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We have investigated a polymer growth process on the triangular lattice where the configurations produced
are self-avoiding trails. We show that the scaling behavior of this process is similar to the analogous process on
the square lattice. However, while the square lattice process maps to the collapse transition of the canonical
interacting self-avoiding trail �ISAT� model on that lattice, the process on the triangular lattice model does not
map to the canonical equilibrium model. On the other hand, we show that the collapse transition of the
canonical ISAT model on the triangular lattice behaves in a way reminiscent of the � point of the interacting
self-avoiding walk �ISAW� model, which is the standard model of polymer collapse. This implies an unusual
lattice dependency of the ISAT collapse transition in two dimensions. By studying an extended ISAT model, we
demonstrate that the growth process maps to a multicritical point in a larger parameter space. In this extended
parameter space the collapse phase transition may be either �-point-like �second order� or first order, and these
two are separated by a multicritical point. It is this multicritical point to which the growth process maps.
Furthermore, we provide evidence that in addition to the high-temperature gaslike swollen polymer phase �coil�
and the low-temperature liquid-drop-like collapse phase �globule� there is also a maximally dense crystal-like
phase �crystal� at low temperatures dependent on the parameter values. The multicritical point is the meeting
point of these three phases. Our hypothesized phase diagram resolves the mystery of the seemingly differing
behaviors of the ISAW and ISAT models in two dimensions as well as the behavior of the trail growth process.
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I. INTRODUCTION

Over the past 25 years various lattice models of a single
self-interacting polymer chain in �dilute� solution have been
analyzed in both two and three dimensions. The fundamental
physical phase transition �1� that these models attempt to
mimic is that of the collapse of a single polymer in a poor
solvent as the temperature is lowered. At high temperatures a
polymer is swollen relative to a reference Gaussian state,
while at low temperatures the polymer forms a liquid-drop-
like globule �1,2�. There is a continuous phase transition ex-
pected between these two states, which is referred to as the �
point. One question that arises concerns the robustness of the
universality class of the collapse transition. The standard
theory �3–5� of the collapse transition is based on the n→0
limit of the magnetic tricritical �4−�6O�n� field theory and
related Edwards model with two and three body forces �6,7�,
which predicts an upper critical dimension of 3 with subtle
scaling behavior in that dimension. On the other hand recent
studies �8–10� of semiflexible polymers indicate that a third
phase appears at low temperatures, namely, a crystal-like
phase. The transition between the globular phase and the
crystalline phase is first order in three dimensions, while at
large enough stiffness the globular phase disappears and a
first-order transition occurs directly between the swollen
phase and the crystalline polymer. This is essentially in ac-

cord with off-lattice studies �11�, although the crystalline
phase can exist there without the presence of stiffness.

The canonical lattice model of the configurations of a
polymer in solution has been the self-avoiding walk �SAW�
where a random walk on a lattice is not allowed to visit a
lattice site more than once. Self-avoiding walks display the
so-called excluded volume effect where they are swollen in
size relative to unrestricted random walks of the same length:
their size scales with a different characteristic exponent to
that of the unrestricted random walk. A common way �1� to
model intrapolymer interactions in such a walk is to assign
an energy to each nonconsecutive pair of monomers lying on
neighboring lattice sites. This is the interacting self-avoiding
walk �ISAW� model, which is the standard lattice model of
polymer collapse using self-avoiding walks.

On the other hand self-avoiding trails �12�, which are lat-
tice random walks that are not allowed to visit a lattice bond
more than once, also display the same excluded volume be-
havior as SAW and physical polymers, with the same scaling
exponents. The original motivation for the consideration of
trails was to examine the effect of loops or rings on the
large-scale behavior of a single polymer. Hence, the answer
to that question was considered to be no substantive effect
�12�. A self-interacting self-avoiding trail �ISAT� model,
where multiply occupied sites are assigned an energy, has
also displayed some of the characteristics of the polymer
collapse described above �13–16�. However, analyses of both
two- and three-dimensional self-interacting trails �14–16� in-
dicate that the collapse transition of the ISAT model is in a
different universality class to that of ISAWs in those respec-
tive dimensions. There is no clear understanding of why this
is the case, if true. It is important to note that work in two
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dimensions has focused on the square lattice model only.
Some of the work �14,15� on the ISAT model has been via

a growth process known as “kinetic growth trails” or “smart
kinetic trails” that map to one particular temperature of the
equilibrium ISAT model on the lattices studied �it is impor-
tant to note that these lattices are of coordination number 4�.
It was proposed in �17� that the collapse transition associated
with smart kinetic trails is first order. Clear evidence was
produced in �17� to demonstrate that there was a first-order
transition in three dimensions on the diamond lattice. On the
other hand no evidence of this could be found in two dimen-
sions. In fact, on the square lattice recent work �16� verified
that the ISAT collapse transition on the square lattice is pre-
cisely that given by the growth process and is not first order
or like the � point of ISAW.

Another approach has been to analyze a generalized en-
semble �rather than the finite length ensemble� of the model
via transfer matrix �18�: this has produced some intriguing
results with different values of critical exponents being esti-
mated. It was pointed out in �18� that these results may be
compatible with those for the finite length ensemble. This
may be an indication though that the point in question is
multicritical of some type.

In this paper we study the ISAT model and kinetic growth
trails on the triangular lattice, importantly a coordination
number 6 lattice. We demonstrate that the kinetic growth
model does not map to any temperature of the canonical
ISAT model but rather to a point �we shall call this the ki-
netic growth point� in the parameter space of a generalized
model we call the extended ISAT �eISAT� model. As such we
have studied this eISAT model and identify this kinetic
growth point as a multicritical collapse point. By studying
the eISAT model we build a picture of the collapse transition
in the trail model of polymers that includes both the first-
order transition suggested in �17� and the ISAW � point. It
may also prove useful in explaining the transfer-matrix re-
sults.

Review of previous results

The collapse transition can be characterized via a change
in the scaling of the size of the polymer with temperature.
There is a strong dimensional dependence on the nature of
the transition. We shall focus on the two-dimensional sce-
nario. It is expected that some measure of the size, such as
the radius of gyration or the mean squared distance of a
monomer from the end points, Rn

2�T�, scales at fixed tempera-
ture as

Rn
2�T� � An2�, �1.1�

where n is the number of monomers in the polymer, with
some exponent �. At high temperatures the polymer is swol-
len and in two dimensions it is accepted that �=3 /4 �19�. At
low temperatures the polymer becomes dense in space, al-
though not space filling, and the exponent is �=1 /2
��=1 /3 in three dimensions for the comparator state�. The
collapse phase transition is expected to take place at some
temperature Tt. If the transition is second order, the scaling at
Tt of the size is intermediate between the high- and low-

temperature forms. In the thermodynamic limit there is ex-
pected to be a singularity in the free energy, which can be
seen in its second derivative �the specific heat�. Denoting the
�intensive� finite length specific heat per monomer by cn�T�,
the thermodynamic limit is given by the long-length limit as

C�T� = lim
n→�

cn�T� . �1.2�

One expects that the singular part of the specific heat be-
haves as

C�T� � B�Tt − T�−�, �1.3�

where ��1 for a second-order phase transition. The singular
part of the thermodynamic limit internal energy behaves as

U�T� � B�Tt − T�1−�, �1.4�

if the transition is second order, and there is a jump in the
internal energy if the transition is first order �an effective
value of �=1�.

Moreover one expects crossover scaling forms �20� to ap-
ply around this temperature, so that

cn�T� � n��C��T − Tt�n�� , �1.5�

with 0���1 if the transition is second order and

cn�T� � nC��T − Tt�n� , �1.6�

if the transition is first order. From �20� we point out that the
exponents � and � are related via

2 − � =
1

�
. �1.7�

(a) �-point ISAW collapse. The work of Duplantier and
Saleur �21� predicted the standard �-point behavior in two
dimensions, which has been subsequently verified �22�. It is
expected that

� = 3/7 � 0.43, � = − 1/3. �1.8�

Note that this implies that the specific heat does not diverge
at the transition. However, the third derivative of the free
energy with respect to temperature will diverge with expo-
nent �1+���=2 /7. We can contrast this with the three-
dimensional situation �which is upper critical dimension for
this phase transition� where there is a logarithmic divergence
in the specific heat. At T=Tt it is expected in two dimensions
that �=4 /7, that is,

Rn
2�T� � An8/7, �1.9�

again contrasting with three dimensions where at the � point
a polymer is in a near Gaussian state where �=1 /2.

(b) ISAT collapse on the square lattice. Previous work
�16� on the square lattice has shown that there is a collapse
transition with a strongly divergent specific heat, and the
exponents have been estimated as

� = 0.84�3�, � = 0.81�3� . �1.10�

At T=Tt it was predicted �14� that

Rn
2�T� � An�ln n�2. �1.11�
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II. TRAIL GROWTH ON THE TRIANGULAR LATTICE

Consider a stochastic process defined on the triangular
lattice as follows: starting at an origin site, a lattice path is
built up step by step by choosing between available continu-
ing steps from unoccupied lattice bonds with equal probabil-
ity. The configuration produced is a self-avoiding trail or
trail for short, where sites may be visited multiple times but
bonds of the lattice are either visited once or not at all. If we
do not consider the original occupation of the origin as a
visit, then each site may be visited up to three times on the
triangular lattice. Note that when the process revisits the ori-
gin, the growth rule is slightly altered: the process may
choose the direction of the first step as one of its options
equally with the unoccupied lattice bonds. If it does this, a
loop is formed and the growth process terminates. Apart
from the initial step, where there are six available steps, the
number of available steps is therefore five minus twice the
number of previous visits. A picture of these three situations
is provided in Fig. 1, along with the probabilities of the next
step that is added.

In Fig. 2 an example of a configuration produced by the
process is illustrated. Apart from the origin, each singly vis-

ited site contributes a factor � 1
5 � to the overall probability,

while each twice visited site contributes a factor � 1
5 �� 1

3 � and
each triply visited site contributes a factor � 1

5 �� 1
3 ��1�. This

model is the triangular lattice version of the growth model
considered previously �14�.

We will not count the initial occupation of the origin as a
visit. If we denote the number of steps of the trail as n, and
the numbers of singly, doubly, and triply visited site as m1,
m2, and m3, respectively, then these satisfy

n = m1 + 2m2 + 3m3. �2.1�

The probability of a configuration, �n, of n steps is de-
noted by pG��n�, and we have for each n

�
�n

pG��n� = Pn, �2.2�

where Pn is the probability that the growth process reaches
length n. Let us define the expectation values of the numbers
of singly, doubly, and triply visited sites per unit length ej�n�
for the growth process conditioned on the process making it
to length n, respectively, as

ej�n� =
	mj


n
=

1

nPn
�
�n

pG��n�mj��n� , �2.3�

and the fluctuations in these as f j�n� with

f j�n� =
	mj

2
 − 	mj
2

n
. �2.4�

Note that from Eq. �2.1� we have

e1�n� + 2e2�n� + 3e3�n� = 1. �2.5�

Let us define the asymptotic values of the numbers of doubly
and triply visited sites per unit length ej�n� and their respec-
tive fluctuations f j�n� as

Ej = lim
n→�

ej�n� , �2.6�

Fj = lim
n→�

f j�n� . �2.7�

In the square lattice case �23,24� this stochastic model can
be mapped to a specific temperature of an equilibrium
model, and moreover �14,16� it was shown that this tempera-
ture was a critical point of the equilibrium model. There, the
exponents � and � defined in the Introduction can be related
to the behavior of e2 and f2. Assuming a similar form of
critical behavior found in the triangular lattice model we
would expect that

e2�n� � E2 −
a2

n�1−��� , �2.8�

e3�n� � E3 −
a3

n�1−��� . �2.9�

Also,

f2�n� � b2n�� + F2, �2.10�

11/5 1/3

FIG. 1. �Color online� This figure illustrates the growth process
on the triangular lattice. Steps are created with different probabili-
ties: the probabilities of the next steps �not shown� are displayed
underneath each case. Three general possibilities exist as the trail
grows: first is that the trails enter a site that is previously
unoccupied—in that case the five choices of next step are chosen at
random with equal probability, that is, 1/5; second is that the trail
enters a site that has been previously visited once—in that case the
three remaining choices of next step are chosen at random with
equal probability, that is, 1/3; finally is that the trail enters a site that
has been previously visited twice—there is only one choice of con-
tinuation and this is made with probability 1.

FIG. 2. �Color online� An example of a trail with 13 steps on the
triangular lattice. This trail has six singly visited sites, two doubly
visited sites, and one triply visited site. Note that the path may cross
or touch at a visited site. This trail is produced by the growth pro-
cess with probability � 1

6 �� 1
5 �� 1

5 �� 1
5 �� 1

5 �� 1
3 �� 1

5 �� 1
5 ��1�� 1

3 �� 1
5 �� 1

5 �� 1
3 �—the

individual fractional probabilities are the step probabilities in order
of creation of the steps.
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f3�n� � b3n�� + F3, �2.11�

where either n�� or the constant term dominates dependent
on whether � is positive or negative.

We have simulated this growth process for lengths up to
n=220=1 048 576 producing 7 120 000 samples calculating
estimates for e2�n�, e3�n�, f2�n�, and f3�n�. In Fig. 3 we plot
f2�n� and f3�n� against n: we immediately note that both
quantities diverge.

Taking the better behaved data for f3�n�, we have esti-
mated

�� = 0.734�6� . �2.12�

We can therefore deduce the estimates

� = 0.847�3�, � = 0.867�3� . �2.13�

Importantly this is consistent with the estimates found in �14�
for the growth process on the square lattice where � was
estimated to be 0.88�7�, subsequently confirmed indepen-
dently and directly for the equilibrium model in �16� where
�=0.84�3� was found. Our estimate of ��=0.734�6� implies
that the exponent involved in the scaling of ej, namely,
�1−���, takes the value of 0.133�4�. In Fig. 4 we plot e2�n�
and e3�n� against 1 /n0.133. We immediately see that the
strong corrections to the scaling forms are still apparent even
at the long lengths we have simulated. The maximum in
e2�n� at n�1000 mirrors the behavior found in f2�n� in Fig.
3.

In Fig. 4 we have also marked the asymptotic values E2
and E3 which can be deduced from the following argument.
Consider the case when a trail has formed a large n-step loop
which occupies m lattice sites. Any site of this loop could
have been the starting point. In order for this site to be vis-
ited only once, the loop must have closed at the first return
visit, which occurs with a probability of � 1

5 �. In order for this
site to be visited twice, the loop must have closed at the
second return visit, which occurs with a probability of
�1− 1

5 �� 1
3 �. Finally, for this site to be visited three times, the

loop closes at the third return visit, which occurs with a

probability of �1− 1
5 ��1− 1

3 �. Therefore, we find for large
loops the asymptotic values m1 /m=1 /5, m2 /m=4 /15, and
m3 /m=8 /15. Using Eq. �2.1�, we obtain

e1�n� →
3

35
, e2�n� →

4

35
, e3�n� →

8

35
, �2.14�

as n→�; whence, we identify E2=4 /35�0.114 and E3
=8 /35�0.228.

III. CANONICAL ISAT MODEL ON THE TRIANGULAR
LATTICE

The canonical model �13� of self-interacting trails �ISAT�
on the triangular lattice is defined as follows. Consider all
different bond-avoiding paths �open trails and loops� �n of
length n that can be formed on the triangular lattice with one
end fixed at a particular site �the set 	n�. Associate an energy
−
 with each doubly visited site and an energy −2
 with
each triply visited site. For each configuration �n count the
number m2��n� of doubly visited sites and m3��n� of triply
visited sites of the lattice and give that configuration a Bolt-
zmann weight �m2+2m3, where �=exp��
�. The partition
function of the ISAT model is then given by

Zn
�2���� = �

�n�	n

�m2��n�+2m3��n�. �3.1�

We use the superscript �2� to denote the canonical model.
The choice of this notation will become clear in the next
section. The average of any quantity Q over the ensemble set
	n of allowed paths of length n is given generically by

	Q
n��� =

�
�n�	n

Q��n��m2��n�+2m3��n�

Zn
�2����

. �3.2�

The reduced free energy n
�2���� per step is given by

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

2 4 6 8 10 12 14

lo
g

f j(
n)

log n

f2(n)
f3(n)

FIG. 3. �Color online� Plot of the fluctuations in the numbers of
doubly and triply visited sites f2�n� and f3�n� against n. The slope
gives us an estimate of ��.

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

e j
(n

)

1/n0.133

e2(n)
e3(n)

FIG. 4. �Color online� Plot of the average numbers of doubly,
e2�n�, and triply, e3�n�, visited sites against 1 /n0.133. Their
asymptotic values E2=4 /35�0.114 and E3=8 /35�0.228, respec-
tively, are marked as filled circles.
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n
�2���� = −

1

n
ln Zn

�2���� , �3.3�

and the internal energy un
�2���� and specific heat cn

�2���� can
be found as the first and second derivatives of the reduced
free energy with respect to �. We will also require the third
derivative tn

�2����. However, these can all be found from the
expected values of moments of m2 and m3. The internal en-
ergy �setting 
=1� is given by

un
�2���� =

	m2 + 2m3

n

, �3.4�

and the �reduced� specific heat is given by

cn
�2���� =

	�m2 + 2m3�2
 − 	�m2 + 2m3�
2

n
. �3.5�

We have simulated the canonical ISAT model using FLAT-

PERM �25� for lengths up to 1024, generating 1.6�107

samples at that length. First we consider a high-temperature
point at �=1.5 and show that the scaling of the size of the
trail is in accord with �=3 /4 and the standard swollen phase
expectations: in Fig. 5 we display a plot of ln Rn

2 against ln n.
By considering the specific heat we find a weak phase

transition in contrast to that found on the square lattice.
There is little sign that the specific heat diverges: in Fig. 6
the value of the maximum of the specific heat is plotted
against ln n.

We recall that the �-point transition of ISAW has this
nondivergent specific heat behavior, and so we have consid-
ered the third derivative of the free energy with respect to �,
tn
�2����, which would diverge slowly for the � point. The third

derivative of the free energy is the first derivative of the
specific heat. In Fig. 7 we display the absolute value of the
two peaks of the third free-energy derivative. The third de-
rivative has two peaks: one positive and one negative in
value. They show a weak divergence: we have extracted lo-
cal exponents in both cases, which would be given by
�1+���, where this is a critical point. We find the values of
0.23�6� and 0.35�6�: this is consistent with the ISAW � point,

where �1+���=2 /7�0.28. While there are clearly very
strong corrections to scaling still in the data, no divergence is
found in the specific heat and a weak one in the third deriva-
tive. Therefore, it is tempting to conjecture that the canonical
ISAT model on the triangular lattice has a collapse transition

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

4 4.5 5 5.5 6 6.5 7

ln
R

n2

ln n

FIG. 5. �Color online� A plot of ln Rn
2 against ln n at ��2 ,�3�

= �1.5,2.25� in the swollen phase showing a slope of 2�=3 /2.
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1

1.5

2

2.5

3

3 4 5 6 7

c n

ln n

FIG. 6. �Color online� Plot of the value of the maximum of the
specific heat cn=max� cn

�2� against ln n. This suggests that the spe-
cific heat does not diverge as the polymer length is increased.
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FIG. 7. �Color online� Plot of the height of the peaks of tn
�2����,

the third derivative of the free energy with respect to temperature
against n. The third derivative has two peaks: one positive and one
negative in value. The top figure shows tn=max� tn

�2� and the bottom
figure shows tn=min� tn

�2�.
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that lies in the �-point universality class, rather than in
square lattice ISAT collapse universality class.

IV. EXTENDED ISAT MODEL ON THE TRIANGULAR
LATTICE

A. Model

The extended model of self-interacting trails �eISAT� on
the triangular lattice is defined as follows. Consider all dif-
ferent bond-avoiding paths �n �open trails and loops� of
length n that can be formed on the triangular lattice with one
end fixed at a particular site �the set 	n�. Associate an energy
−
2 with each doubly visited site and a different energy −
3
with each triply visited site. For each configuration �n count
the number m2��n� of doubly visited sites and m3��n� of
triply visited sites of the lattice and give that configuration a
Boltzmann weight �2

m2�3
m3, where � j =exp��
 j�. The parti-

tion function of the eISAT model is then given by

Zn��2,�3� = �
�n�	n

�2
m2��n��3

m3��n�. �4.1�

The probability of a configuration �n in the equilibrium
model is

pE��n;�2,�3� = �2
m2��n��3

m3��n�/Zn��2,�3� . �4.2�

The average of any quantity Q over the ensemble set of
allowed paths 	n of length n is given generically by

	Q
�n;�2,�3� = �
�n�	n

Q��n�pE��n� . �4.3�

Let us define the expectation values of the number of j-fold
visited sites per unit length uj for the equilibrium model as

uj�n;�2,�3� =
	mj


n
=

1

n
�
��n�

pE„��n�…mj„��n�… , �4.4�

and the fluctuations in these as cj with

cj�n;�2,�3� =
	mj

2
 − 	mj
2

n
. �4.5�

Note that from Eq. �2.1�, which holds for trail configuration
regardless of how they are generated, we have

u1 + 2u2 + 3u3 = 1. �4.6�

The canonical ISAT model is then given by the restriction

�2 = �, �3 = �2. �4.7�

By fixing the ratio of the energies 
3 /
2=k we have the
generalization

�2 = �, �3 = �k, �4.8�

which gives a family parametrized by k of generalized one-
parameter ISAT models. This gives the partition function of
our fixed k versions of the eISAT model as

Zn
�k���� = �

�n�	n

�m2��n�+km3��n�. �4.9�

Setting 
2=1 the internal energy is

un
�k���� =

	�m2 + km3�

n

, �4.10�

and the �reduced� specific heat is

cn
�k���� =

	�m2 + km3�2
 − 	�m2 + km3�
2

n
. �4.11�

The canonical ISAT model has k=2.
We have simulated the general eISAT with a two-

parameter FLATPERM algorithm �25� up to length of 128, gen-
erating 8.8.6�107 samples at that length. We have also
simulated various specific subcases for fixed values of k via
one-parameter FLATPERM algorithm typically up to length of
1024, generating in each case roughly 107 samples at that
length.

B. Mapping of the growth process to the equilibrium model

The growth process on the square lattice has been mapped
�23,24� to a specific Boltzmann weight of the equilibrium
model by considering loops. The probability distribution
pG��n� of the growth process on the triangular lattice can be
rewritten in terms of mj��n� as

pG��n� =
1

6
�1

5
�m1��n�−1� 1

15
�m2��n�� 1

15
�m3��n�

=
1

6
�1

5
�n−1�5

3
�m2��n��25

3
�m3��n�

, �4.12�

using the relationship given in Eq. �2.1�. We then notice that
by setting �2=5 /3 and �3=25 /3 the equilibrium model has
probability distribution

pE��n;
5

3
,
25

3
� =

1

Zn�5

3
,
25

3
��

5

3
�m2��n��25

3
�m3��n�

,

�4.13�

and so we can deduce

pG��n� � pE��n;
5

3
,
25

3
� . �4.14�

Note that the normalization is different though since the sum
over all walks of fixed length n gives the probability of walks
being still open in the case of the growth process, and unity
in the case of the equilibrium model.

We now consider the probability of producing configura-
tions in the growth process conditioned on the process hav-
ing continued to length n, that is, we consider

p̂G��n� =
pG��n�

Pn
, �4.15�

which implies that

�
�n�	n

p̂G��n� = 1. �4.16�

Hence, we have
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p̂G��n� = pE��n;
5

3
,
25

3
� , �4.17�

noting that this implies that

Zn�5

3
,
25

3
� = 65n−1Pn. �4.18�

In any case, when we simulate the growth process we are
effectively simulating the equilibrium eISAT model at the
point ��2 ,�3�= �5 /3,25 /3�. We immediately have

ej�n� = uj�n;
5

3
,
25

3
�, f j�n� = cj�n;

5

3
,
25

3
� . �4.19�

Using the definition of the one-parameter family of models
via Eq. �4.8�, the growth process is equivalent to �=5 /3 in
the model where

k = kG 
ln�25/3�
ln�5/3�

� 4.15. �4.20�

Importantly, this is not the value of k for the canonical ISAT
model �with k=2� on the triangular lattice that has been stud-
ied via exact enumeration �13�.

C. k=kG eISAT model

As described in Sec. II we have simulated the growth
process and found divergent fluctuations in the numbers of
doubly and triply visited sites—a sign of critical behavior.
Now that we have mapped the growth process onto a specific
temperature of the k=kG eISAT model, we can verify that
this point is indeed the collapse transition point. We have
simulated the k=kG model up to length of 1024 using a one-
parameter FLATPERM algorithm. We find a divergent specific
heat with a single pronounced peak near �=5 /3. We begin
by finding the location and size of the peak of the specific
heat of the model. In Fig. 8 we plot the logarithm of the peak
height of the specific heat against ln n along with a line
corresponding to the exponent value ��=0.734, which was
obtained from the growth process. Moreover, using the finite

length estimate of �=0.867 obtained from the growth pro-
cess to extrapolate the location of the transition �see Fig. 9�,
we find an estimate of �t=1.669�4�: this is consistent with

the growth process point at �=1.66̇ being the transition
point.

While the exponent estimates clearly discount a first-order
transition, given that there was a question about the first-
order nature of the ISAT model on the square lattice at the
kinetic growth point, we now show how the distribution of
the numbers m=m2+kGm3 changes as the temperature is
moved through the transition point: this is displayed in Fig.
10. There is no sign of first-order behavior in the distribu-
tions.

To complete our numerical analysis we provide a scaling
plot around the transition of the specific heat using the ex-
ponent values from the growth process. This is found in Fig.
11 and it shows an excellent fit to the crossover scaling form
�20�
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ln
c n

ln n

FIG. 8. �Color online� Plot of the logarithm of cn=max� cn
�kG�,

the value of the maximum of the specific heat, against ln n. The
straight line has a slope of 0.734.
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FIG. 9. �Color online� Plot of the location �max of the peak of
the specific heat against 1 /n0.867.
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FIG. 10. �Color online� Plot of the distribution pn�m /n�, where
m=m2+kGm3, at temperatures near and at the temperature at which
the specific heat attains its maximum for length n=1024. The spe-
cific heat attains its maximum at �=�max=1.69 and the distribution
is plotted for this value and at �=1.63, 1.66, 1.72, and 1.54: the
plots move from left to right as � is increased.
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cn � n��C��� − �t�n�� . �4.21�

Our data at length of 1024 there fully confirm that the kinetic
growth point is the location of a phase transition and, more-
over, that this transition is critical in nature. The exponent
values indicate that the ISAT model on the square lattice and
the k=kG eISAT model on the triangular lattice are in the
same universality class. This is in contrast to the observation
above that the canonical ISAT models on the two lattices are
not in the same universality class. This inexorably leads us to
the conclusion that the universality class of the phase transi-
tion of the eISAT model on the triangular lattice depends on
the value of k.

D. k=0 eISAT model

To explore this k dependency more we now examine the
k=0 eISAT model. When k=0 only doubly visited sites are
given a Boltzmann weight, so that

Zn
�0���� = �

�n�	n

�m2��n�. �4.22�

The internal energy is

un
�0���� =

	m2

n

, �4.23�

and the specific heat is

cn
�0���� =

	m2
2
 − 	m2
2

n
. �4.24�

In Fig. 12 the value of the maximum of the specific heat over
all � is plotted against ln n. In stark contrast to the behavior
of the k=kG model but in common with the k=2 canonical
model, the specific heat does not seem to diverge as the
length is increased. In common with the approach we took
for the k=2 model, we have also examined the third deriva-
tive of the free energy. In Fig. 13 we see that the absolute
maximum of this quantity is weakly divergent with an expo-
nent of 0.23�6�. This compares well to the �-point value of
2 /7�0.28, especially given the relatively short lengths of

the simulations. It is tempting then to conjecture that k=0
and k=2 models have collapse transitions in the same uni-
versality class and that this class is the � point.

E. Triple model (“k=�”)

Next we consider a model where only triply visited sites
are weighted—essentially a k=� eISAT—that is, the parti-
tion function is given by

Zn
�triple���� = �

�n�	n

�m3��n�. �4.25�

The internal energy is

un
�triple���� =

	m3

n

, �4.26�

and the specific heat is
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FIG. 11. �Color online� Scaling plot of the specific heat around
the transition temperature, using the exponents from the growth
process.
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FIG. 12. �Color online� Plot of the value of the maximum of the
specific heat cn=max� cn

�0� against ln n. This suggests that the spe-
cific heat does not diverge as the polymer length is increased, as is
the case in the canonical model �k=2�.
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FIG. 13. �Color online� Plot of the height of one of the peaks of
tn
�0����, the third derivative of the free energy with respect to tem-

perature against n. The third derivative has two peaks: one positive
and one negative in value. The figure shows tn=min� tn

�0� which is
the larger in absolute value and the one seemingly less affected by
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cn
�triple���� =

	m3
2
 − 	m3
2

n
. �4.27�

Note that only in the triple model �=�3, while for the finite
k models we denote �=�2.

As a function of � we find evidence for a very strong
phase transition. In fact when we considered the scaling of
the peaks of the specific heat they scale faster than linearly
�linearly is the maximum theoretical asymptotic behavior�.
Since linear behavior would indicate a first-order phase tran-
sition we considered the distribution of triply visited sites at
temperatures around that which gives rise to the peak of the
specific heat: this is plotted in Fig. 14. The distribution dis-
plays an unambiguous double peaked form, which is a clear
sign of a first-order phase transition. Note the sharpness of
the transition in temperature and how the distribution moves
from being peaked around low values of triply visited sites
just below the transition temperature to being peaked around
large values just above the transition temperature. This is a
classic first-order behavior. To get an idea of where the tran-
sition takes place in the thermodynamic limit we have ex-
trapolated the transition location in Fig. 15. We estimate a
thermodynamic limit value of �t�triple�=6.96�6�.

We now see that when triply visited sites are weighted the
transition is clearly first order, while when doubly visited
sites are the only ones given additional weight the transition
is a weak second-order transition, like the � point. In be-
tween, the growth model displays intermediate behavior.

F. General eISAT model

To understand whether the first-order nature of the col-
lapse transition persists when doubly weighted sites are
given some weight, we have examined the k=6 model. Once
again the divergence of the specific heat is very strong, and
plotting the distribution of triply visited sites �see Fig. 16�
the classic doubly peaked form is once again apparent. It

seems that the first-order nature persists for large finite val-
ues of k. Given the evidence available, the simplest scenario
that presents itself is the following: for values of k�kG the
eISAT model on the triangular lattice displays a first-order
phase transition, while for k�kG the model displays a weak
second-order transition presumably in the universality class
of the ISAW � point. Separating these two behaviors is the
k=kG model, where the transition is second order but with a
divergent specific heat in the universality class of square lat-
tice ISAT. This implies that the growth process point is a
multicritical point that is the meeting of a line of first-order
transitions to a line of critical ones.

The question then arises as to the nature of the low-
temperature phase for different k’s. In Fig. 17 we give a
density plot of the largest eigenvalue of the matrix of second
derivatives of the free energy with respect to the two vari-
ables �2 and �3 at length n=128: this allows us to search for
any other possible transitions. Intriguingly this plot shows
evidence for transitions at large �2 and �3. This would seem
to indicate a collapse-collapse phase transition with two dif-
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FIG. 14. �Color online� Plot of the distribution pn�m3 /n� of tri-
ply visited sites for the triple model at temperatures near and at the
temperature at which the specific heat attains its maximum for
length n=1024. The specific heat attains its maximum at �=�max

=7.41 and the distribution is plotted for this value and at �=7.31,
7.34, 7.48, and 7.52: the plots move from left to right as � is
increased.
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ferent collapsed states. Such a transition has been seen to
occur in the low-temperature behavior of the ISAW when a
stiffness energy is added to model semiflexible polymers.
One of the two low-temperature phases in that model is an
ordered crystallinelike phase. Relatedly this occurs when the
collapse is a first-order transition.

To test the possibility that the low temperature collapsed
phase when k�kG is frozen we have plotted in Fig. 18 the
proportion of steps of the trail not involved with a triply
visited site. Given the collapsed nature of the phase it is
appropriate to assume that the polymer has a surface �26� and
so we plot our estimate against 1 /n1/2. We have chosen a
point in the k=6 model. The quantity �1−3u3�n�� is tending
to zero as n is increased, suggesting that, proportionally, all
sites of the trail will be triply visited: we can deduce that
configurations produced are maximally dense and solidlike.
In Fig. 19 we display a typical configuration produced by our
simulations when ��2 ,�3�= �1,10�: it is space filling, form-
ing a crystal-like structure, being almost totally made up of
triply visited sites. We find the same behavior for the k=kG
model at low temperatures.

For the sake of comparison we have considered the same
quantity 1−3u3�n� in the low-temperature region of the k
=2 model. In Fig. 20 we plot the proportion of steps that are
not involved with triply visited sites per unit length against
1 /n1/2 at the point ��2 ,�3�= �4,16�: this quantity clearly
converges to a nonzero value. In Fig. 21 we display a typical
configuration produced by our simulations when ��2 ,�3�
= �5,1�: while dense, the configuration still has internal holes
and seems disordered. From the above considerations it
seems that the phases that exist in our eISAT model on the
triangular lattice are of a similar type to those in the semi-
flexible ISAW phase diagram �8–10�, namely, a high-
temperature swollen phase and two low-temperature phases:
one is a disordered liquid-drop-like globular phase and the
other is crystallinelike phase.

V. CONCLUSIONS

We can now build a complete picture of the phase dia-
gram of the extended ISAT model on the triangular lattice. A
schematic of the conjectured phase diagram is shown in Fig.
22. For small �2 and �3 we see the usual swollen polymer
phase where �=3 /4. For large enough �2 regardless of �3
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FIG. 17. �Color online� Density plot of the logarithm of the
largest eigenvalue �max of the matrix of second derivatives of the
free energy with respect to �2 and �3 at length n=128 �the lighter
the shade, the larger the value�.
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FIG. 18. �Color online� Plot of 1−3u3�n�, which measures the
proportion of steps that are not involved with triply visited sites per
unit length, against 1 /�n at a point �1.58, 15.6� in the hypothesized
frozen �crystal-like� phase. As the length increases this quantity
vanishes.

FIG. 19. �Color online� A typical configuration at length 512
produced at ��2 ,�3�= �1,10� which looks like an ordered crystal.
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FIG. 20. �Color online� Plot of 1−3u3�n�, which measures the
proportion of steps that are not involved with triply visited sites per
unit length, against 1 /�n at a point ��2 ,�3�= �4,16� in the col-
lapsed liquid-drop-like globule phase. As the length increases this
reaches a nonzero value.
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we find a collapse phase as occurs in the ISAW model and a
transition between the swollen and collapsed globule phases
which seems to be �-like. On the other hand for large enough
�3 we find crystal-like configurations that are space filling
and internally contain only triply visited sites. Between the
swollen phase and the crystal-like phase the collapse transi-
tion is first order. Separating this line of first-order transitions
from the line of �-like transitions is a multicritical point: we
have assumed that it is multicritical as its criticality is differ-
ent to the two lines of critical points that connect to it. This
point is precisely the point to which the kinetic growth pro-
cess of trails maps.

It would seem that this larger parameter space has ex-
posed a way of understanding the apparent differences and
similarities of the ISAT and ISAW models. When ISAW is
generalized with the addition of stiffness, and ISAT on a
large enough coordination number lattice is generalized with
different weightings for different numbers of visits, both dis-
play three polymer phases: swollen coil, globule, and poly-
mer crystal. Note that for the eISAT model considered here,
the crystal-like phase has nonzero entropy and as such is
strictly speaking not a proper crystalline phase, but rather a
maximally dense phase. This is in contrast to the polymer
crystal phase found in the semiflexible ISAW model �8–10�,
where one finds zero-entropy �-sheet-like structures.

In two dimensions both semiflexible ISAW and eISAT
have a first-order collapse transition between swollen coil
and crystal-like phases, and a �-point-like transition between

swollen coil and globule phases. It is also apparent that the
square lattice ISAT model is unusual in that it only displays
the multicritical point, which is found in these generalized
models as part of a larger phase diagram. It is not clear why
the square lattice ISAT model displays the multicritical point
rather than either the �-like transition or the first-order tran-
sition.
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