Teor. Fiz. 77,

1017 �1989� �Sov. Phys. JETP 50, 512 �1979��.
�7� J. Trenkler et al., Phys. Rev. Lett. 81, 2276 �1998�.
�8� B. Schönfeld, S. C. Moss, and K. Kjaer, Phys. Rev. B 36, 5466

�1987�.
�9� H. Takatsu, H. Yoshizawa, S. Yonezawa, and Y. Maeno, Phys.

Rev. B 79, 104424 �2009�.
�10� A. Lombardi, M. Mali, J. Roos, and D. Brinkmann, Phys. Rev.

B 53, 14268 �1996�.
�11� S. A. Bagnich and A. V. Dorokhin, Chem. Phys. 172, 153

�1993�.
�12� B. D. Gaulin, M. Hagen, and H. R. Child, J. Phys. �Paris� 49,

C8-327 �1988�.
�13� A. L. M. Bongaarts and W. J. M. de Jonge, Phys. Rev. B 15,

3424 �1977�.
�14� W. B. Yelon et al., Phys. Rev. B 9, 4843 �1974�.
�15� J. E. Sonier et al., Phys. Rev. Lett. 103, 167002 �2009�.
�16� J. E. Sonier et al., Phys. Rev. Lett. 101, 117001 �2008�.
�17� H. A. Mook, Y. Sidis, B. Fauque, V. Baledent, and P. Bourges,

Phys. Rev. B 78, 020506�R� �2008�.
�18� Y. Li et al., Nature �London� 455, 372 �2008�.
�19� K. Binder and D. P. Landau, Phys. Rev. Lett. 52, 318 �1984�.
�20� U. Wolff, Phys. Rev. Lett. 62, 361 �1989�.
�21� R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86

�1987�.
�22� M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in

Statistical Physics �Oxford University Press, Oxford, 1999�.

CHARO I. DEL GENIO AND KEVIN E. BASSLER PHYSICAL REVIEW E 82, 031115 �2010�

031115-4

http://dx.doi.org/10.1103/PhysRevB.81.144111
http://dx.doi.org/10.1103/PhysRevB.79.184113
http://dx.doi.org/10.1063/1.3429100
http://dx.doi.org/10.1103/PhysRevLett.96.136102
http://dx.doi.org/10.1103/PhysRevLett.96.136102
http://dx.doi.org/10.1103/PhysRevLett.95.096104
http://dx.doi.org/10.1103/PhysRevLett.81.2276
http://dx.doi.org/10.1103/PhysRevB.36.5466
http://dx.doi.org/10.1103/PhysRevB.36.5466
http://dx.doi.org/10.1103/PhysRevB.79.104424
http://dx.doi.org/10.1103/PhysRevB.79.104424
http://dx.doi.org/10.1103/PhysRevB.53.14268
http://dx.doi.org/10.1103/PhysRevB.53.14268
http://dx.doi.org/10.1016/0301-0104(93)80113-N
http://dx.doi.org/10.1016/0301-0104(93)80113-N
http://dx.doi.org/10.1051/jphyscol:19888145
http://dx.doi.org/10.1051/jphyscol:19888145
http://dx.doi.org/10.1103/PhysRevB.15.3424
http://dx.doi.org/10.1103/PhysRevB.15.3424
http://dx.doi.org/10.1103/PhysRevB.9.4843
http://dx.doi.org/10.1103/PhysRevLett.103.167002
http://dx.doi.org/10.1103/PhysRevLett.101.117001
http://dx.doi.org/10.1103/PhysRevB.78.020506
http://dx.doi.org/10.1038/nature07251
http://dx.doi.org/10.1103/PhysRevLett.52.318
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevLett.58.86
http://dx.doi.org/10.1103/PhysRevLett.58.86


�23� D. P. Landau and K. Binder, Phys. Rev. B 41, 4633 �1990�.
�24� J. Reeve and A. J. Guttmann, J. Phys. A 14, 3357 �1981�.
�25� K. Binder and P. C. Hohenberg, Phys. Rev. B 9, 2194 �1974�.
�26� Z. Islam et al., Phys. Rev. B 66, 092501 �2002�.
�27� Z. Islam et al., Phys. Rev. Lett. 93, 157008 �2004�.
�28� W. A. Caldwell et al., Phys. Rev. Lett. 92, 216105 �2004�.
�29� A. Bussmann-Holder and A. R. Bishop, J. Phys.: Condens.

Matter 16, L313 �2004�.
�30� J. X. Zhu et al., Phys. Rev. Lett. 91, 057004 �2003�.
�31� Z. Janu and G. M. Tsoi, EPL 64, 399 �2003�.
�32� V. J. Emery, Phys. Rev. Lett. 58, 2794 �1987�.
�33� V. J. Emery and S. A. Kivelson, Nature �London� 374, 434

�1995�.

ANOMALOUS ORDERING IN INHOMOGENEOUSLY… PHYSICAL REVIEW E 82, 031115 �2010�

031115-5

http://dx.doi.org/10.1103/PhysRevB.41.4633
http://dx.doi.org/10.1088/0305-4470/14/12/028
http://dx.doi.org/10.1103/PhysRevB.9.2194
http://dx.doi.org/10.1103/PhysRevB.66.092501
http://dx.doi.org/10.1103/PhysRevLett.93.157008
http://dx.doi.org/10.1103/PhysRevLett.92.216105
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1088/0953-8984/16/25/L02
http://dx.doi.org/10.1103/PhysRevLett.91.057004
http://dx.doi.org/10.1209/epl/i2003-00105-4
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1038/374434a0
http://dx.doi.org/10.1038/374434a0

