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Currently, simulation is usually used to estimate network degree distribution P�k� and to examine if a
network model predicts a scale-free network when an analytical formula does not exist. An alternative Mar-
kovian chain-based numerical method was proposed by Shi et al. �Phys. Rev. E 71, 036140 �2005�� to compute
time-dependent degree distribution P�k , t�. Although the numerical results demonstrate a quick convergence of
P�k , t� to P�k� for the Barabási-Albert model, the crucial issue on the rate of convergence has not been
addressed formally. In this paper, we propose a simpler Markovian iterative method to compute P�k , t� for a
class of growing network models. We also provide an upper bound estimation of the error of using P�k , t� to
represent P�k� for sufficiently large t, and we show that with the iterative method, the rate of convergence of
P�k , t� is root linear.
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I. INTRODUCTION

It has been observed that additions of nodes and edges in
most real �and modeled� growing networks are random, but
follow certain rules. For example, two basic network-
generating mechanisms for the Barabási-Albert �BA� model
are growth and preferential attachment �1�. At each time step,
these rules are applied only according to the current state of
the network, so that the state of the network at the next time
step can be determined probabilistically, as in �1–5�. This
shows that the evolution of growing networks is intrinsically
Markovian, i.e., the future evolution of the network depends
only on the current network state. Furthermore, the degree
distribution as a key network topological measure corre-
sponds to the steady-state probabilities of a set of Markovian
chains. Thus, Markovian chains provide a convenient mod-
eling and analysis framework for growing networks. Shi et
al. �6� first discovered this relationship between a growing
network and a set of Markovian chains. They also developed
an efficient rectangle-iterative algorithm to compute time-
dependent network degree distributions and show numeri-
cally that the degree distributions can stabilize when the
computation time is sufficiently long. However, no rigorous
discussion is provided in �6� to quantify how fast the time-
dependent degree distribution of a certain network converges
to the real steady-state degree distribution.

In this paper, we examine some questions arising within
the Markovian chain framework for a general class of grow-
ing network models. We mainly provide an explicit expres-
sion of the time-dependent degree distribution and an upper
bound estimation on the time �or the network size� required
for it to converge to the steady-state degree distribution. This
solves the open problem left in �6� and provides an efficient
and reliable method to compute the real steady-state degree
distribution for a general class of growing networks.

II. DEGREE-GROWING MARKOVIAN CHAINS

Consider a general class of growing networks in which
multiple edges and loops are not permitted. Suppose that the
initial network consists of m0�m�1 nodes which are num-
bered as −m0 , . . . ,−1, where m is the minimum degree of all
the nodes in the network except those of the initial network.
Let nk be the number of initial nodes with degree k and k0 be
the sum of the degrees of all the initial nodes. Let ki�t� be the
degree at time t of the node added at time step i. For i=
−m0 , . . . ,−1, ki�t� represents the degree of an initial node at
time t. Obviously, ki�t� is nondecreasing and can increase at
most by 1 at each time step. It is not difficult to see that ki�t�
for any i is a nonhomogeneous Markovian chain �6� with
transition probability

P�ki�t + 1� = l�ki�t� = k� = �1 − f i�k,t� , l = k

fi�k,t� , l = k + 1

0, otherwise.
	 �1�

Here, f i�k , t� is the conditional probability that the degree of
node i becomes k+1 at time step t+1, given that the degree
was k at time t, i.e., the degree of node i will increase by 1 at
time step t+1. Let �i�h� be the probability that the number of
edges node i obtained is h when it is first introduced into the
network, where 0�h� i−1+m0. Clearly, f i�k , t�, �i�h�, and
Eq. �1� are determined by the network-generating mecha-
nism of a growing network model and, together with the
initial network, they completely define the Markovian chain
for node i. The family of Markovian chains �ki�t�� for all
nodes represents a growing network model completely. We
call �ki�t�� the degree-growing Markovian chain �DGMC� for
the fact that it captures the degree evolution of every indi-
vidual node of a growing network model.

According to their network-generating mechanisms, we
can easily define the DGMC for many growing-network
models discussed in the existing literature. For example:

Growth and degree-preferential model. This is the first
growing network model �1� and is commonly referred to as
the BA model. At each time step, a new node with m edges is*Corresponding author; lgtliulm@polyu.edu.hk
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added to the network and is linked to m different existing
nodes. The probability that an edge is linked to an existing
node with degree ki is ��ki�=ki /
 jkj. For more complete
definition of the model, we add the following requirement:
the initial network consists of m0�m�1 nodes with k0 be-
ing the sum of the degrees of all the initial nodes. For the
model, �i�m�=1, because the number of new edges brought
in by each new node is fixed at m.

For the BA model, the probability that a new edge is
linked to an existing node with degree k is ��k�. Approxi-
mately, the probability that one of m new edges is linked to
an existing node with degree k is m��k�=k / �2t+k0 /m�. But
it can be shown that the error tends to zero as t→�. In fact,
consider a model with the same initial network and �i�m�
=1 but allowing multiple edges. By the degree-preferential
rule, the probability that an existing node i with degree k will
receive l edges from a new node is Cm

l ���k��l�1−��k��m−l.
Clearly, the probability that node i with degree k in the BA
model will receive a new edge at step t+1 is not smaller than
the probability that the corresponding node in the above
model receives one edge, i.e., Cm

1 ��k��1−��k��m−1=m��k�
−o�1 / t�, and is not greater than the probability that the cor-
responding node in the above model receives at least one
edge, i.e., 
l=1

m Cm
l ���k��l�1−��k��m−l=1−Cm

0 �1−��ki��m

=m��k�−o�1 / t�. Thus, for the BA model, the conditional
probability is given by f i�k , t�=k / �2t+k0 /m�−o�1 / t� for all
i.

Copying growing model. For modeling citation networks,
Krapivsky and Redner �7� proposed copying instead of citing
popular papers as the network growing mechanism. In this
model, suppose that the initial network consists of a single
node. At each time step, a target node is chosen randomly
from the existing nodes to be copied to make the new node,
and the new node links to the target node as well as to all the
ancestor nodes of the target node. Let ki�t� represent the in-
degree of node i after time step t. Because a new node has no
in-degree, we have �i�h�=�h0. The probability that an exist-
ing node is randomly copied is 1 / �t+1�. Consider a node
with in-degree k. If it is chosen to be copied or is one of the
k nodes with an edge directed to the node being copied, the
in-degree of this node will increase by 1 at time step t+1.
Hence, the conditional probability f i�k , t�= �k+1� / �t+1� for
all i.

Saturated growing model. Although the number of edges
added each time increases in some observed real networks,
the increase cannot continue forever and will likely slow
down at some point. We use �M�1−e−ri��+1 to replace the
constant m in the BA model, where M �2 is an upper bound-
ary, r gives the accelerating rate, and �x� represents the inte-
gral part of x; hence, �i�h�=�h��M�1−e−ri��+1� , i ,h=1,2 , . . ..
We call this model a saturated model. In this model, the total
number of new edges added after time step t is �0

t ��M�1
−e−rx��+1�dx; thus, m��k�= ��M�1−e−rt��+1�k / (2�0

t ��M�1
−e−rx��+1�dx+k0). Using a similar argument as above for
the BA model, we can show that f i�k , t�= ��M�1−e−rt��
+1�k / (2�0

t ��M�1−e−rx��+1�dx+k0)−o�1 / t� for all i for the
saturated growing model.

III. TIME-DEPENDENT DEGREE DISTRIBUTION

Now, we focus on growing network models with f i�k , t�
� f�k , t�, e.g., models with the degree-preferential mecha-

nism. We first write the following master equation for the
degree distribution of node i defined by Eq. �1�:

P�k,i,t + 1� = f�k − 1,t�P�k − 1,i,t� + �1 − f�k,t��P�k,i,t� ,

�2�

where P�k , i , t�= P�ki�t�=k�. The initial conditions are
P�k , i , i�=�i�k�, for i�1, and �kl, for i�1, where l is the
degree of initial node i.

Let the time-dependent degree distribution be defined by
P�k , t�= �1 / �t+m0��
iP�k , i , t�. Summing over i on both
sides of Eq. �2� and using the initial conditions, we have

�t + 1 + m0�P�k,t + 1� − �t + m0��1 − f�k,t��P�k,t�

= �t + m0�f�k − 1,t�P�k − 1,t� + �t+1�k� . �3�

Lemma 1. �Solution of the difference equation �8�� When
t�1, the difference equation at+1−htat=dt has a closed-form
solution

at+1 = 

i=1

t

hi�a1 + 

l=1

t

dl

j=1

l

hj
−1� . �4�

Now, we can give a recursive formula of the time-
dependent degree distribution.

Theorem 1. For the DGMC of a growing network model
with f i�k , t�� f�k , t�, let hi=min�h ��i�h��0� and m
=min�hi�. Then the time-dependent degree distribution of the
network may be computed recursively as follows: For k=m
−1,

P�m − 1,t� =
nm−1

t + m0


i=0

t−1

�1 − f�m − 1,i�� ,

for k�m, P�k ,0�=nk /m0,

P�k,1� =
m0

1 + m0
�f�k − 1,0�P�k − 1,0� + �1 − f�k,0��P�k,0��

+
�1�k�
1 + m0

,

and for t�2,

P�k,t� =
1 + m0

t + m0


i=1

t−1

�1 − f�k,i���P�k,1�

+ 

l=1

t−1
�l + m0�f�k − 1,l�P�k − 1,l� + �l+1�k�

�1 + m0�

j=1

l

�1 − f�k, j�� � .

�5�

Proof. By definition, only nodes in the initial network
may have degree m−1. To maintain degree m−1 of some
initial nodes unchanged up to t, no edge can be linked to
these nodes in all t−1 steps. Hence, we obtain P�m−1, t�.
For k�m, P�k ,0�=nk /m0 is obvious. Letting t=0, we obtain
P�k ,1� from Eq. �3�. Applying Lemma 1 to Eq. �3�, we ob-
tain Eq. �5� for P�k , t�. This completes the proof.
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Next we give a sufficient condition of the existence of the
steady-state degree distribution. We also give the conditions
under which a modeled network exhibits a scale-free topo-
logical structure. We need the following lemma:

Lemma 2. �Stolz-Cesáro theorem �9�� Let �yn� be a mono-
tone increasing sequence with yn→�; we have
limn→��xn /yn�= l if limn→���xn+1−xn� / �yn+1−yn��= l, where
−�� l�+�.

Corollary 1. For a DGMC model with f i�k , t�� f�k , t�,
if limi→� �i�h�=��h� is a proper distribution and
limt→� tf�k , t��F�k��0, the steady-state network degree
distribution exists, i.e., the DGMC is stable. Furthermore, let
j�m be the minimum h such that ��h��0, we have the
following recursive expressions:

P�j� � lim
t→�

P�j,t� =
��j�

1 + F�j�
� 0,

P�k� =
F�k − 1�P�k − 1� + ��k�

1 + F�k�
, k � j . �6�

Proof. For k� j, because limi→� �i�h�=��h�, there are
only finitely many nodes with degree k in the network, and
hence limt→� 
iP�k , i , t���. Thus,

P�k� = lim
t→�

1

t + m0



i

P�k,i,t� = 0.

In Eq. �5�, let yt= ���1+m0� / �t+m0��
i=1
t−1�1− f�k , i���−1 and

xt= P�k , t�yt. We have

xt+1 − xt

yt+1 − yt
=

�t + m0�f�k − 1,t�P�k − 1,t� + �t+1�k�
1 + �t + m0�f�k,t�

.

For k= j, using Lemma 2 and by conditions in Corollary 1
and limt→� P�j−1, t�=0, we get

P�j� = lim
t→�

P�j,t� = lim
t→�

xt+1 − xt

yt+1 − yt
=

��j�
1 + F�j�

.

Similarly, for k� j, by induction we have

P�k� =
F�k − 1�P�k − 1� + ��k�

1 + F�k�
.

This completes the proof.
Corollary 2. For a stable DGMC model with f i�k , t�

� f�k , t�, if there is a constant J such that ��h�=0 when h
�J and F�k�=	k+B, where 	, referred to as the dynamic
exponent, and B are two constants, we have:

�1� The network is scale-free when 0�	�1 with degree
distribution �for sufficiently large k�J�

P�k� � �k + �B/	��−�1+1/	�. �7�

�2� The network is random when 	=0 and B�0 with

P�k� �
1

B
e−k/B. �8�

Proof. Without loss of generality, let m=1. Substituting
F�k�=	k+B into Eq. �6� and noting that the gamma function


�k��
�k+��k−� for sufficiently large k�J and limj→��1
+ �x / j�� j =ex, we have, for 	�0,

P�k� =
	�k − 1� + B

1 + 	k + B
P�k − 1�

=

�k + �B/	��


�k + �B/	� + 1 + �1/	��
P�1� � �k + �B/	��−�1+1/	�,

and for 	=0

P�k� =
B

1 + B
P�k − 1� =

1

B
� B

1 + B
�k

=
1

B
��1 +

k/B
k
�k�−1

�
1

B
e−k/B.

This completes the proof.
Remark. Using the first-passage probability from the Mar-

kovian chain theory, Hou et al. also obtained similar results
�10�. A simpler and more direct proof using the limit theorem
of difference equations is given in �11�.

IV. ERROR AND THE RATE OF CONVERGENCE

We have shown that based on the DGMC framework, one
can easily write down �i�h� and f�k , t� from network-
generating mechanisms and then determine if a model gen-
erates a scale-free network by checking them against a set of
simple conditions. The degree exponent can also be easily
determined explicitly. If we also need the detailed numerical
values of the degree distribution P�k� for a network model,
we can use the analytical expressions to compute P�k , t� ac-
curately and efficiently for any t. But a more important ques-
tion remains, that is, we need to know how quickly the time-
dependent degree distribution P�k , t� converges to P�k� in
order to draw conclusions confidently from observations of
finite networks. We tackle this problem next.

Lemma 3. �Product estimation �12�� For large enough t,
the product



i=1

t �1 −
Ak

i
� = O�1�kt

−Ak, �9�

where O�1�k is a bounded constant depending only on k.
Now we may give the upper bound estimation of the error

of using P�k , t� to represent P�k� when P�k , t� indeed con-
verges to P�k�.

Theorem 2. For a stable scale-free network model, when t
is large enough, we have the following upper bound:

�P�k,t� − P�k�� � �P�m,t� − P�k�� � �t

= �ct−�	m+B�, for m � 1

ct−�	�m+1�+B�, for m � 1,
� �10�

where �t is the error at t, m=min�hi�, hi=min�h��i�h��0�,
exponent 	 and constant B are defined in Corollary 2, and c
is an unknown constant.

Remark. Obviously, sequence �t converges to zero, and
limt→� �t+1 /�t=1. By definition �13�, Theorem 2 shows that
the rate of convergence of P�k , t� by the Markovian iterative
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method is R linear �R stands for “root”�. Because each itera-
tion is very fast, Theorem 2 guarantees that our method is
reliable and efficient for practical applications.

Let S�k , t�=
iP�k , i , t�= �t+m0�P�k , t� and set 
k�t�
=S�k , t�− �t+m0�P�k�. To give an upper bound to the error of
using P�k , t� to approximate P�k�, we need the following
three lemmas:

Lemma 4. For a stable scale-free network model, we have,
for sufficiently large t,


k�t� � 

i=1

t−1

�1 − f�k,i���
k�1� + 

l=1

t−1

�f�k − 1,l�
k−1�l��

�

j=1

l

�1 − f�k, j��−1� , �11�

where 
k�1� is a constant and


m−1�t� = �Om−1�1�t−�	�m−1�+B�, m � 1

0, m � 1.
� �12�

Proof. Noting that limt→��t+m0�f�k , t�=F�k� and
limi→� �i�k�=��k�, it is easy to get, from Eqs. �3� and �6�


k�t + 1� − 
k�t� = S�k,t + 1� − S�k,t� − P�k�

= f�k − 1,t�S�k − 1,t� − f�k,t�S�k,t� + �t+1�k�

− P�k�

= f�k − 1,t�
k−1�t� − f�k,t�
k�t� + �t + m0�

��f�k − 1,t�P�k − 1� − f�k,t�P�k��

+ �t+1�k� − P�k�

� f�k − 1,t�
k−1�t� − f�k,t�
k�t� .

Solving the above difference equation, we get Eq. �11�.
When m�1, from the condition in Theorem 2, f�k , t���	k
+B� / t; using Lemma 3 and noting that P�m−1�=0 and

m−1�t�=nm−1
i=0

t−1�1− f�m−1, i��, when m�1, f�m−1, t�=0;
hence, Eq. �12� is obvious.

Lemma 5. For any k�m in a stable scale-free network,
when t is large enough, we have


k�1� + 

l=1

t
f�k − 1,l�
k−1�l�



j=1

l

�1 − f�k, j��

= �O�t	� , m � 1

O�1� , m � 1.
� �13�

Proof. First, we prove the case of k=m. When m�1, by
Eq. �12�, using f�k , t���	k+B� / t and Lemma 3, for the left-
hand side in Eq. �13�, we have


k�1� + 

l=1

t
f�k − 1,l�
k−1�l�



j=1

l

�1 − f�k, j��

= 
k�1� +
�	�m − 1� + B�O�1�m−1

O�1�m


l=1

t−1
l−1l−�	�m−1�+B�

l−�	m+B�

= 
k�1� + O�1�m

l=1

t−1

l	−1 = O�t	� .

When m�1, because the summation in Eq. �11� is zero, this
shows that Eq. �13� holds for k=m. We leave the case of k
�m to the proof of the next lemma.

Lemma 6. For any k�m in the stable scale-free network,
when t is large enough, there is a positive constant Mk such
that


k�t� � �Mkt
−�	�k−1�+B�, m � 1

Mkt
−�	k+B�, m � 1.

� �14�

Proof. First, we prove the case of k=m. When m�1, by
Eqs. �9�, �11�, and �13�, we have


m�t� = O�1�mt−�	m+B�t	 � Mmt−�	�m−1�+B�.

Now, suppose that k�m holds. Similarly, we first have

k�t�=O�1�kt

−�	k+B�t	. Using it, we can prove Lemma 5 for
k+1, and by Eqs. �9�, �11�, and �13�, we have


k+1�t� = O�1�k+1t−�	�k+1�+B�t	 � Mk+1t−�	k+B�.

When m�1, the proof is the same except we cancel the
factor t	. Thus, Lemma 6 also holds for k+1.

Proof of Theorem 2. Because m is the minimum of net-
work degree except the initial nodes, by Lemma 6, and tak-
ing c=maxk Mk, we have

�P�k,t� − P�k�� � 
k�t�t−1 � �Mkt
−�	k+B�, m � 1

Mkt
−�	�k+1�+B�, m � 1

�
� �ct−�	m+B�, m � 1

ct−�	�m+1�+B�, m � 1.
�

This completes the proof of the theorem.

V. NUMERICAL EXAMPLES

We now apply our results to a few network models. For
the BA model, since �i�h����m�=1 and F�k�=k /2, the
steady-state degree distributions of the model exist and pre-
dict a scale-free network with �=3. For numerical results,
we set m0=3, n1=2, and n2=1 in the initial network. Letting
m=2, we have 	=1 /2, B=0, j=m=2, and P�2�=1 /2 ex-
actly. Table I gives the numerical comparisons. Clearly, for
t=103, we have 0.000 927�c�10−3	m, and hence taking c
=1 the upper bound estimation of the error is t−1.

For the saturated model, since limi→� �i�h�=�Mh and

TABLE I. The BA model.

Time t 103 104 105

Method in �6� 0.501001 0.500100 0.500010

Formula �5� 0.499073 0.499902 0.499990

Real errors of �6� 0.001001 0.000100 0.000010

Real errors of Eq. �5� 0.000927 0.000098 0.000010

Upper bounds 10−3 10−4 10−5
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F�k� = lim
t→�� t��M�1 − e−rt�� + 1�k

2�
0

t

��M�1 − e−rx�� + 1�dx + k0

+ o�t�� =
k

2
,

the steady-state degree distributions of the model exist and
are the same as those of the BA model with the constant M.
When m0=3, n1=2, and n2=1 in the initial network, taking
M =3 and r=0.01, we have 	=1 /2, B=0, m=1, j=M =3,
and P�3�=2 /5 exactly. Numerical comparisons are given in
Table II. For t=104, we have 0.003 095�c�10−4	�m+1�, and
hence taking c=31 the upper bound estimation of the error is
31t−1.

For the copying model, since �i�h����0�=1 and F�k�
=k+1, the steady-state degree distributions of the model ex-
ist and predict a scale-free network with �=2. Obviously, we
have 	=1, B=1, j=m=0, and Pin�0�=1 /2 exactly. Some
numerical results are given in Table III.

The above numerical results show that although the rates
of convergence are consistent with the predictions of Theo-
rem 2, the real errors for different models vary substantially
because of the time dependence of the degree distributions
�11�. For the BA model, the errors are caused by the initial
network only. The errors of the saturated model are caused
by both the initial network and the varying m; hence, it has
larger errors. The degree distribution of copying model is
independent of time, so its error equals zero. In fact, by
the mean-field �1� argument we have �ki /�t= �ki+1� / �t+1�
and ki�i�=0. Then, ki�t�= ��t+1� / �i+1��−1 and P�ki�t��k�
= P�i� �t+1� / �k+1��=1− �1 / �k+1��, and hence the density
function is f in�k , t�=�P�ki�t��k� /�k=1 / �k+1�2. The degree
distribution Pin�k , t�=�k

k+1�x+1�−2dx=1 / �k+1��k+2� is thus
independent of time.

VI. DISCUSSION

Based on a general Markovian chain framework, we pro-
vide an exact expression of the time-dependent degree dis-
tribution for a general class of growing network models. This
expression enables the approximation of the steady-state de-

gree distribution iteratively. We show that the error of the
iterative method converges to zero at least R linearly.

We also provide some general criteria for judging whether
a set of network-generating mechanisms can ensure the ex-
istence of the steady-stage degree distribution and whether
the steady-stage degree distribution is scale-free. For mod-
eled networks, the criteria can be easily verified. The criteria
can also be applied to observable real networks. The criteria
translate to two intuitive conditions: �1� the number of edges
each node has when it is first introduced into a network can
stabilize and be characterized by some finite distribution, and
�2� the probability that a node will receive an edge when new
edges are introduced into the network is proportional to the
degree of the node and inversely proportional to the network
size. When the two conditions can be verified for a real net-
work, it is necessarily a scale-free network.

Our results show that Markovian chain provides a power-
ful framework for theoretical analysis of complex networks.
We may similarly discuss the degree-growing Markovian
chain of the weighted network, the degree-evolving Markov-
ian chain �birth-and-death process� of evolving networks
�14�, and the other types of Markovian chains for different
complex networks �15�.

The unknown constant c in the error bound involves sev-
eral limiting processes that depend on specific network-
generating mechanism and initial network conditions. Find-
ing it for any specific model remains a challenging open
problem.

Some types of networks that the current Markovian chain
framework cannot handle are when the network-evolving
rules depend on the age of nodes and/or geography location.
How to build the network connectivity theory for these types
of networks is still an open problem.
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