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systems giving rise to chaotic and intermittent chaotic behavior.
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I. INTRODUCTION

Extreme events are a key manifestation of complex sys-
tems and their technological, economic and social conse-
quences are a matter of considerable concern. There is a vast
literature on the statistical description of extreme events
which may be regarded as a well established area of inves-
tigation �1,2�. The classical version is based on the assump-
tion of independent and identically distributed random vari-
ables �iidrv’s�. An excellent overview of the theory of
extreme values for a wide class of correlated stochastic se-
quences is provided in �3�. More recently, theoretical ad-
vances have been made for the study of extreme events in
deterministic dynamical systems �4–8�.

In many environmental recordings the variability is so
considerable that no underlying regularity seems to be
present. An ingenious way to handle such records was sug-
gested some time ago by Hurst �9�. The starting point is the
sequence X0 , . . . ,Xn−1 of values of the variable of interest.
The sample mean and the standard deviation of this record

are denoted by X̄n and Cn, respectively �we assume that the

Xi’s have a finite variance�. Subtracting X̄n from each of the
values of the record leads to a new sequence of variables that
have zero mean,

x0 = X0 − X̄n, . . . ,xn−1 = Xn−1 − X̄n. �1�

Next, we form partial sums of these variables, each of them
being the cumulative sum of all values up to a particular
value xk,

S1 = x0,S2 = x0 + x1, . . . ,Sn = x0 + . . . + xn−1. �2�

The set of these sums, noting that Sn=0, will have a maxi-
mum and a minimum value, Mn=max Sk, mn=min Sk, when
the k’s run up to n. The range, rn, of the phenomenon de-
scribed by the sequence is then quite naturally defined as

rn = Mn − mn, �3a�

or, in rescaled form,

rn
� = rn/Cn. �3b�

In a complex system one expects that rn should display a
pronounced variability. To sort out systematic trends one
should thus compute its average value or perhaps a higher
moment thereof. The basic quality involved in such an aver-
aging is the probability distribution of the event

F�u,v,n� = Prob�Mn � u,mn � − v,n� �4�

where u and v are taken to be positive, Mn�0 and mn�0.
Closely related to the foregoing is the Hurst phenomenon.

Specifically, a surprising result is that in a wide range of
environmental records, �rn

���nH, where H �referred to as the
Hurst exponent� turns out to be close to 0.7. To put this in
perspective, Feller �10� proved that for the reference case of
iidrv’s, H is bound to be 0.5. This implies in turn that the
successive X’s are not independent: Sk has somehow a per-
sistent effect on Xk, i.e., highs tend to be followed by highs,
lows by lows. This remarkable property discovered by Hurst
has fascinated mathematicians, statisticians, physicists, engi-
neers, and hydrological modelers �10–16�. The question
arises what are the mechanisms that could generate such per-
sistences. Mandelbrot �11� and Mandelbrot and Van Ness
�12� pointed out that such behaviors arise in a class of pro-
cesses with infinite memory, termed by them fractional
Brownian noises �fB’s�. A hydrological interpretation of fB’s
was offered by Mandelbrot and Wallis �13�. Klemeš �14�
argued that the Hurst phenomenon cannot be attributed to
one specific physical cause. It can be caused by infinite
memory of a particular type �11–13� or can be the result of
nonstationarity in the process central tendency �14�, and
there may perhaps be other causes as well. One of the present
authors and coworkers have suggested formulating the Hurst
phenomenon from a dynamical systems point of view �17�.
This idea is of relevance since, fundamentally, the laws gov-
erning the evolution of natural systems are deterministic. The
question arises then, whether there exist deterministic mod-
els that generate statistical properties differing qualitatively
from those associated to iidrv’s possibly leading to the Hurst
phenomenon.

In this paper, we introduce a general framework for ana-
lyzing the probabilistic properties of cumulative sums Eq. �2�
and the �scaled� range Eq. �3� in deterministic dynamical
systems. We start in Sec. II with some probabilistic aspects

of the nonadjusted sums �i.e., without subtracting X̄n in Eq.
�1��. Although this is a very simplified study, it enables us to
get some first insights on the principal signatures of deter-
ministic dynamics on the range analysis. In Secs. III and IV
this initial study is extended to the case of adjusted sums as
they appear in Eqs. �1� and �2�. We develop a theory for the
evaluation of the distribution F�u ,v ,n� for deterministic dy-
namical systems. In sharp contrast with the classical theory
of Feller �10�, it turns out that F�u ,v ,n� possesses nondiffer-
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entiable points. In addition, we show that the densities p�rn�
and p��rn

�� are discontinuous on a set of points that becomes
dense when n→�. Analysis of small-n cases complemented
with numerical simulations entirely confirm our theory. The
main conclusions are drawn in Sec. V.

II. PROBABILISTIC PROPERTIES OF THE
NONADJUSTED SUMS IN DETERMINISTIC

DYNAMICAL SYSTEMS

In order to sort out in a transparent way the type of effects
that could arise in the presence of deterministic dynamics we
first focus on the nonadjusted sums

S̃1 = X0, S̃2 = X0 + X1, . . . , S̃n = X0 + . . . + Xn−1. �5�

Let f be the dynamical law linking two successive values of
the record

Xi+1 = f�Xi�, X � I = �a,b� , �6�

where I is a certain domain in phase space. In principle both
X and f are vector quantities, since the instantaneous state of
the system is typically determined by the values of more than
one observable. We here assume that f can actually be con-
tracted to a scalar form through, for instance, projection of
the full dynamics on a Poincaré surface of section and/or the
adiabatic elimination of fast variables. This entails, in par-
ticular, that f will be in general noninvertible.

In what follows, we will be interested in dynamical sys-
tems possessing sufficiently strong ergodic properties, such
as systems generating deterministic chaos. Let
�X

�n��X0 , . . . ,Xn−1� be the n-fold probability density of the se-
quence. In all generality, it can be decomposed into a product
of the initial state density �X�X0� which will be a smooth
function of the variable X0 and of a conditional probability
density for going through the states X1 , . . . ,Xn−1 starting
from X0. In a deterministic system these conditional densities
are �-functions linking X1 to X0, X2 to X1, etc… �4�,

�X
�n��X0, . . . ,Xn−1� = �X�X0���X1 − f�X0�� . . .

	��Xn−1 − f �n−1��X0�� , �7�

where the superscript in f �i� denotes the ith iterate of f . It

follows that the probability density of S̃n is

��S̃n� = �
In

dX0 . . . dXn−1�X
�n��X0, . . . ,Xn−1�

	�	S̃n − 

r=0

n−1

f �r��X0�� , �8�

being understood that f �0��X0�=X0. Performing the integra-
tion over the space In−1, we get

��S̃n� = �
I

dX0�X�X0��	S̃n − 

r=0

n−1

f �r��X0�� . �9�

Notice that Eq. �9� can also be viewed as the probability
density that a certain function of the intial record X0 has

attained a “threshold” given by S̃n.

Let �X0,

 be the set of the preimages of S̃n under the
mapping �n=
r=0

n−1f �r��X0�, i.e. X0,
 is a solution of the equa-
tion



r=0

n−1

f �r��X0� = S̃n. �10a�

It then follows from Eq. �9� that

��S̃n� = 




�X�X0,
�

�
r=0

n−1
f �r���X0,
��

, �10b�

where the denominator arises from the transformation of
variables converting the �-function in Eq. �9� to a product of

�-functions of the form ��X0−X0,
�. As a rule, as S̃n is in-
creased, the number of solutions X0,
 contributing to Eq.
�10b� will change when crossing certain boundaries separat-

ing different S̃n-values. This should result in a steplike form

of ��S̃n�.
As an elementary example consider the case of a window

n=2 and a deterministic dynamics driven by the tent map
�18�, f�X�=1− �1−2X�, 0�X�1. Notice that X is here non-
negative. There are no fundamental changes arising from this
property as compared to the usual setting in which one deals
with variables having a zero expectation, since one can sub-
tract the ergodic average from each of the Xj’s. We have

S̃2 = �3X0, for X0 � �0, 1
2�

2 − X0, for X0 � � 1
2 ,1�� . �11�

Alternatively �see Fig. 1 �top��,

X0,1 =
S̃2

3 , for S̃2 � �0,1� ,

X0,1 =
S̃2

3 ,X0,2 = 2 − S̃2, for S̃2 � �1, 3
2� ,

�12�

and Eq. �10b� yields, remembering that �X�X0�=1 for the tent
map,

��S̃2� =� 1
3 , for S̃2 � �0,1�
4
3 , for S̃2 � �1, 3

2�� , �13�

which has a steplike structure with a step occurring at

S̃2=1. This result is in full agreement with the results of
numerical simulation of the full process, as summarized in
Fig. 1 �bottom�.

Building on the above analysis we may formally express
the entire set of probabilities and probability densities rel-
evant for the process, as summarized below.

A. Cumulative probability distribution

Let M̃n=max�S̃1 , . . . , S̃n� and m̃n=min�S̃1 , . . . , S̃n�. Analo-
gously to Eq. �7�, the n-time probability density that the
n−1 cumulative sums of the record following the state

S̃1=X0 are S̃2 , . . . , S̃n, respectively, is
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��n��S̃1, . . . , S̃n� = ��S̃1��
i=1

n−1

�	S̃i+1 − 

r=0

i

f �r��S̃1�� . �14�

By definition, the associated cumulative probability distribu-
tion is

F�u,v,n� = Prob�M̃n � u,m̃n � − v,n�

= �
−v

u

dS̃1 . . . �
−v

u

dS̃n��n��S̃1, . . . , S̃n� . �15�

A noteworthy difference with Eq. �4� is that in the present
situation we may have v�0 since, e.g. in the tent map,

S̃i�0, although it should be kept in mind that u�−v.
Eq. �15� can be further expressed in terms of Heaviside func-
tions

F�u,v,n� = �
−v

u

dS̃1��S̃1��
i=1

n−1�H	u − 

r=0

i

f �r��S̃1��
− H	− v − 


r=0

i

f �r��S̃1��� . �16�

Notice that in view of Eqs. �5� and �6� the domain of varia-

tion of S̃1 is the interval I. Eq. �16� holds therefore as long as
u is smaller than the upper boundary, b, and −v larger than
the lower boundary, a, of this interval. If either of these

conditions is not fulfilled the upper and lower limits in the S̃1
integration need to be replaced by b and a, respectively.

As, say, u is gradually increased keeping v constant, dif-
ferent Heaviside functions will “fire,” resulting in an increas-
ing function of u whose slope will suddenly change as new
Heaviside functions will be becoming active. This will result
in a dependence of F on u in the form of a broken line.

B. Density function

The probability density associated to F�u ,v ,n� is
f�u ,v ,n�=Fuv�u ,v ,n�. If u�b we have

Fu = ��u��
i=1

n−1�H	u − 

r=0

i

f �r��u�� − H	− v − 

r=0

i

f �r��u���
+ �

−v

u

dS̃1��S̃1�

i=1

n−1

�	u − 

r=0

i

f �r��S̃1��
	�

j=1

j�i

n−1 �H	u − 

r=0

j

f �r��S̃1�� − H	− v − 

r=0

j

f �r��S̃1��� .

�17�

Clearly, the action of the derivative in Eq. �17� over v will
result in �-function singularities that cannot be regularized

by subsequent integration over S̃1. Notice that if u�b only
the second term in Eq. �17� with upper limit replaced by b
will survive in the expression of Fu.

C. Probability density of the range

Following the classical work of Feller �10�, the corre-

sponding probability density of the range r̃n=M̃n− m̃n is

p�r̃n� = �
0

r̃n

duf�u, r̃n − u,n� , �18�

and the tendency will be to regularize some of the
�-singularities of f�u ,v ,n�. Actually, n=3 is the minimal
window for which a finite jump can be observed as r̃3 is
varied. As it turns out, p�r̃3� is then identical to ��X1+X2�
and thus has a structure identical to ��S̃2�, see Eq. �13� and
Fig. 1 for the example of the tent map.
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FIG. 1. �Color online� Top: nonadjusted sum S̃2 for the tent map
as a function of the initial state X0 �solid line�. Bottom: probability

density ��S̃2� as obtained numerically using 106 realizations.
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III. SIGNATURE OF DETERMINISTIC DYNAMICS
IN THE PROBABILITY F(u ,v ,n)

FOR ADJUSTED SUMS

A. General formulation of the probability F(u ,v ,n)

Having seen how deterministic dynamics may affect the
probabilistic properties of cumulative sums of successive
values of an observable, we turn to the properties of the
adjusted partial sums Sj as they appear in the Hurst phenom-
enon per se, Eqs. �1�, �2�, �3a�, and �3b�. The definitions of
the cumulative distribution Eq. �15� and the density of the
range Eq. �18� evidently apply to adjusted partial sums as
well. Technically, the main difference with the situation in
the previous section is that for any given window n each of
the partial sums depends now on the entire set of values of
the record,

Si = X0 + . . . + Xi−1 −
i

n
�X0 + . . . + Xn−1� . �19�

Applying this equation to i=1 and rearranging terms we ob-
tain

S1 = X0 −
1

n


r=0

n−1

f �r��X0� � �n
�1��X0� , �20a�

Si = i�S1 − X0� + 

r=0

i−1

f �r��X0� � �n
�i��X0� . �20b�

As can be seen, S1 can no longer be identified to X0 and, as
a corollary, there is no straightforward relation linking Si to
S1. As a matter of fact, since f�X0� and thus �n

�1��X0� are
generally noninvertible, there exist several solutions �X0,

 of
Eq. �19� expressed in terms of the various branches 
 of the
inverse mapping �n

�1�,

X0,
 = ��n
�1��


−1�S1� . �21�

Substitution into Eq. �20b� shows that Sj is, typically, a mul-
tivalued function of S1 depending on the domain I
 of
X0-values associated to branch 
 of the inverse mapping in
Eq. �21�. We denote

Si,
 = �n
�i��X0,
� � g


�i−1��S1� , �22�

where we have removed the reference to “n” for notational
simplicity.

We now turn to the general formulation of the probabilis-
tic properties of the Sj’s. We start with the n-fold probability
density ��n��S1 , . . . ,Sn� that the n−1 adjusted cumulative
sums following S1=x0 be S2 , . . . ,Sn. We partition the domain
I of the original map f into m subintervals, each containing
one of the preimages X0,
 of S1 in Eq. �21�. The boundaries
between these intervals mark the switching between different
expressions of X0,
 as a function of S1, as S1 runs over its
interval of variation. For maps like the symmetric tent map
considered in Sec. II these boundaries are, for a given n, the
points 
 /2n, 
=1, . . . ,2n−1 and the corresponding cells I


define a Markov partition. For more general maps the subdi-

vision is less obvious and one needs then to argue in terms of
S1, rather than X0. Summarizing, we are led to the following
formal expression:

��n��S1, . . . ,Sn� = 


=1

m

P�X0 � I
��
�S1�

	�
i=1

n−1

��Si+1 − g

�i��S1�� , �23�

where �
�Si� represents the conditional density
��Si �X0� I
�. Upon using the definition of the cumulative
probability, given in Eq. �15�, we get

F�u,v,n� = 


=1

m

P�X0 � I
�F
�u,v,n� , �24�

where

F
�u,v,n� = �
−v

u

dS1�
�S1��
−v

u

dS2 . . . �
−v

u

dSn

	�
i=1

n−1

��Si+1 − g

�i��S1��

= �
−v

u

dS1�
�S1��
i=1

n−1

�H�u − g

�i��S1��

− H�− v − g

�i��S1��
 . �25�

In other words, F
�u ,v ,n� is obtained by integrating �
�S1�
over those ranges of S1 in which −v�g


�i��S1��u, for
i=1, . . . ,n−1.

Note that g

�n−1��S1�=0 because Sn=0. Consequently,

the last factor in Eq. �25�, i.e. for i=n−1, reduces to
H�u�−H�−v�=1 since we have by definition u ,v�0. This
means that for the practical computation of F�u ,v ,n� it is not
needed to take Sn into account, so we may consider
��n−1��S1 , . . . ,Sn−1� instead of ��n��S1 , . . . ,Sn�.

B. Application: F(u ,v ,3) for fully developed chaos

We now turn to the application of the foregoing formalism
to maps of the unit interval that exhibit fully developed
chaos. We continue with the tent map as an illustrative
example. We consider the simplest case n=3, dividing
I= �0,1� in subintervals I
= ��
−1� /4,
 /4�, 
=1, . . . ,4. We
recall that the tent map process is uniformly distributed, so
that P�X0� I
�=1 /4 in Eq. �24�. To obtain the overall struc-
ture of F�u ,v ,3�, we need the expressions for Fi�u ,v ,3�,
i=1, . . . ,4, which are calculated below.

In line with the procedure presented in Eq. �20�, we obtain
S1 and S2 as a function of X0, see Appendix A, Eqs. �A2� for
details. The preimages �X0,

 of S1 under the mapping Eqs.
�20a� are

X0,1 = − 3
4S1, X0,2 = 3

4S1 + 1
2 , for S1 � �− 1

3 ,0� ,

X0,4 = 3
8S1 + 3

4 , for S1 � �0, 2
3� .

�26�

As seen in Eq. �22�, we can write S2 as a function of S1 by
substituting Eqs. �26� in S2. We get
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g1
�1��S1� = 5

4S1, g2
�1��S1� = 11

4 S1 + 1
2 , for S1 � �− 1

3 ,0� ,

g4
�1��S1� = 7

8S1 − 1
4 , for S1 � �0, 2

3� .

�27�

The case X0� I3 deserves some special attention because
then S1=0, so that S2 cannot be written as a function of S1.
This is an exceptional situation not covered by the general
formulation proposed in Sec. III A. The term for 
=3 in the
sum Eq. �23� has then to be replaced by 1 /4��S1��3�S2���S3�.

The conditional densities, �
�Si�, in Eqs. �23� and �25� are
easily calculated: since X0 is uniformly distributed, S1 in Eq.
�A2a� is then also uniformly distributed in each subinterval
I
. The conditional densities are thus block functions with
surface equal to one. They can be expressed as a product of
Heaviside functions,

�1�S1� = 3H�S1 +
1

3
�H�− S1� , �28a�

�2�S1� = �1�S1� , �28b�

�3�S2� =
4

3
H�S2 +

1

4
�H�1

2
− S2� , �28c�

�4�S1� =
3

2
H�S1�H�2

3
− S1� . �28d�

The conditions −v�g1
�1��S1��u, where g1

�1��S1� is given in
Eqs. �27�, are equivalent to −4 /5v�S1�4 /5u. We find

F1�u,v,3� = �
−4/5v

4/5u

dS1�1�S1� , �29�

which is equal to Eq. �B3� in Appendix B. For
F2�u ,v ,3�, the conditions −v�g2

�1��S1��u, where
g2

�1��S1� is given in Eqs. �27�, are equivalent to
−4 /11v−2 /11�S1�4 /11u−2 /11. Actually, the computa-
tion of F2�u ,v ,3� is more complicated than the foregoing.
Firstly, when −4 /11v−2 /11�−v we have to consider
−v as the lower bound of the integration procedure,

because otherwise, the integration range will be widened.
Secondly, a restriction to the u- and v-values has to be im-
posed because it may happen that the lower bound
−4 /11v−2 /11 is larger than the upper bound 4 /11u−2 /11.
This should imply that F2�u ,v ,3� is negative. This happens
when 4 /11u−2 /11+v�0. Putting everything together
yields Eq. �B4�, see Appendix B. Similar computations give
Eqs. �B5� and �B6�.

From these expressions we can see that nondifferentiable
points are located at u=1 /2, u=2 /3, v=1 /4, v=2 /7, and
v=5 /12. A three-dimensional plot of F�u ,v ,3� is shown in
Fig. 2. In addition, Fig. 3 displays the results for F�u ,v ,3�
by numerical simulation where we kept u=1 /10
�or v=1 /10� constant. This kind of two-dimensional plots
provides actually a better visualization of the nondifferen-
tiable points. Beside the above mentioned critical values, it
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FIG. 2. �Color online� F�u ,v ,3� for the tent map. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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FIG. 3. �Color online� Solid line: F�u ,v ,3� for the tent map as a
function of v �top� or u �bottom�, where u �top� or v �bottom� is
kept constant. The broken lines indicate the nondifferentiable
points. The plots are deduced numerically using 106 realizations
and mesh size 0.01.
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can be seen that there are extra nondifferentiable points when
keeping u=1 /10. They find their origins in the last Heaviside
function of F2�u ,v ,3� and F4�u ,v ,3� since they vanish for
v=8 /55 and v=13 /80, respectively. But as soon as u in-
creases, this type of critical values are no longer present. An
analogous remark holds for fixed v-values.

IV. SIGNATURE OF DETERMINISTIC DYNAMICS
IN THE PROBABILITY DENSITY OF THE RANGE

OF ADJUSTED SUMS

A. General formulation of the probability density of the range

The probability density of the range of adjusted sums can
be obtained by suitably adapting the definitions of Secs. II B
and II C to our case. It is recalled that the general form of
F�u ,v ,n� is given by Eqs. �24� and �25�. Obviously, we have
that

f�u,v,n� = 


=1

m

P�X0 � I
�f
�u,v,n� , �30a�

where

f
�u,v,n� = �F
�uv�u,v,n� , �30b�

and

p�rn� = 


=1

m

P�X0 � I
�p
�rn� , �31a�

where

p
�rn� = �
0

rn

f
�u,rn − u,n�du . �31b�

Now we are able to explicitly compute p�rn� by introducing
Eqs. �24� and �25� in Eqs. �30� and �31�. The resulting com-
putations are cumbersome, and they are listed in Appendix
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FIG. 4. �Color online� Probability density p�rn� for the tent map �small n� deduced numerically using 106 realizations and a mesh size

rn=0.01.
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C. In sharp contrast with the classical theory, the occurring
Heaviside functions in Eqs. �C3� and �C5� indicate that p�rn�
possesses discontinuities. There is an additional reason for
the existence of discontinuities in p�rn�: it usually happens
that the conditional densities p
�rn� in Eqs. �C3� and �C5� are
nonzero at their endpoints and they are thus directly respon-
sible for the jumps in the overall density p�rn�. In Sec. IV B
a detailed evaluation of p�rn� will be carried out on represen-
tative classes of chaotic dynamics.

When evaluating Eqs. �C3� and �C5� on concrete dynami-
cal systems, it may happen that the undetermined form
“H�0�” appears. Another additional shortcoming of the gen-
eral formulation is that it does not provide any information
on the probability density p��rn

�� of the scaled range. Unfor-
tunately, the paper of Feller �10� does not deal with the
scaled range rn

� since it was assumed there that Cn=1. All
these reasons justify that for the practical computation of
p�rn� and p��rn

��, it should be desirable to search for an alter-

native construction procedure. This is illustrated in Sec.
IV B 1.

B. Properties of p(rn) and p�(rn
�): A case study

1. Small n-values

In Figs. 4 and 5 we have plotted the densities p�rn� and
p��rn

�� for small n-cases n=3, . . . ,6 as obtained by direct
numerical simulations using 106 realizations. Here, we in-
tend to find some closed analytical expressions for p�rn� and
p��rn

�� for window n=3, which is the smallest nontrivial case.
By construction of rn, we can divide the system’s domain

I in nonintersecting successive subintervals J
 �not to be
confused with the aforementioned I
� in such a way that, in
each J
 we have that rn=Sk�X0�−Sl�X0� for fixed k- and
l-values. An illustrative example for r3, which can be
checked straightforwardly, is given in Eqs. �A3�, see Appen-
dix A. As can be seen from these expressions we have that r3
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FIG. 5. �Color online� Probability density p��rn
�� for the tent map �small n� deduced numerically using 106 realizations and a mesh size
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is a linear combination of X0 in each J
, and thus r3 is uni-
formly distributed in J
. Similar to the case of the condi-
tional densities of the cumulative sums Eq. �28�, we have
consequently that the conditional densities p�r3 �X0�J
� are
block functions. Then p�rn� can be easily obtained by using
the law of total probability, see Eq. �A4� for the final out-
come. Since each block function p�r3 �X0�J
� contributes to
the overall density p�r3�, we can see that the endpoints of
p�r3 �X0�J
� may cause discontinuities in p�r3�. The above
features provide the insight that for the tent map, p�rn� is a
linear combination of block functions. The number of block
functions contributing to the overall density p�rn� increases
as n becomes larger and larger. As a corollary, the number of
discontinuous points becomes dense as n→�.

We have not found an analytical expression for the
density p��r3

��, but the expression of r3
�, provided by

Eqs. �A3� and �A1b�, suggests some relevant conclusions on
p��r3

��. In Fig. 6 we show r3
� as a function of X0. For

X0�J1 we obtain that r3
�=5 /140.5�1.336, resulting in a con-

tribution of a �-function in p��r3
��. Indeed, we have that:

p��r3
� �X0�J1�=��r3

�−5 /140.5�. Similarly, a second �-peak is
located at r3

�= �3 /2�0.5�1.225 when X0�J5�J6. Beside the
occurring �-functions, there is a jump at the right-endpoint of
p��r3

��, here r3
�=�2, because in J3, J4, J7, and J8, the function

r3
� reaches this maximum value. The minimum value,

r3
�= �3 /2�0.5, which is reached in every subinterval �except

J1�, cannot cause a jump in p��r3
�� because there is a �-peak

located at that value. A similar situation happens in J2 where
the maximum value r3

�=5 /140.5 at the left endpoint is
reached. Fig. 5 �left, top� confirms our analysis.

2. Large n values

Next, we illustrate how p��rn
�� evolves for larger n values.

We do not show the results for p�rn� because they are com-
parable to the previous ones. In Fig. 7 we have plotted the
standardized probability density p��rn

�� for the tent map. For
comparison, we used the uniformly distributed random pro-
cess in the unit interval �i.e., the iidrv case� as reference. It
should be noted that distribution in the iidrv case can also be
approximated by the asymptotic results in �10� for uncorre-
lated data.

The results confirm entirely the persistence of discontinui-
ties in accord with the theoretical predictions. Aside from
these discontinuities in the probability density, we also ob-
serve that for moderate n values the standardized densities
follow, remarkably enough, the main body of the standard-
ized density in the iidrv case. We suggest that a qualitiative
mechanism at the origin of this phenomenon is as follows.
As seen in the previous subsection, individual rn

�’s in the
different subintervals of the domain of definition are differ-
ences of adjusted sums—or alternatively linear combinations
of the original variables Xi evaluated at different times—
normalized by the standard deviation Cn. This operation may
be viewed as a filter �19� tending to smooth the variability of
rn

� relative to that of X. Still, gaps within and irregular pro-
nounced oscillations around the overall smooth envelope
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FIG. 6. �Color online� Scaled range r3
� as a function of X0 for the

tent map. The broken lines divide the domain in the subintervals as
listed in Eqs. �A3�.
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persist on small scales as shown in Fig. 8, where a zoom of
the probability density for n=100 in a small part of the in-
terval is shown. Interestingly, there are only three nontrivial
density values in that interval. This variability is gradually
erased at the level of locally averaged observables such as
sliding means, as illustrated in Fig. 9 for an averaging win-
dow with 50 members.

The foregoing experiments have been carried out on the
Bernoulli shift �18�, f�X�=2X mod 1, 0�X�1, which is
also a representative example of fully developed chaos. In
the case of intermittent chaos we have considered the widely
used cusp map �18�, f�X�=1−2�X�1/2, �X��1. The outcome
of the numerical experiments �not shown here� is completely
analogous to the results of the tent map.

V. CONCLUSIONS

In this work the basic quantities in the statistics of the
range of sums, i.e., F�u ,v ,n�, p�rn�, and p��rn

�� have been
analyzed for deterministic dynamical systems. A general for-
mulation of F�u ,v ,n� and p�rn� was made possible by ex-
pressing the n-time probability density ��n��S1 , . . . ,Sn� in a
way analogous to the theory of extreme events in determin-
istic systems �4�. In sharp contrast with the Feller’s classical
theory �10� for iidrv’s, we have shown that F�u ,v ,n� con-
tains nondifferentiable points. We have constructed the cor-
responding p�rn� and were able to explain the existence of
discontinuous points in p�rn� and p��rn

�� using representative
models of fully developed chaos. Furthermore, the number
of discontinuities increases as n grows, thus no simple lim-
iting behavior is to be expected. A noteworthy difference
between p�rn� and p��rn

�� is that the latter distribution might
contain � functions.

Further work in this area should aim at determining the
class of nonlinear phenomena that may generate behaviors
similar to the Hurst phenomenon per se, i.e., �rn

���nH. In the
presence of intermittent chaos, initial encouraging results
have already been reported in �17�. Similar experiments �in
preparation� on the chaotic bimodal map �7� reveal a Hurst
type power law within a large observational time window.
Analogously to most stochastic processes, experiments on a
variety of dynamical systems have shown a �sometimes very
slow� convergence to n0.5. One would be tempted to specu-
late that this conclusion should extend to all fully developed
chaotic systems whose variables evolve according to a
bounded and stationary process. One should then examine
how the window beyond which the exponent H falls down to
0.5, is related to the presence of long range correlations in
the system. Finally, it would be desirable to analyze the ap-
plicability of the new theory on realistic models describing
hydrodynamic chaos or atmospheric circulation. This re-
search is now in progress.
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APPENDIX A: COMPUTATION AND STATISTICS
OF r3 FOR THE TENT MAP

For the data set X0, X1, X2 generated by the tent map, we
have the following statistics,

X̄3 =�
7

3
X0, X0 � �0,1/4�

−
1

3
X0 +

2

3
, X0 � �1/4,1/2�

X0, X0 � �1/2,3/4�

−
5

3
X0 + 2, X0 � �3/4,1�

� , �A1a�

and
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FIG. 8. �Color online� Zoomed standardized probability density
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�� deduced numerically using 105 realizations and a mesh size
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C3
2 =�

14

9
X0

2, X0 � �0,1/4�

62

9
X0

2 −
44

9
X0 +

8

9
, X0 � �1/4,1/2�

2

3
�3X0 − 2�2, X0 � �1/2,3/4�

38

9
X0

2 −
20

3
X0 +

8

3
, X0 � �3/4,1�

� . �A1b�

After straightforward calculations, we obtain for the sums S1
and S2,

S1 =�
−

4

3
X0, X0 � �0,1/4�

4

3
X0 −

2

3
, X0 � �1/4,1/2�

0, X0 � �1/2,3/4�
8

3
X0 − 2, X0 � �3/4,1�

� , �A2a�

and

S2 =�
−

5

3
X0, X0 � �0,1/4�

11

3
X0 −

4

3
, X0 � �1/4,1/2�

− 3X0 + 2, X0 � �1/2,3/4�
7

3
X0 − 2, X0 � �3/4,1�

� . �A2b�

The range of sums is then given by

r3 =�
S3 − S2 =

5

3
X0, X0 � �0,1/4�

S3 − S2 = −
11

3
X0 +

4

3
, X0 � �1/4,2/7�

S3 − S1 = −
4

3
X0 +

2

3
, X0 � �2/7,4/11�

S2 − S1 =
7

3
X0 −

2

3
, X0 � �4/11,1/2�

S2 − S3 = − 3X0 + 2, X0 � �1/2,2/3�
S3 − S2 = 3X0 − 2, X0 � �2/3,3/4�

S1 − S2 =
1

3
X0, X0 � �3/4,6/7�

S1 − S3 =
8

3
X0 − 2, X0 � �6/7,1�

� .

�A3�

The procedure introduced in Sec. IV B 1 enables us to com-
pute the density:

p�r3� =
3

5
�� 5

12
− r3� +

3

11
��−

2

7
+ r3��� 5

12
− r3�

+
3

4
��−

2

11
+ r3���2

7
− r3� +

3

7
��−

2

11
+ r3�

	��1

2
− r3� +

1

3
��1

2
− r3� +

1

3
��1

4
− r3�

+ 3��−
1

4
+ r3���2

7
− r3� +

3

8
���−

2

7
+ r3���2

3
− r3� .

�A4�

APPENDIX B: F(u ,v ,3) FOR THE TENT MAP

The cumulative distribution function Eq. �4� for n=3
takes the form

F�u,v,3� =
1

4

i=1

4

Fi�u,v,3� . �B1�

In what follows, we define the step functions � and �� as

��x� = �1 if x � 0

0 if x � 0
� and ���x� = �1 if x � 0

0 if x � 0
� ,

�B2�

in order to have Fi�u ,v ,3�=1 at the endpoints. Definition
�B2� will be used throughout this work.

The Fi’s in Eq. �B1� are given by

F1�u,v,3� =
12

5
v��1 −

12

5
v� + ���− 1 +

12

5
v� , �B3�

F2�u,v,3� = 	��2

7
− v�F2

�1� + ���−
2

7
+ v�F2

�2��
	�� 4

11
u −

2

11
+ v� , �B4a�

where

F2
�1� = �

−v

4/11u−2/11

dS1�2�S1�

= 3v��1

3
− v� + ���−

1

3
+ v� +

6

11
�2u − 1���1

2
− u� ,

�B4b�

and

F2
�2� = �

−4/11v−2/11

4/11u−2/11

dS1�2�S1�

=
6

11
�2v + 1��� 5

12
− v� + ���−

5

12
+ v�

+
6

11
�2u − 1���1

2
− u� , �B4c�
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F3�u,v,3� =
4

3
u��1

2
− u� +

2

3
���−

1

2
+ u� +

4

3
v��1

4
− v�

+
1

3
���−

1

4
+ v� , �B5�

F4�u,v,3� = 	3

2
u��2

3
− u� + ���−

2

3
+ u�

+
3

7
�− 1 + 4v���1

4
− v����u +

8

7
v −

2

7
� .

�B6�

APPENDIX C: GENERAL FORM OF p(rn)

We compute f
�u ,v ,n� by using Eqs. �25� and �30b�,

�F
�u = �
�u� 	 �
i=1

n−1

�H�u − g

�i��u�� − H�− v − g


�i��u��


+ �
−v

u

dS1�
�S1�

i=1

n−1

��u − g

�i��S1��

	�
j=1

j�i

n−1

�H�u − g

�j��S1�� − H�− v − g


�j��S1��
 , �C1�

and thus

f
 = �
�u�

i=1

n−1

��− v − g

�i��u��

	�
j=1

j�i

n−1

�H�u − g

�j��u�� − H�− v − g


�j��u��
 + �
�− v�

i=1

n−1

��u − g

�i��− v��

	�
j=1

j�i

n−1

�H�u − g

�j��− v�� − H�− v − g


�j��− v��
 + �
−v

u

dS1�
�S1�

i=1

n−1

��u − g

�i��S1��


j=1

j�i

n−1

��− v − g

�j��S1��

	 �
k=1

k�j,k�i

n−1

�H�u − g

�k��S1�� − H�− v − g


�k��S1��
 . �C2�

Using Eq. �31b� we can write that p
�rn�= p

�1��rn�+ p


�2��rn�
+ p


�3��rn�, where

p

�1��rn� = �

0

rn

du�
�u�

i=1

n−1

��u − rn − g

�i��u��

	�
j=1

j�i

n−1

�H�u − g

�j��u�� − H�u − rn − g


�j��u��


= 

i=1

n−1



�i

�
�u

��i��

�1 − g

�i���u


��i���
�H�rn − u


��i�� − H�− u

��i���

	�
j=1

j�i

n−1

�H�u

��i� − g


�j��u

��i���

− H�u

��i� − rn − g


�j��u

��i���
 , �C3�

and �u

��i�
 are the solutions of the equation,

x − rn − g

�i��x� = 0. �C4�

Analogously, we have

p

�2��rn� = �

0

rn

du�
�u − rn�

i=1

n−1

��u − g

�i��u − rn��

	�
j=1

j�i

n−1

�H�u − g

�j��u − rn�� − H�u − rn − g


�j��u − rn��


= 

i=1

n−1



�i

�
�u

��i� − rn�

�1 − g

�i���u


��i� − rn��
�H�rn − u


��i�� − H�− u

��i���

	�
j=1

j�i

n−1

�H�u

��i� − g


�j��u

��i� − rn��

− H�u

��i� − rn − g


�j��u

��i� − rn��
 , �C5�

where �u

��i�
 are the solutions of the equation,

x − g

�i��x − rn� = 0. �C6�

We do not report p

�3��rn� because the expression is too long.
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