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We study the heat conduction problem in two-dimensional �2D� lattice models of disk shape consisting of
two circular heat baths with radius r1 and r2 �r1�r2�, located concentrically at the center and the edge of the
disk. Compared with the lattice models of rectangle shape adopted in previous studies, the main advantage of
the disk models is that they have an unambiguous 2D dimensionality. The Fermi-Pasta-Ulam interaction of �
type and the �4 system are considered, respectively, as momentum conserving and nonconserving prototypes.
In the former we find that in the range of the system size investigated, the heat conductivity � depends on the
system size L=r2−r1 as ���ln L�� with � being a function of r1 /r2. In particular, in the limit of r1 /r2→1 we
have �→1, i.e., a logarithmic dependence of � on L, which is in agreement with the prediction of existing
theories. In the momentum nonconserving �4 system the heat conductivity converges to a finite value as the
system size is increased.
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Spatial constraints caused by the dimensionality are im-
portant in many physical issues, such as phase transitions,
specific heat, and various localization phenomena of pho-
tons, phonons, and electrons. However, in spite of many ef-
forts, the dimensionality dependence of the energy transport
is still a challenge �1,2�. The “standard” energy transport law,
i.e., the Fourier law of heat conduction, states that the heat
flux is proportional to the temperature gradient: J=−��T,
where �, the heat conductivity, is a constant at a given tem-
perature. During the past 200 years the Fourier law has been
witnessed a great success. Nevertheless, almost all the ex-
perimental studies and applications have been performed
with bulk �three-dimensional �3D�� materials. Whether the
Fourier law depends on the dimensionality, and if yes in
what a way, has not been exposed yet.

In recent years, as low dimensional materials have been
widely fabricated and studied in laboratories, such as nano-
wires, single-walled nanotubes and graphene flakes �3–7�,
much attention has been attracted to this topic. Moreover, the
rapid development of computing technology nowadays has
made it possible to check the law in systems of reduced
dimensions via the simulations of their dynamics. On the
other hand, theoretically, based on either the hydrodynamics
approach �8� or the mode-coupling theory �9�, it has been
conjectured that for the momentum conserving systems the
heat conductivity diverges with the system size in a power
�logarithmic� law in one-dimensional �1D� �two-dimensional
�2D�� but remains finite in 3D systems. In 2006, this theoret-
ical prediction was analytically verified by Basile et al. �10�
in an explicitly solvable model of stochastic dynamics.

Another paradigm of momentum conserving systems is
the Fermi-Pasta-Ulam �FPU� system, whose dynamics is de-
terministic. After decades of intensive studies, there have
been strong evidence that in the 1D FPU system the heat
conductivity would diverge in a power law and the divergent
exponent is 0.3–0.4 �11–13�. Meanwhile, in the experiments

the breakdown of the Fourier law has been reported with the
divergence exponent being 0.6–0.8 for 1D carbon nanotubes
and 0.4–0.6 for 1D boron-nitride nanotubes �3�. Though the
accurate value �values� of the divergent exponent is �are� to
be determined, the power-law divergence of the heat conduc-
tivity in 1D momentum conserving systems has been well
accepted. Recently, Saito and Dhar �14� numerically studied
3D FPU lattices and found a nondiverging heat conductivity.
This result, together with the previous ones �10�, has dra-
matically enhanced our confidence in the theoretical predic-
tions �8,9�. However, as being pointed out in Ref. �14� and
some earlier Refs. �15,16�, the theoretical predictions for the
2D case has not been confirmed yet in deterministic systems;
In fact, the existing studies are quite contradictory �14–16�.

The controversies on the 2D FPU system may arise from
the lattice model adopted in previous studies. It consists of
Nx columns and Ny rows of identical atoms, and the atoms in
the left- and right-most columns are coupled to two heat
baths at different temperatures T+ and T− �T+�T−�, respec-
tively. See Fig. 1�a� for a schematic illustration. The periodic
boundary condition is imposed in y direction and the prob-
lem studied is the size dependence of the heat conductivity in
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FIG. 1. �Color online� Two lattice models used for 2D heat
conduction problems. Open dots represent the atoms residing on the
lattice. �a� The rectangle model adopted in previous studies; the left
�right� vertical solid line represents the hot �cold� heat bath of tem-
perature T+ �T−�. �b� The disk model investigated in this work. The
center �edge� solid circle has a radius of r1 �r2�, representing the hot
�cold� heat bath of temperature of T+ �T−�.
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x direction. In the following we refer to this model as the
rectangle model. Note that a crucial control parameter em-
ployed is the ratio 	=Ny /Nx. Lippi and Livi �17� performed
the simulations and observed a logarithmic divergence of the
conductivity. Later Grassberger and Yang �18� studied the
problem with larger system sizes, but instead, they found the
heat conductivity depends on the system size in a power law.
In particular, by varying the parameter 	 from 	
1 to
	=1 they observed a crossover of the heat conduction be-
havior from 1D to 2D; i.e., the power-law exponent varies
from 0.37 to 0.22. But in their further studies �19� they re-
claimed a logarithmic divergence for 	=1. A recent study
�20� retrieved the power-law divergence again with a fixed
ratio of 	=1 /2, and obtained a power-law exponent
��0.268. Meanwhile, some authors have declared that the
heat conductivity in the 2D rectangle model depends on the
system size logarithmically even for the Frenkel-Kontorova
system �21�. Noting that the Frenkel-Kontorova system is a
typical momentum nonconserving system and the normal
heat conduction behavior has been well verified in its 1D
counterpart �22�, this result seems unusual. In summary, the
size dependent behavior of the heat conduction in 2D sys-
tems is still far away from being clear.

We note that a crucial disadvantage of the rectangle model
lies in the inherent ambiguity of its dimensionality. Physi-
cally the model will reduce to an effective 1D model as
	→0, and as 	 is increased from zero, one may expect the
transition from 1D to quasi-1D first, and then that from
quasi-1D to 2D eventually. Hence the parameter 	 is closely
related to the dimensionality. But, however, at what values of
	 these transitions may occur has not been understood yet.
One may hence conjecture that the confusions arose in pre-
vious studies are due to the different effective dimensions
implied by various values of 	 considered in those studies. It
should be pointed out that in principle an ideal 2D model can
be achieved by resorting to an infinite, or large enough value
of 	; but in practice this is impossible: it could be prohibi-
tively expensive for numerical studies.

In order to overcome this difficulty, in this Communica-
tion we consider a variant lattice model. It is not only 2D
exactly, but also convenient to deal with numerically. Instead
of the rectangle geometry, our model is a disk, as shown
schematically in Fig. 1�b�. The center �edge� heat bath has a
higher �lower� temperature T+ �T−�; it is composed of the
nearest neighboring atoms whose bonds cross the center
�edge� circle of radius r1 �r2�. The fixed boundary conditions
are applied to our model; i.e., the inner �outer� layer of the
neighboring atoms next to the center �edge� heat bath is set
to be fixed. The two heat baths are arranged to be concentric.
In this setup the effective heat current flows along the radial
direction, and the problem to be studied is how the radial
heat conductivity depends on the radial scale of the system.
The radial scale of the system is given by L=r2−r1.

We refer to this model as the “disk model;” it has also
another advantage: by adjusting the parameter r1 /r2, one can
use it to model a broad spectrum of heat conduction prob-
lems. For example, in the limit of r1 /r2→1 it gives a variant
of the ideal rectangle model, while in that of r1 /r2→0 it
models the heat conduction problem with point-to-surface
contact. As the point-to-surface contact is common in many

real-world situations, the disk model may have practical im-
plications as well. One interesting example is experimental
investigations of the heat conduction behavior of the
graphene flakes �4–7�; in experiments as such the point-to-
surface contact is a frequently used technique to inject the
heat into the sample.

In the next we will investigate the size dependence of � in
the disk model. The Hamiltonian of the lattice is

H=�i,j�
pi,j

2

2m +V��qi+1,j −qi,j��+V��qi,j+1−qi,j��+U�qi,j��, where
qi,j is the displacement of the atom on the site �i , j� from its
equilibrium position and pi,j is the corresponding momen-
tum. Note that only nearest neighboring interactions are con-
sidered, and the dimensionless mass m is fixed to be unity.
We consider both the momentum conserving and noncon-
serving cases, represented by the 2D FPU and �4 systems,
respectively. Here we diskuss the �4 system instead of the
Frenkel-Kontorova system because it has a simpler on-site
potential, which can facilitate the numerical simulations con-
siderably �23,24�. To be concrete, we will focus on the
FPU-� system with V�x�= 1

2x2+ 1
4x4, U�x�=0, and the �4 sys-

tem with V�x�= 1
2x2, U�x�= 1

4x4. The role of the on-site poten-
tial U�x� in the latter is to destroy the conservation of the
momentum.

The Nose-Hoover heat baths �25� are implemented.
Therefore the motions of particles in heat baths are governed
by

q̇i,j = pi,j ,

ṗi,j = −
�V

�qi,j
− ��pi,j, �̇� =

pi,j
2

2T�

− 1, �1�

and the motions of other particles in between the heat baths
are described by

q̇i,j = pi,j, ṗi,j = −
�V

�qi,j
. �2�

The Boltzmamn constant is set to be kB=1 and the local
temperature is defined as Ti,j = �	�pi,j

x �2
+ 	�pi,j
y �2
� /2 with 	 · 


denoting the average. The heat flux reads

ji,j
x = − �f i,j

xx�pi,j
x + pi+1,j

x � + f i,j
yx�pi,j

y + pi+1,j
y ��/4,

ji,j
y = − �f i,j

xy�pi,j
x + pi,j+1

x � + f i,j
yy�pi,j

y + pi,j+1
y ��/4. �3�

In above definitions pi,j
x and pi,j

y are the x and y components
of the momentum vector pi,j, ji,j

x and ji,j
y are the x

and y components of the local heat flux, and
f i,j

xx =−
�V��qi+1,j−qi,j��

�qi,j
x , f i,j

yx=−
�V��qi+1,j−qi,j��

�qi,j
y , f i,j

xy =−
�V��qi,j+1−qi,j��

�qi,j
x ,

f i,j
yy =−

�V��qi,j+1−qi,j��
�qi,j

y .
As the disk model is rotationally symmetric, the heat flux

has only the radial component, hence the problem reduces to
a 1D problem. Given the 2D Fourier law, in our disk model
it reads Jr=−2�r dT

dr with Jr=2	jr ·r
 being the total heat
flux in the radial direction. Here jr is the local heat flux at the
position r �26�, whose Cartesian components are given in Eq.
�3�. Based on this, the heat conductivity can be calculated
with
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� � − Jr
ln�r1/r2�
2�T

, �4�

where �T=T+−T−, if

dT

d ln r
�

�T

ln�r1/r2�
. �5�

Equivalently, Eq. �5� implies that the temperature profile be-
tween two heat baths reads T�r��T−+�T

ln�r/r2�
ln�r1/r2� ; this will be

checked in the first place to justify the calculations of � with
Eq. �4�.

Now we present the numerical results for the 2D FPU-�
system. The temperatures of the heat baths are fixed to be
T+=16 and T−=4; initially all the atoms reside on their equi-
librium positions and take a random velocity generated from
the Maxwellian distribution at temperature T= �T++T−� /2,
then the motion equations are integrated with the velocity-
Verlet algorithm �27� with a time step 0.005. The transient
stage of 106 evolution time is diskarded �This time has been
verified to be long enough for the system to reach the sta-
tionary state�; then the next evolution of time 107 is per-
formed for the time average. We have also checked other
values of parameters and verified that our results do not
qualitatively depend on the their particular values taken here.

The results are summarized in Fig. 2. First of all in Fig.
2�a� the temperature T as a function of ln�r1 /r� / ln�r1 /r2� are
shown for r1=15, 30, and 60 with fixed r1 /r2=1 /2. It can be
seen that all the three curves are close to the temperature
profile implied by Eq. �5�, i.e., T depends on ln r linearly.
This result suggests that the heat conductivity can be ob-
tained via Eq. �4� immediately. With this facility, in Fig. 2�b�
the size dependence of the heat conductivity is shown, from
which a linear relation between ln � and ln�ln L� can be
clearly recognized. A further careful study suggests that
���ln L��, where the exponent � is a function of r1 /r2, and
its value can be evaluated conveniently by linearly fitting
ln � against ln�ln L� in Fig. 2�b�. We find that � decreases
from 1.45 to 1.15 as r1 /r2 increases from 1/5 to 5/6, indicat-
ing a definite trend of �→1 as r1 /r2→1.

In order to have a close look at this trend, in Fig. 2�c� we
plot � against r1 /r2, therein four data points are extracted
from Fig. 2�b� while others are calculated additionally in the

same way. Applying the best fitting, we find � versus L can
be fitted with �=�0−A�r1 /r2��, yielding �0=2.06�0.21,
A=1.05�0.21, and �=0.32�0.10. Within the range of error
it suggests that �→1 for r1 /r2→1 and � tends to a value
close to 2 for r1 /r2→0. This is the main result of this work.
Note that the limit r1 /r2→1 corresponds to the ideal rect-
angle model; hence �→1 extrapolated here is in agreement
with the theoretical predictions �8,9� for the 2D rectangle
model.

Due to the importance and subtlety of this issue, the evi-
dence of �� ln L for the ideal rectangle model is desired.
Though a direct investigation is numerically too expensive
�which requires to deal with large system size�, some hints
consistent with the logarithmic divergence of � can be ex-
tracted in the range of the system size accessible to us: We
fix r1 to be r1=100 and calculate � with r2 being a close
value such that r1 /r2�1; As shown in Fig. 2�d�,
���ln L�� still holds, and the best fitting suggests
�=1.02�0.02.

Finally, in Fig. 3 we present the results of the 2D �4

system. The heat baths with T+=12 and T−=8 are applied.
The temperature profiles share the similar features of the

FIG. 2. �Color online� Numerical simulation
results for the 2D disk model of the momentum
conserving FPU-� interaction. �a� Temperature
profiles in the radial direction for different values
of r1 with fixed r1 /r2=1 /2. �b� Dependence of
the heat conductivity � on the system size L for
r1 /r2=1 /5, 1/3, 1/2 and 6/5. �c� Divergence ex-
ponent � versus r1 /r2. The solid �red� curve is for
the best fitting �=�0−A�r1 /r2�� with �0

=2.06�0.21, A=1.05�0.21, and �=0.32�0.10.
�d� Dependence of the heat conductivity � on the
system size L with r1=100 and r2=103, 104, 107,
111, 115, and 119 �from left to right�. Note that in
�b� and �d� the error bars �not shown� are smaller
than the symbol size, and the �solid� red lines are
for the best linear fittings.

FIG. 3. �Color online� Heat conduction behavior of the 2D disk
�4 system. �a� Temperature profiles in radial direction for
r1 /r2=1 /3. �b� The heat conductivity versus the system
size for r1 /r2=1 /4 and 1/2. The �solid� red line is the best fitting
�=��−� exp�−L /�� with ��=0.308�0.001, �=0.14�0.01, and
�=14.56�0.08.
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FPU-� system, as seen in Fig. 3�a�, but the size dependent
behavior of � is quite different. Indeed, as can be seen in Fig.
3�b� � saturates at a constant regardless of r1 /r2. It shows
that the 2D disk �4 system still obeys the Fourier law as its
1D counterpart does �22�.

In summary, the disk model reveals some essential fea-
tures of heat conduction in 2D crystals. While the momen-
tum nonconserving �4 system obeys the Fourier law, the
momentum conserving FPU-� system has a divergent heat
conductivity ���ln L�� in the range of the system size stud-
ied. This divergent behavior has one important limit, i.e., �
→1 as r1 /r2→1; the logarithmic divergence in this case is
coincident with the theoretical prediction for 2D lattice sys-
tems. In addition, � has been shown to depend on r1 /r2
monotonically in 0�r1 /r2�1. It implies that the boundaries
introduced by the heat baths may govern the heat conductiv-

ity divergent behavior in 2D systems disobeying the Fourier
law, and hence should be taken into account necessarily in
studies. These results may also have experimental implica-
tions. For example, if the logarithmic heat conductivity di-
vergence is observed in laboratories with 2D lattice systems
of rectangle shape and two heat baths applied at two opposite
ends, the heat conductivity divergence measured instead with
a point-to-surface heat bath, just as being widely adopted in
the present experimental studies �4–7�, may take a distinct
form.
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