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Two important enhanced sampling algorithms, simulated �ST� and parallel �PT� tempering, are commonly
used when ergodic simulations may be hard to achieve, e.g., due to a phase space separated by large free-
energy barriers. This is so for systems around first-order phase transitions, a case still not fully explored with
such approaches in the literature. In this contribution we make a comparative study between the PT and ST for
the Ising �a lattice gas in the fluid language� and the Blume–Emery–Griffiths �a lattice gas with vacancies�
models at phase-transition regimes. We show that although the two methods are equivalent in the limit of
sufficiently long simulations, the PT is more advantageous than the ST with respect to all the analysis per-
formed: convergence toward the stationarity; frequency of tunneling between phases at the coexistence; and
decay of time-displaced correlation functions of thermodynamic quantities. Qualitative arguments for why one
may expect better results from the PT than the ST near phase-transitions conditions are also presented.
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I. INTRODUCTION

A keystone procedure to obtain macroscopic thermody-
namics quantities �e.g., energy, specific heat, magnetization,
phase-transition points, etc.� of statistical systems is to per-
form appropriate averages over their microscopic configura-
tions. In practice, however, such systems usually have a pro-
hibitive number of states for a full covering. Therefore,
approaches relying on proper representative samplings must
be considered and so Monte Carlo tools become fundamental
for calculations. By a proper sampling we mean that for a
given instance a method should satisfactorily: �i� represent
the way the system actually evolves throughout the different
microstates �among the whole set S of microstates in the
system�; and �ii� generate a set � of visited microstates that
indeed gives a good picture of all the relevant microstates
which describe the problem at that particular situation.

Within this framework, an important issue is to know un-
der what conditions the above criteria are fulfilled. For ex-
ample, biased values for physical quantities may arise when
the system displays local free-energy minima and the dynam-
ics used to generate the microscopic configurations either is
not able to cross such barriers or it does so, but only after too
long times. Consequently, we have broken ergodicity for fi-
nite �even large� simulations �1,2�, leading to metastability
and thus to poor estimates for the system properties due to a
nonrepresentative �. Metastability and broken ergodicity ap-
pear in several problems such as spin glasses, protein fold-
ing, biomolecules, and random search, to name just a few
�3�. Moreover, they are not restricted only to complex sys-
tems, also being present in simpler contexts like in lattice-
gas models displaying first-order phase transitions �4–6�. As
noted, in such case the sampling dynamics may present dif-
ficulties to cross the energetic barriers. Then, the system can
develop hysteresis by passing back and forth the phase fron-
tiers as we change the parameter control �4�.

Different alternative ideas have been considered to over-
come �7� or even circumvent �5,6� entropic barriers, thus
restoring the ergodic behavior. In particular, enhanced sam-
pling algorithms, such as parallel tempering �PT� �8–10�—
also known as multiple replica exchange—and simulated
tempering �ST� �11–13�, have recently attracted a lot of at-
tention, specially due to their simplicity and generality com-
pared to other Monte Carlo algorithms �4,5�. Briefly, in the
PT method, microscopic configurations in higher tempera-
tures are used to assure an ergodic free walk in lower tem-
peratures: one simulates replicas of the same system at dis-
tinct T’s, allowing the exchange of temperature between the
replicas. For the ST, on the other hand, a unique replica is
considered, however, the system occasionally undergoes
temperature changes along its evolution.

Given the different tempering implementation in the two
approaches, a natural question is how they compare to each
other �14–16�. For example, the rate of temperatures switch-
ing is higher for the ST �14–16�. So, usually one could ex-
pect a larger number of distinct phase space regions visited
when using the ST, thus a possible advantage over the PT.
But as we discuss in Sec. II C, near phase-transition condi-
tions this is not always the case. Therefore, it still an open
query if indeed one method is systematically superior in all
situations.

With the above in mind, here we compare the PT and ST
efficiencies when applied to phase transitions, specially to
the first-order case. In this respect, we should observe the
following. In principle, for a true first-order transition, i.e.,
for systems in the thermodynamic limit, the energy discon-
tinuous gap would lead to a small probability of accepting
exchanges between the PT replicas �8�. But in concrete cal-
culations, one is always dealing with finite sizes L, where the
actual thermodynamics properties are described by continu-
ous functions. Also, these functions are smooth and tend to
the correct asymptotic behavior �for L→�� only if the state
space is properly sampled �6,7�, what has been shown to be
the case for the PT �4�. Thus, in practice the above men-
tioned difficulty for the PT is not an issue and the method is
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indeed an appropriate tool to study first-order transitions, as
discussed and exemplified in different works �4,17,18�.
Hence, the PT and ST �this latter rarely considered in such
regime, few exceptions being Ref. �19�� can be analyzed at
the same footing. So, possible convergence differences can
be associated just to the way the algorithms generate the sets
�, and not to the approaches eventual intrinsic distinctions
�recall that conceptually they are similar �20��.

In this contribution we first revisit the simplest Ising spin
model displaying a well understood second order phase tran-
sition. This is an instructive example because in a recent
work �15�, it has been shown that through an improved ver-
sion of the ST, the frequency of successful exchanges �mea-
sured in terms of transition decay rates� is higher for the ST
than for the PT method. However, the comparison was not
carried near the critical temperature. By analyzing time cor-
relation functions, defined as �with � � denoting time aver-
ages �21��

Cw��� = ��w�t� − w̄��w�t + �� − w̄��/�w
2 , �1�

for w relevant thermodynamic quantities �like energy and
magnetization� of mean w̄ and variance �w, one no longer
gets a better performance of the ST around Tc. In fact, we
find that the PT leads to faster decaying C’s.

Then, we move to the main focus of this contribution: the
harder situation of strong first-order phase transitions, where
the use of one-flip algorithms such as Metropolis often gives
rise to poor numerical simulations. As the specific case study,
we consider the lattice gas model with vacancies �a spin-1
model in the magnetic systems jargon� �22�. This class of
problems has been extensively studied under different alter-
native methods �4–6,23,24�. Hence, the many available re-
sults can help to benchmark those obtained from the PT and
ST. We show that although both, PT and ST, lead to equiva-
lent good results in the limit of long simulations, the PT
displays a faster convergence toward stationarity. Moreover,
for the PT, the tunneling between different phases at the co-
existence is more frequent and the generated microscopic
configurations uncorrelate faster.

The work is organized as the following. In Sec. II we
review the PT and ST methods, discussing distinct imple-
mentations. We also give reasons why the PT may outper-
form ST near phase-transition conditions. In Sec. III we con-
sider a spin system displaying a second-order phase
transition. The lattice-gas model and its comparative study
with the PT and ST methods—addressing a first-order phase
transition—are presented in Sec. IV. Finally, in Sec. V we
draw our last remarks and the conclusion.

II. PT AND ST SAMPLING ALGORITHMS

The central idea behind a tempering enhanced sampling
algorithm is try to guarantee ergodicity by means of appro-
priate temperature changes during the simulations, thus al-
lowing efficient and uniform visits to a fragmented multiple
regions phase space �20�. Suppose we shall study a system at
a given T0. We assume T1=T0 and define a set of N distinct
temperatures T1�T2� . . . �TN, with �T=TN−T1. There are
different ways to implement tempering �25�, two important

ones being the PT and ST, which we describe next.

A. Parallel tempering

The PT approach combines a standard algorithm �e.g.,
Metropolis� with the simultaneous evolution of N copies of
the system �each at a different Tn�, occasionally allowing the
replicas to exchange their temperatures. Fixing relevant pa-
rameters, the method is implemented by first running Meq
times �to assure equilibration of all the N copies� a two parts
procedure, �a� and �b�, discussed below. After that, for each
�a�-�b� composite MC step �repeated Ma,b times� we calcu-
late the thermodynamics quantities at the temperature of in-
terest T=T1. The average over the Ma,b partial values give
the final results. In fact, we further improve the calculations
and estimate the statistical deviations by performing this pro-
cedure �after relaxation� Mrep times, so that in total the num-
ber of �a�-�b� MC steps is Mtot=Meq+Ma,b�Mrep.

In �a�, for each replica �at a distinct Tn�, a site lattice l is
chosen randomly. Then, its occupation variable 	l may
change to a new value 	l� according to the Metropolis pre-
scription P=min�1,exp�−
�H�� �26�, where �H=H�	��
−H�	� is the energy variation due to the occupation change.
This is done until a full lattice covering and the process is
repeated all over again M times. �b� In the second part, ar-
bitrary pairs of replicas �say, at Tn� and Tn� and with micros-
copy configurations 	� and 	�� can undergo temperatures
switchings, with probability �
n= �kBTn�−1�

pn�↔n� = min�1,exp��
n� − 
n���H�	�� − H�	����� . �2�

The PT algorithm is schematic represented in Fig. 1�a�.
Although the above prescription is rather simple, few

technical aspects should be observed. First, it is necessary to
find a good compromise between the p’s values �which in-
crease with �T /N decreasing� and the replicas number N.
This is so to guarantee relatively frequent exchanges, while
keeping the computational efforts low. Hence, extra proce-
dures have been proposed �18,27–30�. Here we use only the
ones explained above. However we mention that for our
present systems, one of us has tested some of these extra
implementations �4� �always assuming arbitrary n�’s and n�’s
for the step �b� above�, not finding any significant difference.
Second, the system size �L� also imposes restrictions on the
N’s. For small systems, a few number of replicas is enough
to assure rapid convergence. On the other hand, by increas-
ing L the exchange probabilities �Eq. �2�� decreases, so the
inclusion of extra copies becomes necessary. Such care has
been explicit taken in our simulations. Finally, we observe
that most works that use the PT method implement the
switching attempts only between adjacent replicas �i.e., at
Tn� and Tn�=n�+1�, in principle because the probability of ex-
changes decreases for increasing Tn�−Tn�. Nevertheless, it
has been shown �4� that nonadjacent exchanges are essential
to speed up the crossing of high free-energy barriers �what
we discuss in more details in Sec. II C�. Therefore, here we
will allow exchanges between first ��=1�, second ��=2�, etc,
neighbor replicas, meaning those between Tn and Tn+�.
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B. Simulated tempering

For the ST, a single realization of the model is considered,
however, during the dynamics its temperature can assume the
different values Tn’s. The implementation is similar to that
for the PT in Sec. II A, but applied only to one copy of the
system. Therefore, the previous step �b� now reads: A change
Tn�→Tn� may take place for the system according to the
probability �with 	 its configuration�

pn�→n� = min�1,exp��
n� − 
n��H�	� + �gn� − gn���� . �3�

Note that like for the PT, for the ST we will also allow
nonadjacent temperatures changes. The ST algorithm is illus-
trated in Fig. 1�b�.

In Eq. �3�, pn�→n� depends on the weights g’s. Moreover,
for a better sampling, the evolution should uniformly visit all
the established temperatures. This is just the case when gn
=
nfn, with fn the system free energy at Tn �13,14,16�. To
obtain f is not an easy task. For instance, in Ref. �15� its
exact �numerical� values follows from fn=−ln�Zn� / �V
n�,
with the partition function Zn computed by an involving re-
cursive procedure �42�. Here, V is the system volume, which
in a regular square lattice reads V=L2. In our examples we
will consider this same protocol, but using a simpler numeri-
cal implementation for Zn. Indeed, in the thermodynamic
limit

Zn = ��n
�0��L, �4�

where �n
�0� is the largest eigenvalue of the transfer matrix T at

Tn �for details see, e.g., Ref. �31��. By its turn, ��0�

= �T�Sk ,Sk�� / ��Sk,Sk+1
� can be calculated from straightforward

Monte Carlo simulations �31�, where Sk is the lattice k-layer
configuration 	1,k ,	2,k , . . . ,	L,k and �Sk,Sk+1

=1 �=0� if the k
and k+1 layers are equal �different�. A central point is that in
principle Eq. �4� would hold true only for infinite size sys-
tems. However, if L is not too small, the above relation is
extremely accurate and for any practical purpose gives the
correct Zn, as we show in the next Section. Such way to
determine pn�→n� will be named the ST �exact� free-energy
method, ST-FEM.

Finally, we observe that approximations for g are equally
possible. One implementation being �13�

gn+1 − gn 	 �
n+1 − 
n��Un+1 + Un�/2, �5�

with Un= �Hn� �n=1,2 , . . . ,N� the average energy at Tn. The
U’s can be evaluated from direct auxiliary simulations. For
completeness we will also consider this ST approximated
method, which we call ST-AM.

C. PT and ST methods near phase-transition regimes

The sampling of a statistical system when the phase space
has a complicated landscape full of free-energy valleys and
hills �32� is particularly delicate: one needs to uniformly visit
different regions of S �33� �those more important for the
given parameters�, but which are separated by many entropic
barriers �27�. In this case, the particular way in which a
method evolves throughout the microstates space to generate
�—even with the use of enhanced procedures—may cru-
cially determine the final outcome of sampling. For instance,
nonergodic “probing” of the multiple domains �34� can pre-
vent the proper relaxation to equilibrium.

The previous comments fit perfectly well first-order phase
transitions, where the minima of the free energy are sepa-
rated by large barriers. Nevertheless, we observe that for
second-order phase transitions, the divergence of time and
spatial length correlations creates strongly correlated con-
figurations �35�. It leads to a certain clusterization of relevant
parts of S at the critical point, with independent and unbiased
� difficult to obtain. So, although associated to different
mechanisms, near both first and second order transitions we
can expect a “fragmented” phase space. Hence, even if the
PT and ST are not crucially distinct in usual situations �in
fact, the ST being slight better than the PT in few instances
�15��, here we argue qualitatively that in such cases the PT
can outperform the ST.

Thus, for the above contexts of multiple basins �36�, the
Fig. 2 schematically represents “stretches” of typical dy-
namical paths generated by the ST and PT algorithms. The
successively visited 	’s until leaving the domain—delimited
by high local free-energy barriers �or cluster walls�—can
form, due to a complex topography, a very sinuous trajectory
on that particular region of S.

Thus, consider first the ST, Fig. 2�a�. The initial mi-
crostate 	0 evolves �for T=T1� in a very tortuous path, but
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FIG. 1. Schematics of the �a� PT and �b� ST implementations. In
this example, there have been two temperatures exchanges for the
PT �T1↔T2 and T3↔T5� and one temperature change for the ST
�Ti→Tj�.
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toward the border of the domain, reaching 	a after M steps.
Then, it undergoes a temperature change T1→T3 and again
evolves M steps getting to 	a�, but in a more straight trajec-
tory because the higher T �note if there was no temperature
change, the path would follow the dashed line displayed in
the plot�. Finally, there is a second successful attempt to
change T, T3→Tj 
T3, and after M steps the system ends up
very close to the barrier separating the basins.

In Fig. 2�b� we observe the PT evolution, where just one
successful temperature exchange takes place �between the
only two replicas depicted�. The microstate 	b �	d� is ob-
tained from 	0 after 2M steps at T=T1 �T=Tj�. Obviously,
	a� in the ST must be in average closer to �farther from� the
domain border than 	b �	d� in the PT implementation. Then,
there is an exchange of temperatures and the evolution of 	d
at T1, after m�M steps, already allows the replica to cross
the basin barrier to the microstate 	d�. Furthermore, after
�t=M the state 	b at Tj leads to a 	b� close to the border.

The above illustrated dynamics—although certainly not
extinguishing all the possibilities—is already representative
of why the PT can be more efficient in sampling a space full
of energetic valleys and hills �e.g., at phase-transition re-
gimes�. The main reasons can be summarized as the follow-
ing: �i� in the PT, the existence of replicas at all the Tn’s in
the interval �T generates paths which more quickly can ap-
proach the domain borders, e.g., 	0→	d at Tj in Fig. 2�b�.
Moreover, the microstates along such trajectories at higher
T’s are of course usually more energetic. �ii� So, when finally

there is a temperature exchange, a microstate of high energy,
even if now at lower T’s, will demand a smaller number of
steps to cross a barrier �like 	d→	d� in Fig. 2�b��, and thus to
start visiting other basins. On the other hand, trajectories
which during a certain �t are generated under small values
of T’s, thus constituted of low energy microstates, e.g., 	0
→	b in Fig. 2�b�, when shifted to higher temperatures will
speed up their ways toward the barrier �	b→	b��. Note, nev-
ertheless, that this is possible only if nonadjacent exchanges
are allowed, the case we are assuming here. �iii� The above
collective dynamics makes possible many of the replicas
successfully leave a domain after fairly similar number of
steps. Hence, once in another basin region, this “parallel”
process will continue in the same fashion. �iv� By its turn, we
can face the ST as a “serial” process, a faster drift toward the
domain walls takes place only when T increases. As a con-
sequence, the eventual more frequent temperature exchange
for the ST �14–16� not necessarily becomes an advantage in
complex S landscapes �as illustrated in Fig. 2�. �v� Also as-
sociated to �iv�, we further observe that the PT �ST� is based
on a multipoint �single point� searching, in an interesting
analogy with collective random search theory �37�. There-
fore, generally the PT with N replicas is superior to N inde-
pendent ST’s. �vi� Lastly, a not critical issue but which may
also give some small advantage for the PT over the ST is that
in the former, often the replicas �even at smaller T’s� cross
the domain high barriers more or less at the same time. Thus,
once leaving a certain basin we already have a sample of
microstates at T=T1 to make averages for the PT. As dis-
played in the Fig. 2�a�, for the ST it may happen that when
the system reaches a microstate configuration able to cross
the barrier, it is not at T1. Hence, extra time is necessary for
the system �naturally from the algorithm dynamics� to come
back to T1 and so the averages to be performed.

We finally observe that when the relevant space is more
homogeneous in energy �e.g., far away from phase-
transitions�, one should not expect so high increase of the
trajectories sinuosity as we diminish T. Then, it is not diffi-
cult to realize that the above mentioned differences between
the PT and ST methods may become unimportant.

The previous discussion is based on qualitative argu-
ments. Of course, they should be corroborated by concrete
quantitative studies. Next we analyze two systems near
phase-transition conditions. We will explicit show through
detailed numerical simulations that indeed the PT algorithm
is more efficient, specially in the case of first-order phase
transitions.

III. ISING MODEL

The model is defined by the following Hamiltonian

H = − J

�i,j�

�i� j − H

i=1

V

�i, �6�

where �i , j� denotes nearest-neighbors pairs i and j of a
d-dimensional lattice of V=Ld sites. At each site i, the spin
variable assumes the values �i= �1. J is the interaction en-
ergy and H is the magnetic field. The Ising model displays a
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FIG. 2. Schematic illustration of the trajectories—succession of
	’s—generated by the PT and ST algorithms in the case of a com-
plex topography for the relevant microstate space. A higher sinuos-
ity �usually associated to smaller T’s� represents a higher difficulty
to leave the particular region of S, full of energetic valleys and hills.
The length of the paths is proportional to the number of algorithms
steps.
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second-order phase transition �ferromagnetic-paramagnetic�
at Tc	2.269 and H=0. For a square lattice �d=2�, the trans-
fer matrix diagonal elements are

T�Sk,Sk� = exp�
�

l=1

L

J�1 + �l,k�l+1,k� + H�l,k
� . �7�

Our interest are in the energy u= �H� /V and in the modu-
lus of the magnetization �which is the order parameter� m
= ��
i=1

V �i�� /V per volume. For their autocorrelation func-
tions, we just set w=u and w=m in Eq. �1�. Regarding the
parameters, we choose H=0 and a square lattice of L=32.
All the results are given in units of J /kB. To test the accuracy
of the transfer matrix largest eigenvalue method in obtaining
Z, in Fig. 3 we compare the exact partition function �ob-
tained from the solution in Ref. �38�� with that calculated
from Eq. �4� for the Ising model and the above parameters.
The agreement is indeed remarkable, indicating that even for
L=32, Z and consequently f is already very close to the
thermodynamic limit value.

Hereafter, in all our simulations �including those in Sec.
IV� we will set M =1 for the procedure �a� described in Sec.
II A. In this case, �a� is just the Monte Carlo step per site in
the parlance of Ref. �35�. Moreover, for brevity will refer to
a “MC step” as being a composite implementation �a�-�b�,
recalling that �b� corresponds to one attempt to exchange the
N replicas temperatures in the PT or to change the unique
system copy temperature in the ST.

Figure 4 displays Cm and Cu for T1=Tc, where we use
only two temperatures, with T2=2.4 �in fact, we also have
considered larger numbers of replicas, not finding any sig-
nificant change�. From the plots we see that the autocorrela-
tions decay faster when calculated by the PT than by both the
ST-AM and ST-FEM methods. In Fig. 5 we compare the time
evolution of the thermodynamic quantities �u and the modu-
lus of the magnetization m� starting from a “hard” initial
condition 	0, i.e., a configuration very different from those
representative of the steady state. This is a way of testing
how efficient is a certain approach to drive the system to the
stationary state. Thus, we choose a fully ordered 	0, which
obviously is not typical at T=Tc. The Ising model at the
transition temperature evolves to the equilibrium basically in

the same fashion either when simulated by the PT or by both
the ST’s.

So, we have that for a continuous phase transition �at least
for the Ising model� the performances of the two tempering
methods are essentially equivalent. Although at Tc the PT
shows a somehow faster autocorrelation decays �in contrast
with the results of Ref. �15� for the same model, however
calculated far away from the critical temperature�, the sta-
tionary state is characterized by equivalent values of m and u
for all methods.

IV. LATTICE-GAS MODEL WITH VACANCIES (BEG)

A. Model

The lattice-gas model �of size V=Ld� with vacancies is
characterized by the Hamiltonian

H = − 

�i,j�



r,s

�r,sNr,iNs,j − 

r



i

�rNr,i. �8�

Here, r and s run over the species labels A and B, the �rs’s
are the coupling energies ��AA, �BB, �AB, and �BA�, Nr,i=0,1 is
the occupation numbers at site i for species r, and �r is the
species r chemical potential. The above model is equivalent
to the Blume-Emery-Griffiths �BEG� spin-1 H �22� Indeed,
defining �with �i=0, �1 the possible values for the spin
variable�

NA,i = ��i
2 + �i�/2, NB,i = ��i

2 − �i�/2, �9�

associating �i=1�−1� with the species A�B� and �i=0 with a
vacancy, and setting �AA=�BB and �AB=�BA, we get the BEG
Hamiltonian
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FIG. 3. For the Ising model with H=0, L=32, and units of J /kB,
comparison between the partition function versus T calculated ex-
actly �38� and from Eq. �4�.
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FIG. 4. For the Ising model at Tc, the autocorrelation functions
versus � �in MC steps unities�, simulated from the PT �continuous�,
ST-FEM �dashed�, and ST-AM �dotted�.
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tinuous�, ST-FEM �dashed� and ST-AM �dotted�.
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H = − 

�i,j�

�J�i� j + K�i
2� j

2� − 

i

�H�i − D�i
2� , �10�

for

H = ��A − �B�/2, D = − ��A + �B�/2,

J = ��AA − �AB�/2, K = ��AA + �AB�/2. �11�

We will consider a square lattice with periodic boundary
conditions. In this case, the transfer matrix diagonal elements
read

T�Sk,Sk� = exp�


l=1

L

��H + J�l+1,k��l,k + �J − D + K�1

+ �l+1,k
2 ���l,k

2 �� . �12�

The model has two order parameters, q and m, defined by
q= �
i=1

V �NA,i+NB,i�� /V and m= �
i=1
V �NA,i−NB,i�� /V. Also

important is the quantity energy per volume, given by u
= �H� /V. The autocorrelation are then obtained from w=q,
w=m and w=u in Eq. �1�.

B. Results

For fixed K /J, H and T, the characteristic of the phase
space is determined by D. In the regime we are interested,
there are two phases if D is small, one rich in species A and
the other in species B. For high values of D, the model
displays a single gas phase, rich in vacancies. A strong first-
order phase transition between these two situations takes
place at D=D�, which obviously depends on K /J, H and T.
For definiteness, in the following we study the BEG Hamil-
tonian assuming K /J=3, H=0 and T=T1=1.4 �for other pa-
rameter values, see Sec. V�. In such case, D�=8.000 in the
thermodynamic limit �4�. All the results will be presented in
units of J /kB.

It is well known that for different lattice-gas systems, ap-
proaches based on cluster algorithms �5� are very appropriate
to deal with metastability arising in first-order phase transi-
tions. So, next we will compare results obtained from both
tempering with those available from the cluster method �5�.
Regarding the parameters, unless otherwise explicit men-
tioned, we consider L=20, D=8.000 and the replicas in the
temperature interval �T=0.6. Also, whenever necessary we
perform in total up to Mtot=8�107 simulation steps �see
Sec. II A� to evaluate the sought quantities. Finally as a test,
we have compared the partition function �necessary for the
ST� obtained from the transfer matrix with the quite accurate
calculations in Ref. �23� for the Hamiltonian Eq. �10�, in the
case of the Blume-Capel model �K /J=0�. The results were
for any practical purpose identical, even for L�20. So, the
ST-FEM here again uses very precise numerical values for
the weights g.

As the first comparative analysis, in Fig. 6 we plot the
order parameter q probability distribution histogram for a
long simulation run of 107 MC steps. As the chemical poten-
tial we set D=8.004, instead of D=8.000, since it leads to a

same high for the two peaks of the bimodal order-parameter
probability distribution �we mention, nevertheless, that D
=8.000 gives the same qualitative results�. The agreement of
the two tempering with the cluster method �6� is similar �in
fact, a little better for the PT case�. Such calculations show
that for a long enough time, both the PT and ST are able to
circumvent the metastable states, allowing the system to
cross the free-energy barriers separating the different phases
at the coexistence.

Despite the previous agreement, the PT and ST do present
differences when other aspects are analyzed. For instance,
we show in Fig. 7 the time evolution of q toward the steady
state, starting from a fully random initial configuration. We
also consider distinct number of replicas N and temperature
intervals �T. We find that under the same simulation condi-
tions, generally the PT converges faster, being closer to the
cluster results than the ST �ST-FEM and ST-AM�. However,
for the lower value of �T=0.25, in all cases the system �up
to 104 MC steps� cannot even escape the region near the
initial random configuration. On the other hand, by increas-
ing �T=0.6—although the probability for temperature ex-
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FIG. 6. For the BEG model, the histograms of the order param-
eter q from a long simulation using the PT, ST, and cluster algo-
rithms. The insets are blow-ups of the �a� low and �b� high densities
regions, q	0 and q	1, respectively.
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FIG. 7. For the BEG model, the time evolution of q from a fully
random initial configuration, simulated from the PT, ST, and cluster.
N denotes the number of replicas and �T=0.6 if not otherwise
specified in the curves.
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changing decreases—the system starts to move toward the
stationary regime. Furthermore, the larger the number of rep-
licas N, the faster the convergence. Finally we mention that
the steady value of q=2 /3 at D=D�=8.000 can be under-
stood recalling that at the phase coexistence, two liquid
phases �q	1� coexist with one gas phase �q	0�. Since their
weights are equal �1/3�, we have q	2 /3 for any system size.

Another interesting test is to perform the numerical simu-
lations when the system is already at the steady state. In Fig.
8 we show the time evolution of the “magnetization” m for
both tempering methods at the phase coexistence. In the
plots the time is shifted so to discard the Meq initial MC steps
necessary for equilibration. We see that the tunneling be-
tween the three different phases is substantially more fre-
quent for the PT than for the ST. It being true along the
whole evolution, as we have checked for an interval of 107

MC steps �in the Fig. 8 we show only two distinct simulation
stretches�. Actually, the PT tunneling pattern presents the
same behavior than that observed in the notorious accurate
cluster algorithm �5�, Fig. 9.

The above results concrete exemplify some of the quali-
tative arguments given in Sec. II C to explain why the PT
should be more efficient than the ST around first-order phase
transitions. Indeed, recall that in the present situation �al-
ready in equilibrium�, the coexistence takes place at a rela-
tively low T1=1.4. Therefore, the states basically belong
only to one of the phases: rich in species A �m=1�, rich in
species B �m=−1�, and rich in vacancies �m=0�. It explains
the sharp jumps between these three cases seen in the Figs. 8
and 9 for the PT �always calculated for the replica at T1� and
cluster algorithms. On the other hand, due to the way the ST
changes the system temperatures along the evolution, at cer-
tain time intervals m� t must be calculated at Tn
T1. This
artifact leads to the observed smoother transition among the
three phases. A consequence of such “slower” dynamics in

visiting the different phases is that the ST needs a longer
time to yield a proper � for the thermodynamic averages.
This is exemplified in Fig. 10, where in contrast to the PT
and cluster algorithms, for the number of MC steps consid-
ered the ST has not yet reached a balanced number of mi-
crostates representing the coexisting phases. For instance,
note a very small numbers of states from the ST for m
around −1 and a larger than expected for m around 0.

A different efficiency for the methods is observed not just
at the phase coexistence, but also for other values of the
chemical potential D around D�. Figure 11 plots the order
parameter q versus D for the PT and ST implementations,
evaluating the averages at each Ma,b=104 MC steps. Note
that overall the PT is already quite close to the values ob-
tained from the cluster algorithm, whereas both ST still show
some discrepancy, specially for D
D�. If now the averages
are calculate each Ma,b=5�104 MC steps, the ST also be-
comes closer to the cluster’s �inset of Fig. 11�. Once more
such results can be understood in terms of the tunneling be-
tween the phases. For D�D�, we still can expect high free-
energy barriers. With the ST, the system does not cross such
barriers a sufficient number of times if Ma,b=104. By in-
creasing the number of MC steps for the averages, we gen-
erate a more representative � and thus a better estimation for
m.

0 20 40 60 80
t (MC steps)

-1

0

1

m

ST-AM
PT
ST-FEM

5.0675 5.0690 5.0705 5.0720

t (10
5

MC steps)

-1

0

1

m

FIG. 8. For the BEG model, m versus t in two distinct time
intervals at the steady state �after Meq�, calculated with the PT,
ST-FEM and ST-AM algorithm.
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FIG. 10. For the BEG model, the histogram of m calculated with
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and m=0 �around m=1, the three methods give similar peaks�.
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As a last efficiency measure, we consider the two relevant
auto-correlation functions, Cq��� and Cu���, shown in Fig.
12. We should note that although time displaced correlation
functions are more commonly studied in the context of con-
tinuous phase transitions, in the present case they are an
interesting auxiliary tool to compare the PT and ST perfor-
mances. As it should be, the ST-FEM uncorrelates faster than
the ST-AM. Nevertheless, we see that the C’s decay even
faster for the PT method �in fact, with a very drastic differ-
ence in the case of Cu����.

Usually, the frequency �measured in terms of a probability
p�� in which a given tempering method changes the system
temperature is taken as a good indication of its efficiency.
For the PT and ST algorithms, such quantity respectively
reads �39� p�= �min�1,exp��
i−
 j��H��i�−H�� j����� and p�

= �min�1,exp��
i−
 j�H���+gj −gi���. The averages are over
T1 , . . . ,TN, such that p� of order � is the mean from all the
exchanges among Tn and Tn+� �see Sec. II A�.

In Fig. 13 we display p� as function of T=T1 for the PT
and ST-FEM �the ST-AM being similar to the latter�, with
N=12 and �T=0.55. As it can be seen, for any � the ST
always presents a higher probability of acceptance than the
PT, in agreement with previous studies �15,16�. Such find-
ings are in contrast with our results here. Indeed, larger p�’s
do not translate into a better performance of the ST, at least
in the case of phase transitions as argued in Sec. II C. There-
fore, exchange probabilities alone should be faced with care
when trying to characterize the best tempering method for a
certain context.

Finally, we show in Figs. 14 and 15 finite-size analysis for
the total density q and the isothermal susceptibility �T

=
L2��q2�− �q�2� from the PT and ST-FEM. Continuous
lines correspond to fitting curves by a method proposed in
Ref. �6�. At the phase coexistence, thermodynamic quantities
scale with the system volume �40,41�. A discontinuous phase
transition is characterized by a jump in the order parameter
or even a delta functionlike singularity for the susceptibility
or specific heat. But this is so only at the thermodynamic
limit. For finite systems not only the order parameter, but
also other quantities are described by continuous functions
�4,6,7�, thus justifying the use of the PT method as previ-
ously mentioned. We should emphasizes that smooth curves
are obtained only when one uses a simulation dynamics
which yields an appropriate sampling. For instance, from
simple Metropolis algorithms, neither the crossing among
isotherms nor accurate finite-size analysis for smooth curves
is possible. It is due to the presence of hysteresis effects
�4–6�, which hence demand tempering enhanced algorithm.
From the plots we see that both the PT and ST give fairly
good results. However, the cluster continuous curve �6� is
smoother and better fitted in the PT case, specially for the
larger L=30 value.
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FIG. 14. q versus D for L equal to 10 �circle�, 20 �square�, and
30 �triangle�, calculated from the �a� PT and �b� ST-FEM. Continu-
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the inset, exactly the same curve but for the averages at each 5
�104 MC steps.

0 20 40 60 80 100
τ (MC steps)

0

0.15

0.3

0.45

0.6

0.75

C
u

0 20 40 60 80 100

τ (10
3

MC steps)

0

0.15

0.3

0.45

0.6

0.75

C
q

FIG. 12. Autocorrelation functions versus � from the PT �con-
tinuous�, ST-FEM �dashed�, and ST-AM �dotted�.

1.4 1.5 1.6 1.7 1.8
T

0

0.2

0.4

0.6

0.8

p*

PT, δ=1
PT, δ=2
PT, δ=3
ST, δ=1
ST, δ=2
ST, δ=3

FIG. 13. Mean probability of exchange versus the temperature
T=T1 for the PT and ST-FEM. The symbols �=1,2 ,3 refers, re-
spectively, to exchanges allowed between first, second and third
neighbors �see main text�.

CARLOS E. FIORE AND M. G. E. DA LUZ PHYSICAL REVIEW E 82, 031104 �2010�

031104-8



V. REMARKS AND CONCLUSION

In this paper we have presented a comparative study be-
tween two important enhanced sampling methods, namely,
simulated �ST� and parallel �PT� tempering, considering
spin-lattice models at phase-transition conditions. Special at-
tention has been paid to first-order phase transitions at low
temperatures �for the BEG model�. In such regimes, more
standard algorithms often give poor results because their dif-
ficulties to overcome the large free-energy barriers in the
phase space, leading, e.g., to ergodicity breaking and artifi-
cial algorithm-induced hysteresis. We also have investigated
the less critical case of second-order phase transition—for
which no free-energy barriers exist but there is the formation
of strongly correlated clusters �basin regions� �35�—for the
well understood Ising model.

As for the tempering implementations, we have followed
the usual PT procedure, but allowing temperature exchanges
between nonadjacent replicas. For the weights g in the ST,
we have assumed a recent proposed approximation �13� �ST-
AM� as well as the exact formulation in Ref. �15�, neverthe-
less considering the eigenvalues of the transfer matrix �31� to
calculate the partition function �ST-FEM�. It avoids the ne-
cessity to implement more complicated recursive procedures
to estimate Z, while still leading to very accurate values for g
in practice. Finally, for the ST we also have allowed nonad-
jacent temperatures changes.

Different comparative studies, both at the transient regime
and already at the steady state, have been carried out. Despite
the facts that: �i� after long times �thus demanding large com-
putational effort� the final results from the PT and ST are
similar; and �ii� the PT displays a smaller exchange probabil-
ity than the ST; we have found that for discontinuous phase
transitions the PT is always more efficient in any verified
aspect. The main reason for this is basically that the PT
enables the system to cross free-energy barriers more fre-
quently than the ST: either at or near phase coexistence con-
ditions �as explicit illustrated, e.g., in Figs. 8 and 9�. Further-
more, besides the quantitative numerical analysis, we also
have presented heuristic arguments for why it should be ex-
pected.

Results for the instructive Ising model at the critical tem-
perature �second-order phase transition� have also agreed
with our qualitative predictions. Indeed, far away from Tc it
has been reported a faster convergence for the ST �15�. We
have shown that for T�Tc just the opposite takes place, with
the autocorrelations decaying faster for the PT.

For completeness, we also have analyzed other values of
K /J for the BEG model �not shown�, in particular for K /J
=0, the so called Blume-Capel model. The calculations at the
first-order transition �T1=0.4 and D=1.9968� have corrobo-
rated the higher efficiency of the PT over the ST. More spe-
cifically, until Mtot=3�107, the system when simulated with
the ST-AM has not reached the steady state, whose values for
the thermodynamic quantities were different from those ob-
tained by the ST-FEM, PT and cluster algorithms. Further-
more, the ST-FEM have agreed with the PT and cluster only
for long Mtot’s. Time-displaced correlation functions decays
and actual thermodynamic quantities convergence were al-
ways faster for the PT.

As mentioned in the Introduction, a possible difficulty in
tempering approaches arises when the energy gap and/or the
order-parameter jump at the transition become significant.
Thus, as we increase the system size, it may start to display
a rapid decreasing in the accepting probabilities for the tem-
perature exchanges. The finite-size analyzes overcomes this
problem, but in practice one should use L’s only to a certain
maximum value Lm, for which the considered simulation
method still works well. The crucial point is then if such Lm

is large enough to allow a correct extrapolation to the ther-
modynamic limit. We have seen here that for a certain set of
parameters for the BEG model �K /J=3�, this is achieved
already for L up to 30 �Figs. 14 and 15�. Moreover, for
different K /J’s it has been shown �4� that at other regions of
the phase space—where the first-order transition is stronger,
displaying a much sharper variation of the curve order
�control parameters as one increases L—again the PT leads
to good results, even thought the Lm’s are smaller �about
25–30 for K /J=3.3 and 20–25 for the Blume-Capel model
�4��. However, for those systems for which the present sim-
pler tempering implementation would result in Lm’s below
the values necessary for a proper finite-size analysis, a pos-
sibility may be to consider more sophisticated procedures
�27,29� to select the set �T1�T2� . . . �TN�, trying to reduce
the effect of large latent heat at the transition point. How it
can improve the efficiency of tempering methods for strong
first-order transitions is presently under investigation and
hopefully will be reported in the due course.

A second contribution of this work has been an �numeri-
cally simpler� alternative way to calculate the exact g in the
ST method. When comparing the ST-AM with the ST-FEM,
we have found that the ST-FEM allows the system to con-
verge to steady regime quicker than the ST-AM �see above�.
In addition, at the steady state, configurations generated by
ST-FEM uncorrelate faster than those by the ST-AM. On the
other hand, with respect to the frequency in which the system
tunnels between different phases at the coexistence and the
final sough thermodynamic quantities values, both imple-
mentations are similar, but the ST–AM only for long Mtot’s.
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�square� and 30 �triangle�, calculated from the �a� PT and �b� ST-
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Summarizing, at phase-transition regimes the PT and ST
provide the same results for long �sometimes even costly�
simulations. However, we find that for all the tested mea-
sures, the parallel converges faster than the simulated tem-
pering. Also, even in such situation of a better performance
from the PT, still the rate of temperature switching is higher
for the ST. Thus, another message from our work is that
alone, the switching rates are not sufficient to characterize
the efficiency of a tempering enhanced sampling algorithm.
It should be considered with other tests like, for instance, the

ergodic �round-trip� time between the lowest and highest
temperatures �8� �which even can be minimized by different
ways �27,43��.
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