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The population annealing algorithm introduced by Hukushima and Iba is described. Population annealing
combines simulated annealing and Boltzmann weighted differential reproduction within a population of repli-
cas to sample equilibrium states. Population annealing gives direct access to the free energy. It is shown that
unbiased measurements of observables can be obtained by weighted averages over many runs with weight
factors related to the free-energy estimate from the run. Population annealing is well suited to parallelization
and may be a useful alternative to parallel tempering for systems with rough free-energy landscapes such as
spin glasses. The method is demonstrated for spin glasses.
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I. INTRODUCTION

One of the most difficult challenges in computational sta-
tistical physics is sampling the low-temperature equilibrium
states of systems with complex free-energy landscapes such
as those that occur, for example, in spin glasses, configura-
tional glasses, and biomolecules. Standard Markov chain
Monte Carlo �MCMC� methods such as the Metropolis algo-
rithm become stuck in local minima and are unable to cor-
rectly sample the equilibrium distribution. Attempts to solve
this difficulty generally involve simulating a broadened dis-
tribution that smooths the free-energy landscape. One of the
most widely used of these methods is parallel tempering or
replica exchange Monte Carlo �1–3�. In parallel tempering,
many replicas of the system are simultaneously simulated
using a standard MCMC method with each replica at a dif-
ferent temperature. The sequence of temperatures spans a
range from high temperatures where the free-energy land-
scape is smooth to the low temperatures of interest where it
is rough. Replica exchanges are allowed that permit replicas
to move between low and high temperatures. The hope is
that visits to high temperatures allow more rapid mixing of
the Markov chain and equilibration between different
minima.

Closely related to the problem of sampling equilibrium is
the problem of finding ground states of systems with com-
plex energy landscapes. In computer science the same ques-
tion arises for NP-hard combinatorial optimization problems.
One generic method for finding ground states or at least low-
lying states is simulated annealing �5�. In simulated anneal-
ing the system is subject to an equilibrating MCMC proce-
dure at a sequence of temperatures. Following this
“annealing schedule” the system is gradually cooled through
the sequence of temperatures from a high temperature where
the free-energy landscape is smooth to a low temperature
where it is rough. The hope is that the system will explore
many minima while the temperature is high and settle into
the deepest minima as the temperature is gradually lowered.

The population annealing algorithm introduced by Huku-
shima and Iba �4� is based on simulated annealing �5� but
also shares features with parallel tempering, histogram re-
weighting �6�, and diffusion Monte Carlo �7�. Like simulated
annealing, it is a single pass algorithm with an annealing
schedule. A population of replicas of the system is simulta-
neously cooled following the annealing schedule. Unlike
simulated annealing, the population is maintained in equilib-
rium throughout the annealing process and an equilibrium
sample is generated at every temperature. Equilibrium is
maintained by differential reproduction �resampling� of rep-
licas according to their relative Boltzmann weights. A useful
by-product of the calculation of relative Boltzmann weights
is direct access to the equilibrium free energy at every tem-
perature. Methods for extracting free-energy differences
from population annealing are related to Jarzinski’s equality
�8�. Population annealing is an example of a sequential
Monte Carlo scheme �9� and is related to nested sampling
methods �10�.

In �4�, Hukushima and Iba compared population anneal-
ing to parallel tempering and showed that they produce re-
sults with comparable efficiencies. However, they noted that
population annealing suffers biases for small population size.
The main contribution of this work is to show that these
biases, together with statistical errors, can be made arbitrarily
small by using appropriate weighted averages over many in-
dependent runs of the algorithm. The weight factor is ob-
tained from the free-energy estimator from each run and the
variance of this estimator serves as a useful diagnostic for the
algorithm. As a proof of principle of the method, we apply it
to one-dimensional �1D� and three-dimensional �3D� spin
glasses.

In the next section of the paper population annealing is
described. In Sec. III the weighted averaging procedure is
introduced. Section IV describes simulations of the Ising
spin glass and the paper closes with a discussion.

II. ALGORITHM

We now describe our implementation of the algorithm in
detail. We start with a population of R0 replicas of the sys-*machta@physics.umass.edu
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tem. For disordered spin systems, each replica has the same
set of couplings. Each replica is initialized at infinite tem-
perature, �=0; thus, each replica is in an independent mi-
crostate chosen at random with equal probability from
among the �=��1 microstates of the system. For Ising sys-
tems with N spins, the microstates � are described by N
binary variables and �=2N. Without loss of generality, sup-
pose that the average energy of the system at infinite tem-
perature is zero, �E���=0=0, as is the case for the Ising
model. The algorithm can also be used with a finite initial
temperature but then absolute measurements of the free en-
ergy are not available.

The temperature of the set of replicas is now lowered
while keeping the ensemble in equilibrium. In order to ac-
complish this, the population is resampled—some replicas
are reproduced and others are eliminated with the expected
number of replicas held fixed. Suppose we have a population

of R̃� replicas chosen from an equilibrium ensemble at tem-
perature 1 /� and we want to lower the temperature to 1 /��,
with ����. For a replica j with energy Ej the ratio of the
statistical weights at � and �� is exp�−���−��Ej�. This re-
weighting factor is typically large, so that a normalization is
needed to keep the population size reasonable. We compute
normalized weights � j�� ,��� whose sum over the ensemble

is R̃�,

� j��,��� =
exp�− ��� − ��Ej�

Q��,���
, �1�

where Q is the normalization given by

Q��,��� =

�
j=1

R̃�

exp�− ��� − ��Ej�

R̃�

. �2�

The new population of replicas is generated by resam-
pling the original population. The number of copies of state j

in the new population is N��R�� / R̃��� j�� ,����, where N�a�
is a Poisson random variate with expected value a. If

N��R�� / R̃��� j�� ,����=0, the configuration j is eliminated.

The size R̃�� of the population after the temperature step has
expectation R��. In our implementation, the size of the popu-
lation is variable but stays close to the set of target values
�R�	 in contrast to the fixed population method introduced in
�4�.

Of course, the new population is now more correlated
than before since several replicas may be in the same mi-
crostate. Furthermore, to the extent that the energy distribu-
tions at the two temperatures do not overlap, the equilibrium
distribution may no longer be adequately sampled at the
lower temperature. In order to mitigate both of these diffi-
culties, all replicas are now subject to an equilibrating
MCMC process at the new temperature.

The algorithm thus consists of a sequence of temperature
steps with differential reproduction within the population ac-
cording to the relative Boltzmann weights followed by addi-
tional equilibration at the new temperature using a standard
MCMC procedure. The ordered sequence of K+1 inverse

temperatures, �0��1��2¯ ��K=0, determines the an-

nealing schedule. The population of R̃�k
replicas is equili-

brated at �k using �k sweeps of the MCMC process. The
temperature is now lowered to �k−1 with differential repro-
duction as described above followed by �k−1 MCMC sweeps.
At each temperature, observables are measured after the
MCMC sweeps and ln Q is recorded. In the present imple-
mentation, observables are measured after resampling, so
that no weight factors are needed in taking averages. The
temperature is lowered until �0 is reached. In the simplest
version of the algorithm the target population sizes and num-
ber of MCMC sweeps are independent of temperature, R�

=R, and �k=� for all �.
Either the MCMC process or the differential reproduction

steps are in principle sufficient to produce equilibrium at the
new temperature although neither one individually is effi-
cient. However, the combined processes are substantially
more efficient than either alone.

One advantage of the algorithm is that it gives direct ac-
cess to the free energy at each temperature. The normaliza-
tion factor Q�� ,��� is an estimator of the ratio of the parti-
tion functions at the two temperatures,

Z����
Z���

=

�
�

e−��E�

Z���
= �

�

e−���−��E�
 e−�E�

Z���
� = �e−���−��E���

�
1

R̃�

�
j=1

R̃�

e−���−��Ej = Q��,��� . �3�

Thus, the estimator of the free energy F̃ at each simulated
temperature 1 /�k is

− �kF̃��k� = �
�=K

k+1

ln Q���,��−1� + ln � . �4�

This section concludes with pseudocode for the algorithm.

Population annealing

Initialize R0 replicas at �=0
for k=K to 1 step −1 do

Compute the partition function ratio Q��k ,�k−1�
�Eq. �2�	
for all j� R̃�k

do
Compute the relative weight � j��k ,�k−1� �Eq. �1�	
Resample: make N��R�k−1

/ R̃�k
�� j��k ,�k−1�� copies

of replica j
�N�a� is a Poisson random variate with mean a	

end for

Compute the population size R̃�k−1

for all j� R̃�k−1
do

Equilibrate replica j for �k−1 Monte Carlo sweeps
end for
Compute observables and the free energy at �k−1
�Eq. �4�	

end for
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III. WEIGHTED AVERAGES

Unless the population size, number of temperature steps,
and number of MCMC sweeps or step are sufficiently large,
the result of a single run of population annealing is signifi-
cantly biased because the equilibrium distribution is not fully
sampled. Simple averaging over an ensemble of independent
runs does not reduce this bias. However, an appropriate
weighted average over an ensemble of independent runs ef-
fectively reduces both statistical errors and biases. The free-
energy estimator from a given run of the algorithm repre-
sents the weight that should be assigned to the observations
made during that run. In particular, suppose that an observ-

able A is estimated in run r to be Ãr��� at temperature 1 /�.

An unbiased estimate of Ā��� from the entire simulation is
the weighted average over the ensemble of M independent
runs of population annealing,

Ā��� = �
r=1

M

Ãr����r��� , �5�

where the weight for run r is given by

�r��� =
e−�F̃r���

�
r=1

M

e−�F̃r���

, �6�

and F̃r��� is the free-energy estimator �4� for the rth run of

the algorithm at temperature 1 /�. The weight factors e−�F̃r���

are needed because they represent the total weight at that
temperature that would have been associated with the rth run
if the normalization factor in Eq. �1� had not been used to
keep the population size near the target size. Runs with dif-
ferent but fixed target populations sizes R�r� can be combined

using Eq. �5� with e−�F̃r��� replaced with R�r�e−�F̃r��� in both
the numerator and denominator of Eq. �6�.

The free energy appears to require a more complicated
weighting formula because it is the sum of terms from all
temperatures. However, as shown below it may be expressed
as a simple average. The quantity that is directly averaged at
each temperature is Q, not ln Q, so the logarithm must be
taken after the weighted average. The unbiased estimate of

the free energy F̄��k� is given by

− �kF̄��k� = �
�=K

k+1

ln�
r=1

M

Qr���,��−1��r����� + ln �

= �
�=K

k+1

ln��
r=1

M

exp�− ��−1F̃���−1��

�
r=1

M

exp�− ��F̃����� �
= ln 1

M
�
r=1

M

exp�− �kF̃��k��� . �7�

The inner summation indexed by r is over the ensemble of
independent runs while the outer summation indexed by � is

over the temperature steps between the highest temperature
�=K and the temperature of interest �=k. The second ex-
pression follows from the first via Eqs. �4� and �6�. The last

expression shows that exp�−�F̃���� may be directly aver-
aged.

Errors in the weighted averages can be obtained by resa-
mpling. Here, we use the bootstraps method �11� where the
error is the standard deviation of a large number ��102� of
resampled ensembles, each of size M.

Statistical and systematic errors in the method are deter-
mined by the probability distribution of the dimensionless

free energy −�F̃. If this distribution has a variance that is
much smaller than unity and tails that decay faster than ex-
ponential then the important weight factors �6� do not vary
much and the tails of the distribution are unimportant. On the

other hand, if the variance is larger than 1, Ā is controlled by
the upper tail of the distribution and the ensemble size M

must be large to reduce errors. In the case that −�F̃ is nor-

mally distributed, the typical value of −�F̃ that dominates
the sum in Eq. �5� is one variance �not one standard devia-

tion� above the mean. The variance of −�F̃ is thus a criterion
for the performance of the algorithm. If it is smaller than
about 0.5 then a modest ensemble of independent runs will
be sufficient to yield accurate results. Optimizing population
annealing should be guided by minimizing the variance of
the free-energy estimator for a fixed amount of computa-
tional effort. Of course, it is always possible that the actual

−�F̃ distribution has significant weight far above its mean
because of important low-energy states that have never been
explored. This diabolical situation would similarly fool
equilibration tests for parallel tempering �12�.

Population annealing using M independent runs with
population size R is less accurate than a single run with

population size MR. If Var��F̃� is small, the loss of accuracy
is small, and vice versa. Nonetheless, an ensemble of inde-
pendent runs has several important advantages. First, inde-
pendent runs with moderate R require only a single processor
or simple parallelism without communication between pro-
cessors. Large values of R are only practical with true paral-
lelism involving communication between processors. Sec-

ond, the measurement of the variance of �F̃ over the
ensemble provides a diagnostic for the method. Third, error
bars are simply obtained from an ensemble using resampling.

IV. APPLICATION TO ISING SPIN GLASSES

To illustrate the effectiveness of population annealing for
high-precision simulations we apply it to the Ising spin glass
in one and three dimensions. Ising spin glasses are extremely
difficult to equilibrate at low temperature. The Ising spin
glass is defined by the energy

E = �
�i,j�

Ji,j	i	 j , �8�

where 	i= 
1 is the Ising spin at site i and the summation is
over the nearest-neighbor bonds �i , j� of the lattice. We con-
sider the simple cubic lattice �3D� with periodic boundary

POPULATION ANNEALING WITH WEIGHTED AVERAGES:… PHYSICAL REVIEW E 82, 026704 �2010�

026704-3



conditions and a periodic chain of spins �1D�. The couplings
Ji,j are quenched random variables chosen independently for
each bond from a Gaussian distribution with mean zero and
variance one. The 3D Ising spin glass with Gaussian cou-
plings has a continuous phase transition at transition tem-
perature Tc=1.052 �13�. The low-temperature phase of this
model is still the subject of controversy. On the other hand,
the 1D Ising spin glass is a trivial model. Nonetheless, it has
a rough free-energy landscape and is difficult to equilibrate
using generic Monte Carlo methods including parallel tem-
pering �14,15�. The 1D spin glass has the advantage that the
Monte Carlo results can be compared with exact transfer-
matrix calculations.

For the 1D spin glass we simulated 18 disorder realiza-
tions for a chain with N=256 spins using population anneal-
ing. We report results for the lowest temperature, 1 /�0=0.2.
We used a mean population size R=1000 with K+1=100
temperatures and �=50 Metropolis sweeps at each tempera-
ture. Of the 99 temperature steps, 19 are equally spaced in
inverse temperature between �=0 and �=0.5, while the re-
maining 80 are equally spaced in temperature. Each run used
5�106 Metropolis sweeps and for each realization the en-
semble consisted of M =200 independent runs.

First we report results for a single 1D disorder realization
at the lowest temperature, 1 /�0=5. Figure 1 shows the his-

togram of the dimensionless free energy −�0F̃. The variance

of −�0F̃ is 0.34 and the distribution does not appear to have
fat tails. Therefore, we expect that weighted averages should
be useful in calculating observables. Using Eq. �5� to com-

pute Ē and the bootstraps method to find the one standard

deviation error, we obtain Ē=−224.175
0.037 compared to
the exact value, Eexact=−224.1896, obtained from numeri-
cally summing the transfer matrices. On the other hand, the
unweighted average energy of the ensemble is
−223.987
0.024. Thus, the unweighted average is signifi-
cantly biased while the weighted average shows no bias to
within the statistical errors. The ground-state energy for this
disorder realization is −226.861 so at 1 /�0=5 the system is
quite close to its ground state. For the free energy of the
same realization we have −�0Fexact=1147.8697, while the

weighted average is −�0F̄=1147.82
0.04 and the un-

weighted average is 1147.65
0.04. Again, the weighted es-
timator is not significantly biased while the unweighted esti-
mator is biased.

Next we consider the set of 18 disorder realizations and
investigate how the bias decreases as the size of the en-
semble of runs increases. We divide the 200 independent
runs for each disorder realization into B blocks of size k
=200 /B and then perform weighted averages for the energy
within each of these blocks. Next we take the mean over the
set of blocks and finally average these means over the 18
disorder realizations. Let �k be this disorder averaged bias,

�k =
1

18�
j=1

18 
 1

B
�
b=1

B

Ēj
b� − Ej

exact� , �9�

where Ēj
b is the weighted energy estimator in block b with

block size k=200 /B. We can similarly obtain the standard
error of the mean from the B blocks. Figure 2 shows the bias
�k as a function of block size k. The case k=1 corresponds to
unweighted averages. By the time an ensemble of eight runs
is used, the bias is reduced by approximately a factor of 6.
The weighted energy estimator for the full ensemble of M
=200 runs for each disorder realization yields a mean bias of
−0.0013
0.0069, where the error estimate is obtained using
the bootstraps method. This weighted average displays no
bias within the error bars. Similar results hold for the free

energy. The M =200 weighted estimate of −�F̄ averaged
over the 18 disorder realizations deviates from the exact
value by 0.0018
0.0083, which is again indistinguishable
from zero, while the unweighted free energy averaged over
the same 18 realizations deviates from the exact answer by
−0.1013
0.0077.

For the 3D Ising spin glass we studied 25 disorder real-
izations using population annealing for a system size of 83.
The target population size is R=2000, and K+1=100 tem-
peratures are evenly spaced between 1 /�K+1=2 and 1 /�0
=0.2 with �=100 Metropolis sweeps performed after every
temperature step. Each run requires 2�107 Metropolis
sweeps. In addition to the energy and free energy, we con-
sidered the observable , the probability that the overlap is
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FIG. 1. �Color online� The histogram of the dimensionless free

energy, −�0F̃, for population annealing applied to a single realiza-
tion of a 1D Ising spin glass. The exact value for this realization is
−�0Fexact=1147.87.
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FIG. 2. �Color online� The bias for the weighted energy estima-
tor �k for ensemble size k averaged over 18 disorder realizations for
the 1D Ising spin glass.
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less than 0.2, =Prob��q��0.2�. The overlap is defined as
q= �1 /N��i=1

N 	i
�1�	i

�2�, where the superscripts refer to two in-
dependent spin configurations of the system. The probability
distribution for the overlap reflects features of the free-
energy landscape. When there is substantial weight for small
q, there are two or more free-energy minima that are widely
separated but with comparable free energies. For parallel
tempering this situation is expected to lead to long equilibra-
tion times �12�. Thus, it is interesting to look for correlations

between the variance of �F̃ and . In the study of spin
glasses,  is important in distinguishing the competing pic-
tures of the low-temperature phase of the 3D Ising spin glass
�16–19�. Since  involves the correlation between two inde-
pendent replicas, we use pairs of independent runs to con-
struct q. For each pair of runs, we compute q by averaging

over pairs of replicas, one from each run, and then evaluate ̃

for that pair. The appropriate weighted estimator ̄ is

̄ = �
r=1

M

̃r�r�, �10�

with

�r� =
e−��F̃r

�1�+F̃r
�2��

�
r=1

M

e−��F̃r
�1�+F̃r

�2��

, �11�

where the superscripts refer to the two of independent runs

from which ̃r is constructed. We did M =50 pairs of inde-

pendent runs to compute ̄.

Figure 3 shows a scatter plot of Var��0F̃� vs ̄ for the 25
disorder realizations. The values of  along the line 10−5 are
estimated as zero by the algorithm on the basis of 105 mea-
surements of the overlap. Most realizations have very small
values of , with only a few realizations dominating the
disorder average. The variance of the free-energy estimator
for the 25 realizations never exceeds 0.6. There appears to be
a correlation between a large variance of the free energy and
a large value of . Realizations with free-energy variances
less than 0.05 are all associated with very small values of the
overlap near zero. This correlation can be understood by re-
alizing that �0 implies that there are at least two free
energy minima with comparable free energies. If R is not
sufficiently large, the population of replicas may be domi-
nated by one or another free-energy minima in a single run
and thus display a large variance in free energy from one run
to another.

Of the 25 disorder realizations we now look more closely

at the realization with the largest variance of −�0F̃. This

“worst” realization has Var��0F̃�=0.572. For this realization
we obtained data from an ensemble of 125 runs �with R

=2000, K+1=100, and �=100�. The histogram of −�0�F̃
− F̄� is shown in Fig. 4 �left panel�. It should be noted that for
the 3D simulations the highest temperature is not infinite;
however, as we shall see below, a negligible contribution to

Var��0F̃� arises from high temperatures. The mean of −�0F̃

is 0.521 below the best estimate −�0F̄, and this deviation is

roughly equal to Var��0F̃� as expected. The value of  from

these runs is ̄=0.129
0.011 and the value of the energy is

Ē=−847.294
0.015. For this realization we also did simu-
lations with a larger target population size without changing

K or �. The histogram of −�0�F̃− F̄� for population size R
=10000 is shown in Fig. 4 �right panel�. For the larger popu-
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FIG. 3. �Color online� The probability of a small overlap ̄ vs

variance of the free energy Var��0F̃�, for a sample of 25 disorder
realizations of the 3D Ising spin glass.
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FIG. 4. �Color online� The histogram of the dimensionless free-energy deviation from its weighted average, −�0�F̃− F̄�, for one realiza-
tion of the 3D Ising spin glass. In the left panel, the mean population size is R=2000 and in the right panel R=10 000.
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lation size Var��0F̃�=0.122, so increasing the population
size by a factor of 5 has reduced the variance by nearly the
same factor. The estimate for  from this larger population

size is ̄=0.145
0.005, which is consistent with the results
from the smaller population size. The estimate for the energy

is Ē=−847.317
0.009, which is marginally consistent with
the smaller run. For comparison we simulated the same dis-
order realization using parallel tempering with two sets of 18
replicas each equally spaced in temperature with the same
high and low temperatures. The system was equilibrated for
106 sweeps and data were collected for 106 sweeps. We ran
this simulation 200 times to obtain means and errors. Thus,
the total number of Metropolis sweeps for the parallel tem-
pering runs was approximately 1.5�1010 compared to
approximately 1�1010 for population annealing. Parallel
tempering runs yielded =0.150
0.002 and E
=−847.307
0.004. Results are marginally consistent for
both  and E.

Next we consider an initial attempt to improve the perfor-
mance of the algorithm. The variance of the free-energy es-
timator should be minimized to optimize the algorithm. From

Eq. �4� we see that −�F̃��� at each temperature is a sum of
positive terms, so that successively lower temperatures have

successively larger variances. Figure 5 shows Var��F̃� as a
function of temperature for the worst disorder realizations
with the largest variance discussed above. The variance at
each temperature is obtained from 50 iterations of the algo-
rithm. The upper points �blue squares online� show the re-
sults from runs where the average population size is fixed,

R�=2000 for all �. The variance increases slowly for small �
and then much more rapidly for large �. The upward curva-

ture of Var��F̃� suggests that more replicas should be used at
low temperatures. The total computational work remains
nearly fixed if R�=1000 for ��0.9 and R�=3000 for �
�0.9. The lower points �red circles online� in Fig. 5 show
the results for this choice of target population size and dem-

onstrates that, indeed, a significant reduction in Var��F̃�
from 0.57 to 0.36 is achieved at the lowest temperature. This
attempt at optimizing the algorithm shows that there is room
for improving its performance by careful choice of the pa-
rameters.

V. DISCUSSION

Population annealing is a promising tool for measuring
the free energy and other observables in spin glasses and
perhaps other systems with rough free-energy landscapes. By
using weighted averages over an ensemble of runs, biases
inherent in a single run can be made small and high-
precision results can be obtained. If the variance of the di-

mensionless free-energy estimator Var��F̃���� is less than
about 0.5, high-precision results can be obtained from a rela-
tively small ensemble of runs. This variance thus serves as a
measure of the convergence of the algorithm.

The method can be optimized by minimizing the variance
of the free-energy estimator. In future work it would be im-
portant to optimize the method and study its efficiency and
scaling with the system size in comparison with well-
established methods such as parallel tempering.

Compared to parallel tempering, population annealing is
better suited to parallelization. Parallel tempering is opti-
mized with a relatively small number of replicas. Increasing
the number of replicas in parallel tempering improves the
acceptance rate of replica exchange moves but also lengthens
the round trip distance between the warmest and coldest rep-
licas. Thus, the optimum number of replicas is relatively
small in practice. On the other hand, population annealing is
monotonically improved by increasing the population size.
For example, for the L=8, 3D Ising spin glasses studied here
population annealing makes effective use of thousands of
replicas while parallel tempering is optimized with tens of
replicas. Population annealing may find use in quickly equili-
brating large systems using a very large population spread
over many processors.
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FIG. 5. �Color online� The variance of the free-energy estimator

Var��F̃���� vs � for one disorder realization for the 3D Ising spin
glass. The upper �blue squares� points show the result for a fixed
population size �R�=2000 for all �� while the lower �red circles�
points are for a population that grows for low temperature �R�
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