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Heat-flow equation motivated by the ideal-gas shock wave
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We present an equation for the heat-flux vector that goes beyond Fourier’s Law of heat conduction, in order
to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium
among the three components of temperature, namely, the difference between the temperature component in the
direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent
near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which
has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves
the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave

conditions.
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I. INTRODUCTION

Previous studies of planar shock waves in the ideal gas
have proven to be helpful in the fundamental understanding
of the continuum equations of change in hydrodynamics. The
earliest work of Mott-Smith proposed that the shock wave
would exhibit differences among the three components of
temperature, i.e., that the temperature component measured
in the shock direction would exceed that of the other trans-
verse directions, due to a bimodal distribution of tempera-
tures [1,2]. Later work, motivated by atomistic nonequilib-
rium molecular-dynamics (NEMD) computer simulations of
moderate and strong shock waves in dense fluids, showed
that the usual description of the constitutive equations gov-
erning shear flow (Navier-Stokes) and heat transport (Fouri-
er’s Law), do an adequate job of describing shockwave pro-
files [3-6].

Profiles of the hydrodynamic variables as functions of dis-
tance along the shock direction x can be constructed from
these simulations: density p, particle velocity u, pressure-
tensor components P, (along the shock direction) and P,,
=P,, (in the transverse directions), and internal energy per
unit mass E. Though the temperature is not directly deter-
mined in a shock wave, we will show how to obtain profiles
of the directional components of the kinetic temperature ten-
sor: T\, along the shock direction and T,,=T,, in the trans-
verse directions; one-third the trace of the kinetic tempera-
ture tensor is usually referred to as simply “the temperature,”
T, and we will continue to honor that practice, though keep-
ing in mind that 7, departs markedly from 7 in the vicinity
of the shockwave front, indicating a strong anisotropy in the
velocity distribution function.

The linear NS (and Fourier) constitutive “laws” of viscous
flow and thermal conduction relate fluxes of momentum P,
and energy Q to the gradients of velocity du/dx and tem-
perature d7T/dx, respectively, through the transport coeffi-
cients of viscosity—bulk 7y and shear 7s—and thermal con-
ductivity «, thereby augmenting the equilibrium equation of
state (EOS) that gives the energy and pressure as functions of
density and temperature. The transport coefficients are also
functions of density and temperature.
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For strong shock waves in the ideal gas, it was found that
the NS constitutive laws predicted narrower shock profiles
than were observed in NEMD simulations [7]. Later, it was
proposed that the temperature dependence of the transport
coefficients could be improved by exchanging the longitudi-
nal temperature T, for the average temperature T [8]. Since
the ideal-gas transport coefficients depend on the square root
of temperature, they are enhanced by the use of 7, which is
larger than T in a shock wave; therefore, the increased dissi-
pation broadens the shock width, in agreement with the
NEMD simulations. Nevertheless, the NEMD shock width is
even greater than predicted by NS with this 7, augmentation
of the transport coefficients—so-called “NSx.” The result is
that there is additional dissipation required, over and above
this NSx level. (Kum ez al. [9] also noted in subsequent work
that two-dimensional fluid shock waves exhibit temperature
maxima and that NS theory does not describe adequately all
aspects of the profiles they observed.)

For that reason, we propose an equation for the heat-flux
vector O, going beyond Fourier’s Law. While the motivation
to generalize heat conduction to deal with strong shock lies
in the direct observations from NEMD simulations, our aim
is to remain, as much as possible, at a macroscopic level with
recourse neither to higher-order expansion of fluxes in the
gradients nor sophisticated Boltzmann-equation solution
methods, such as Mott-Smith [1]. The basic idea is to allow
for differences in 7, and 7, and to supplement the descrip-
tion with an equation for relaxing the nonequipartition of
kinetic energy between T, and 7.

As the shock strength becomes larger, deviations from
local equilibrium increase, as shown in the differences be-
tween the temperatures computed in the various directions:
for weak shocks this temperature-difference relaxation can
be described by viscous shear dissipation. For stronger
shocks, however, NEMD simulations show that more dissi-
pation is needed. What we propose is to add an additional
relaxation term in the constitutive relation for the heat flux,
as is done in the Cattaneo equation (or telegrapher’s equa-
tion). This term is known to be relevant whenever the ratio of
the collision time to the hydrodynamic time cannot be ne-
glected. This is the case inside the shock front where the
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heat-flux variations take place on a few mean free paths, or
alternatively in a few collision times.

The description proposed is inspired by the work of Cat-
taneo [11] who was motivated by describing finite speed heat
transport: since then, similar formulations have been applied
to a wide variety of problems (see for example the review of
Ref. [11]). In approaches of this kind, the description goes
beyond local equilibrium thermodynamics, as would be ob-
tained, for example, in the first order of a gradient expansion
of kinetic-theory solutions. Therefore, the set of macroscopic
variables needed to describe the strong shock front does not
simply extend equilibrium concepts to nonequilibrium states.
This is usual whenever first-order gradient expansions are
not sufficient to account for observed phenomena: theories
become nonlinear and lose equilibrium-inspired simplicity
and symmetry [15]. Those are recovered, however, with the
decrease of shock strength.

After presenting those ideas in more detail within the con-
text of strong shock waves in gases, we compare the con-
tinuum theories with atomistic NEMD results. For the ideal
gas, the EOS and transport coefficients are simple analytic
functions of density and temperature, but numerical integra-
tion of the profiles is nevertheless necessary. Remarkably, the
HM prediction of the shock width and the magnitude of the
heat-flux vector are in much better agreement with NEMD
than NS.

II. SOLVING CONTINUUM EQUATIONS FOR THE
STEADY, PLANAR SHOCK WAVE

Consider a left-moving piston (velocity —u,) that gener-
ates a planar shock wave (velocity —u,) in the x direction into
an ideal gas that is initially stationary [10]. The shock front
separates the initial state (mass density py, particle velocity
u=0, pressure P, energy E,, and temperature ;) from the
final state (p;,u=-u,,P,,E;,T,). Moving in the frame of
reference of the shock front, i.e., by adding +u, to all veloci-
ties, the cold material streams in from the left at +ug, the
shock front is stationary at x=0, and the piston recedes to the
right at velocity u,—u,, with hot material stagnating against
the rightward-moving piston. In this frame of reference,
where the shockwave profile is steady in time, conservation
of mass, momentum, and energy are represented by constant
fluxes (in each case, the first equality is for the cold side; the
second is for the hot, dense, high-pressure side),

Polt,
pu = poiy = pr(uts =) = p="— =, (1)

where the volumetric strain e=V/V,—1=py/p;—1 (the vol-
ume per unit mass V=1/p and the final strain in the shocked
state is &;=—u,/u);

Pm.+pu2=P0+p0uf=Pl+p1(us—up)2, (2)

where P, is the longitudinal component of the pressure ten-
sor in the shock (x) direction;
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1 P,
=pl(us_up)|:El +_(I/ts—l/tp)2+_:|, (3)
2 p1
where E is the internal energy per unit mass, and Q is the
heat-flux vector (zero in both cold and hot equilibrium states
far from the shock front),

1 P P
L g Eri@owy D P
Pols 2 Po
1 P
:EO_E+_(us_M)2+_0<l_l>» (4)
2 Po U

which has been further simplified in the second line by using
the earlier flux equations. Likewise, we can express the
momentum-conservation condition more simply as

Pxx:P0+p0us(us_u):>Pl :P0+p()usup’ (5)

which demonstrates the Hugoniot condition for the final
pressure rise through the shock. The Hugoniot condition for
the final energy rise through the shock is obtained from Eq.
(4), where E=E|, u=u,~u,, and 0=0,

E =Ey+ Potp L1 =Ey+ l(P1 +Py)(Vo=Vy). (6)
pou, 27 2
The second equality expresses the triangular area under the
Rayleigh line in the P-V diagram, namely, the PV work done
by the shockwave process.

There are two Navier-Stokes (NS) constitutive relations
for the shock process: viscous flow (a longitudinal combina-
tion of viscosities, bulk 7y, and shear 7g) for the longitudinal
component of the pressure tensor P,, and Fourier’s Law of
heat flow for the heat-flux vector Q. The hydrostatic pressure
exceeds the equilibrium pressure P from the EOS, since the
volumetric strain rate €é=du/dx=0 (in compression),

- 1

P= E(Pxx + 2Pyy) = P(P, T) - 7]V(p’ T)8 (721)
The shear stress is given by half the normal-pressure differ-
ence P, —P,,,

1
T= E(Pxx - Pyy) == 77S(p’ T)S, (7b)

which is greater than zero in compression. Hence, the longi-
tudinal pressure-tensor component throughout the shock-
wave profile exceeds the equilibrium pressure P from the
EOS (the longitudinal viscosity is 7;),

_ 4 4
Pxx=P+§T=P(p,T)— n(p.1)é, 7= UANE
(7¢)

The corresponding components of the kinetic temperature
tensor are similarly given by
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T==(T, +2T,)=T,

W | =

1
n==(T.—-T,,),
sh 2(x )

yy

4

T.=T+ gTsh. (8)
Note, however, that there is no distinction between the tem-
perature and one-third the trace of the kinetic temperature
tensor, as there is between the equilibrium pressure from the
EOS and one-third the trace of the pressure tensor: in other
words, there is no kinetic equivalent to the bulk viscosity,
which depends entirely upon potential contributions and is
zero for the ideal gas.

It is worth mentioning that those temperature variables
and their properties appear naturally in a kinetic-theory con-
text (see Ref. [2]); their interpretation in terms of a parameter
characteristic of the distribution of peculiar particle veloci-
ties (i.e., velocities with respect to the local fluid velocity)
provide us with a simple physical meaning: it also brings
evidence that those definitions are independent of a particu-
lar geometry or frame of reference.

The alert reader may have noticed by now that Navier-
Stokes uses the common assumption of local thermodynamic
equilibrium; the EOS and transport properties are specified
as functions of p and 7, which are determined throughout the
shockwave profile as functions of the profile coordinate x.
No mention is made of the truly nonequilibrium variable 7',
the temperature in the direction of the shock that arises from
rapid uniaxial compression. How, you may well ask, is T,
supposed to be determined in a continuum theory? In
molecular-dynamics simulations, of course, T, can be calcu-
lated explicitly from particle coordinates and velocities. In
the case of the ideal gas, the pressure tensor is the product of
density and the temperature tensor: the relationship is
straightforward since there is no potential part of the pressure
tensor to contend with.

The Navier-Stokes constitutive equation for heat flow is
Fourier’s Law of thermal conduction for the heat-flux vector,

dTr
QO:_K(piT)d ) (9)
X

where « is the NS thermal conductivity that depends only on
the density and average temperature. The heat flow predicted
by NS in shock waves is insufficient to explain the observed
shock thickness in NEMD shock simulations. In earlier
work, we proposed to include the longitudinal temperature,
rather than the average temperature in the transport coeffi-
cients, but while that modification was an improvement over
NS, it was not entirely successful when compared to NEMD
results [8]. Moreover, such a modification does not really
address the relaxation process of the temperature compo-
nents in the shock front.

In order to describe the relaxation of the kinetic tempera-
ture tensor components in the shock wave, Fourier’s Law can
be extended to include a microscopic relaxation process, us-
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ing the Cattaneo (also known as the telegrapher’s) equation

[11],

20 aT

+7,—=0¢p=—-K—,
Q c(% QO Jx

(10a)
whose formal solution can be written as the Maxwell (expo-
nential) relaxation equation,

90 __2-% (10b)
at 7.

where 7, is a characteristic microscopic relaxation time (such
as the mean collision time). From Eq. (4), we have that the
isotropic Q is defined to be

1 P, P(p,T
&=E0—E(p,T)+ —(u? - u?) + —O—M,
Potts 2 Po p

(10c¢)

so that we see that the contribution to the heat-flux vector
made by the relaxation of the normal component of the pres-
sure tensor P, toward the equilibrium pressure P(p,T) gives

P.,.-P

0-0y= —puT == (P, — P)u=néu, (10d)

where the final equality follows from Eq. (7¢). Hence, Eq.
(10a) for the steady shock wave becomes

T du

Q=—KE+5277LEM. (11a)

This shows that, in the steady planar shock wave, the non-
equilibrium relaxation of the longitudinal kinetic temperature
T,, toward its average value T increases the (negative) mag-
nitude of the heat-flux vector, over and above that from Fou-
rier’s Law. The shock wave is characterized by a nonequilib-
rium velocity distribution function that is highly anisotropic
(cigar-shaped in the direction of shock propagation) at the
front of the shock, which relaxes toward a spherical
Maxwell-Boltzmann distribution after the shock wave has
passed. The dimensionless parameter &, governs the strength
of the relaxation process; for NS, it is zero, but in general, it
is a number less than one, as we will show.

We can generalize the conductivity in Eq. (11a) to include
a nonlinear dependence on the strain rate, over and above the
NS value,

R(P’T»S): K(psT)[l - 51870(p’T)]’ (llb)
which introduces a term in Q that is second order in gradi-
ents, reminiscent of the most important higher-order term in
the Burnett expansion beyond NS [12,13]. The constant &, is
a dimensionless, positive number. In the section on results
from NEMD, we will show that this enhancement improves
the continuum prediction of the shockwave thickness.

026707-3



BRAD LEE HOLIAN AND MICHEL MARESCHAL

II1. IDEAL-GAS EQUATION OF STATE AND TRANSPORT
COEFFICIENTS

The equation of state for the ideal gas is
= , P=p—. (12)
m

For the ideal gas of hard spheres [12] of diameter o and
mass m, the bulk viscosity is zero, and the shear viscosity,
which depends only on temperature, not density, is given by

7s(p,T) = 1602 \/ =>77L Pofo\/\

Sm
= ——, (13a)
0 12p00‘2\’/7_7

where this convenient scaling parameter €8 is very close to
the mean free path in the initial state (which depends only on
density, and not on temperature),

o= —

R, = 1.044¢
= V2mly = 1. .
0 \2pyma? 0 0

5
=)=~ (13b)
12
The mean collision time that corresponds to the mean free
path € is 7.={/c, where ¢ is the average thermal speed

((8KT/ 7m),

o m |m (13¢)
T,=—F=""73 c
Vmpa®
And finally, the ideal-gas thermal conductivity is
75k KT 45k
k(p,T) = 7L (13d)

6402 " 16m

It is useful to scale the shock profile variables: the fluid
velocity, when scaled by shock velocity, is the scaled volume
per unit mass, so that the scaled density is inherently the
inverse of velocity, as seen in Eq. (1),

e=v-1 (14)

=—5, e=—, p=—. (15)

The longitudinal component of the pressure tensor from Eq.
(5) is then

Pu=Pot+1l-v=po-e. (16)
From Eq. (4), the scaled heat-flux vector becomes

1

2
e—poe+ e
2

q=_3=e()_
Polt

=eO—e+p0(1—v)+%(1—v)2. (17)

Finally, when the scaled x coordinate in the direction of
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shock propagation is y, the scaled gradients of velocity v’
and temperature ¢’ that appear in NS and Fourier are

~du X . ugdv o oug
§=—, ==, g=——=—0',
a X7 Ody €

dT mufdt mué2
‘ . (18)

Now, remembering that vy=1, we can write the scaled NS
constitutive equation [Eq. (16))] for the case of the ideal gas,

1 t s
pxxz_X:tO+1_v:__ OU,
v v pousty
t [, —1
N TR - =, (19)
v v\t

and the scaled version of Fourier’s Law from Egs. (9) and
(18), using Eq. (17) to express g for the case of the ideal gas,

q=%(f0—t)+fo(1 —v)+%(1 -v)?

Km 45 r q
Gt =— A\t =t = ——.
16 45 r
=\

16

20
pou k€, (20)

(At the so-called NSx level, |t,, is substituted above for the
Jt dependence of the longitudinal viscosity, the thermal con-
ductivity, and the mean collision time.) With the help of Egs.
(13¢) and (18), the scaled version of Eq. (11) for our new
relaxation and Burnett generalization of the heat flux be-

comes
45 3 t
=—— 1+—5 Xx—l t’—5t -1
q 16\;|_ 5 l(t )J 2(xx )

q+ 52(txx - t)

=t =- .
45 r 3 Ty
—Nt| 1+=6|— -1
5 t

(20b)

When the two parameters &8;=8,=0, Fourier’s Law [Eq.
(20a)] is recovered from Eq. (20b).

We see from Eq. (19) that the longitudinal temperature 7,
is entirely determined by the velocity (or volume) v,

to =10 +v(1 —v). (21)

Thus, we can conclude that 7., is mainly due to the uniaxial
compression of the shock wave, and is therefore distinct
from the temperature . From Eq. (19), it is clear that since
the strain rate in compression is negative (v’ =<0), 1, =1.
Moreover, Eq. (21) demonstrates that 7, exhibits a peak in
the vicinity of the shock front.

From the Hugoniot jump condition for the energy for
strong shocks (Py=0=E,=T,), we see from Eq. (6) that
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=31 =31) =3v,(1-v) =v] = (1 -v,)?

1 4
:>vl=Z’ p1=4p0’ us=§up’

(22)

Usually, the relationship between shock and piston velocity
is written u;=cy+su,; for the ideal gas, cp=0 and s=4/3.
Notice that, from Eq. (21), at the scaled particle velocity v
=1/2, the peak in r,,=1/4=(4/3)t, serves to define the lo-
cation of the shock front.

To get the continuum theory shockwave profiles as func-
tions of the reduced x-coordinate y, we integrate Eq. (19) to
get the particle velocity v and Eq. (20) to get the temperature
t. We have to begin the integration at the hot end, where the
piston initiates and supports the shock wave. The equations
can be solved by first-order finite differences, with the inte-
gration step dy negative.

The initial conditions for the strong shock are #;=3/16
and v;=1/4. We found that starting at y=2, with dy
=-10"* and v=v,+107°, gives sufficient accuracy; the un-
shocked state, to which the solution tends, is characterized
by #,=0. We identify the origin of the steady shock front
with the maximum of ¢,,=1/4=(4/3)t,, where the particle
velocity v=1/2, and shift the origins of the various profiles
accordingly. Since the velocity profile is not really symmet-
ric, this fiducial mark occurs much closer to the maximum in
the strain rate than the halfway point between cold and hot
particle velocities, another common choice for the origin.
Moreover, this point in the shockwave profile is common to
all levels of approximation for strong shock waves in the
ideal gas, since it is a symmetry point of the mass and mo-
mentum fluxes.

IV. RESULTS

The modifications we have proposed for the heat-flow
equation—nonlinearity in the conductivity and temperature
relaxation—reduce the gradient of temperature from its
Fourier-Law value, leading to a wider shock wave, in much
closer agreement with nonequilibrium molecular-dynamics
(NEMD) simulations of strong shocks in the ideal gas. The
new relaxation term in the heat-flux vector is motivated by
the need to convert the mechanical “temperature” T, into its
transverse brethren 7, and T, in the course of collisions
near the shock front. This transport mechanism operates in
the process of uniaxial planar shock waves, and not in the
usual flow of heat from a hot body to a cold one, since the
shock wave is unique in its capability to generate
longitudinal-to-transverse disequilibrium in the momentum
distribution.

The zeroth-order Navier-Stokes (NS) solutions for the av-
erage temperature and the component of temperature in the
shockwave direction are shown in Fig. 1 as functions of the
scaled coordinate, as well as the so-called NSx theory [8],
where the 7-dependence in the transport coefficients is re-
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FIG. 1. (Color) Temperature profiles (functions of position) for
shock waves in the ideal gas; 7 is the average temperature (dashed
lines, open circles), 7, is the component in the direction of the
shock wave (solid lines and circles). The maximum value of 7,
marks the common origin of the shock front for all curves; #;
=0.1875 is the final temperature of the gas at the hot end near the
piston (far right-hand side); initial temperature at the cold end (left-
hand side) is zero. Nonequilibrium molecular-dynamics (NEMD)
simulation data points are for the ideal-gas limit of hard spheres in
three dimensions [7]. NS=Navier-Stokes-Fourier (8;=5,=0) (blue
or thin black), NSx=NS with ¢-dependence of transport coefficients
replaced by f,, (green or light gray), HM (0,0.5) is Holian-
Mareschal heat-flux equation [Eq. (11)] with temperature relaxation
only (red or gray), and HM (2,0.5) includes nonlinear Burnett con-
ductivity as well as relaxation (thick black).

placed by T,,. Then, the HM heat-flux vector modifications
are presented, beginning with only the temperature relax-
ation contribution, and then adding the Burnett-like nonlin-
earity (strain-rate dependence) to the conductivity. These
continuum theories are compared with (NEMD) simulations
of strong shocks in the hard-sphere ideal gas, such as de-
scribed in Ref. [7].

Note that as we progress in complexity from NS to relax-
ation only, to relaxation with Burnett-like nonlinearity of the
conductivity, the shockwave thickness increases, and the
curves approach NEMD more closely. As we stated earlier,
the NSx modification is an improvement over NS, but does
not match NEMD nearly as well as the HM theory.

Finally, we show in Fig. 2 the heat-flux vector for Navier-
Stokes-Fourier, the NSx version, our HM modification to
Fourier’s Law, and NEMD simulations. Since the position (x
axis) in all our figures corresponds to time for a mass ele-
ment being shocked, the maxima in the magnitude of the
gradients of velocity and temperature occur before the
maxima in the magnitude of their corresponding fluxes
(shear stress and heat-flux vector, respectively); that there is
a lag time between cause and effect is a feature common to
NS, HM, and NEMD. (This is also discussed in Ref. [14] for
shock waves in a two-dimensional fluid of soft particles.)
The excellent agreement between HM and NEMD demon-
strates that incorporating the two effects, namely, nonlinear-
ity and relaxation of the temperature differences between
normal and transverse components, is essential for a com-
plete understanding of the thermal effects in shock waves.
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FIG. 2. (Color online) Heat-flux vector profile for a shock wave
in the ideal gas. NS=Navier-Stokes-Fourier (blue or thin black),
NSx=NS (green or light gray) with z-dependence of transport co-
efficients replaced by t,,, HM (red or gray, and and thick black) as
in Fig. 1, NEMD=nonequilibrium molecular-dynamics simulations.
The maximum (negative) magnitude of the heat flux occurs on the
cold side of the shock front (i.e., farther from the piston), but the
position and magnitude of the NEMD data are more closely
matched by HM than by either NS or NSx.

On the other hand, the profiles on the hot side of the shock
front show that further improvement is possible, but may be
indications of yet other mechanisms of relaxation or higher-
order terms in the hydrodynamic description.

V. CONCLUSION

We have presented a heat-flux equation Eq. (11) [in scaled
form, Eq. (20)], motivated by nonequilibrium molecular-
dynamics simulations in the ideal-gas regime, that goes be-
yond Navier-Stokes, and improves the agreement between
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theory and computer experiments, particularly in its better
prediction of the shockwave thickness.

In the case of dilute gases, kinetic theory is also success-
ful in predicting features we are dealing with in this paper, in
particular Mott-Smith types of solutions of the Boltzmann
equation [2]. Our approach remains [with the noticeable ex-
ception of Eq. (10)] at a macroscopic level: we want to iden-
tify the proper generalization of Fourier’s law required for
describing strong shocks. In preliminary work, we have
shown that similar mechanisms can also be observed in con-
densed materials, namely, dense fluids, where the continuum
prediction of 7, is much more challenging than the dilute
gas case.

The two essential ingredients we have used in our ap-
proach are (1) to consider two temperatures in the set of state
variables, given the observed important departure from equi-
partition of energy, and (2) to add a (microscopic) relaxation
equation for the temperature difference on the scale of a
mean free time, making use of the formalism of the Cattaneo
equation. We make no claim of generality beyond the case of
strong shock waves.

This is rather surprising from the point of view of the
usual picture of nonequilibrium transport of heat, but then
the shock wave presents new nonequilibrium features not
seen in other steady-state situations.
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