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The control of quantum dynamics is often concerned with finding time-dependent optimal control fields that
can take a system from an initial state to a final state to attain the desired value of an observable. This paper
presents a general method for formulating monotonically convergent algorithms to iteratively improve control
fields. The formulation is based on a two-point boundary-value quantum control paradigm �TBQCP� expressed
as a nonlinear integral equation of the first kind arising from dynamical invariant tracking control. TBQCP is
shown to be related to various existing techniques, including local control theory, the Krotov method, and
optimal control theory. Several accelerated monotonic convergence schemes for iteratively computing control
fields are derived based on TBQCP. Numerical simulations are compared with the Krotov method showing that
the new TBQCP schemes are efficient and remain monotonically convergent over a wide range of the iteration
step parameters and the control pulse lengths, which is attributable to the trap-free character of the transition
probability quantum dynamics control landscape.
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I. INTRODUCTION

A common quantum control objective is to drive a system
from a given initial state to a final state that maximizes the
expectation value of a particular observable. In recent years,
much progress in the quantum control field has been made
by drawing on powerful computers and state-of-the art laser
pulse shaping technologies �1� as well as optimal control
theory �OCT� �2–6�, including stochastic-based genetic algo-
rithms �GA� �7–10�, local control theory �LCT� �11–17�, and
the diffeomorphic modulation under observable-response-
preserving homotopy �D-MORPH� method �18–20�. The
OCT and LCT methods have provided the machinery for the
development of many practical computational algorithms for
simulating a variety of quantum control problems. In the
laboratory, a GA is frequently employed to guide the closed-
loop adaptive search for optimal control fields �21�.

A main challenge for quantum optimal control simula-
tions is dealing with the iterative process of searching for
time dependent control fields. The number of required itera-
tions can render the OCT- and GA-based methods computa-
tionally formidable for control problems involving just a few
degrees of freedom. Much effort has gone into developing
efficient schemes to meet these intense computational de-
mands, including the quadratically convergent conjugate-
gradient �CG� method �22�, rapid monotonically convergent
iteration algorithms �4,23–31�—especially the Krotov
method �23–25�, the Zhu-Rabitz algorithm �27,28� and its
variants �29,30�, and the recently developed D-MORPH
gradient-based searching technique �18–20�. The efficacy of
these approaches can be attributed to the general trap-free
nature of general optimal control landscape features �32–35�.
Among these methods, the D-MORPH method is particularly
useful for exploring quantum control landscapes �18�. Mono-
tonically convergent schemes have also been proposed to

solve quantum optimal control problems described by
integro-differential equations of motion �36� and to involve
nonlinear interactions �37,38�.

For any control design method a key objective is to reach
the target state with the smallest possible computational ef-
fort. In addition to seeking iteration-to-iteration monotonic-
ity, the monotonic convergence property would be attractive
to retain at every instant of time throughout the evolution
�31�, which is a manifestation of LCT �11–17� and many of
monotonic convergence algorithms �31�. Recently, a general
intuitive formulation of LCT was developed in the context of
Lyapunov-type functions �16,17� in terms of a performance
index that tracks the so-called dynamical invariants �39�
�Sec. II below provides an explicit definition of a dynamical
invariant� of the field-free Hamiltonian �16�. This technique
was further extended by tracking the dynamical invariants
associated with a reference control field to facilitate the com-
putation of the desired control field �17�. The LCT procedure
is related to inverse tracking control methods �40–44� which
allow for the construction of a control field on the fly from
one time step to the next. Although the LCT method is com-
putationally attractive, it is generally difficult to determine
the length of time needed to steer a quantum system to the
desired state �17�. Toward this end, a promising monotoni-
cally convergent iterative scheme has been proposed recently
�17� drawing on the prospect of generating short intense
pulses �14,15,17�.

This paper presents the control of quantum systems as a
two-point boundary-value quantum control paradigm
�TBQCP� based on a nonlinear integral equation of the first
kind. The integral equation arises from the Heisenberg equa-
tion of motion for tracking a dynamical invariant �39� asso-
ciated with the observable. A self-consistent solution of this
nonlinear integral equation coincides with the LCT formula-
tion for the control field. TBQCP provides new insights into
many existing monotonically convergent iteration tech-
niques, particularly the Krotov method. In addition, TBQCP
and OCT are related in that the latter involves the dynamical
invariant belonging to the observable in the variational OCT
cost functional. This paper shows that the TBQCP frame-
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work can be employed to develop efficient and robust algo-
rithms for seeking optimal control fields.

Section II of the paper presents the TBQCP formulation.
Section III compares TBQCP and Krotov algorithms. Section
IV describes the relationship between TBQCP and the varia-
tional OCT formulation. In Sec. V various accelerated
TBQCP monotonically convergent schemes are proposed for
iterative computation of control fields. Numerical simula-
tions corresponding to two significantly different control
pulse lengths are presented in Sec. VI using a model of the
OH diatom. Comparisons are made between various TBQCP
schemes and the Krotov method, based on initial reference
control fields, one from LCT and another given as a linearly
chirped field. Finally, a short summary of the work is given
in Sec. VII.

II. GENERAL FORMULATION

The TBQCP algorithm addresses the objective of finding
a control field E�t� to steer a quantum system from an initial
state ���0�� to a final state ���T�� at time T so as to attain the
desired expectation value �O�T������T��O�T����T�� of a
time-dependent Hermitian operator �observable� O�t�. The
state wave function ���t�� evolves according to the time-
dependent Schrödinger equation

�

�t
���t�� =

1

ı�
	H0 − �E�t�
���t�� , �1�

and can be cast as

���t�� = U�t,0����0�� , �2�

where

�

�t
U�t,0� =

1

ı�
	H0 − �E�t�
U�t,0�, U�0,0� = I . �3�

The expectation value �O�t�� is defined as

�O�t�� � ���t��O�t����t�� . �4�

Here H0 and � are, respectively, the field-free Hamiltonian
and dipole moment operator. In this paper, we consider track-
ing a positive semidefinite explicitly time-dependent �dy-
namical� invariant O�t� �i.e., �O�t���0, dO�t� /dt=0 and
O†�t�=O�t�∀ t� �0,T�� associated with a reference control
field E�0��t� and satisfying the invariant equation �39�.

dO�t�
dt

�
�

�t
O�t� +

1

ı�
�O�t�,H0 − �E�0��t�� = 0, O�T� = OT,

�5�

where O�T� is chosen to coincide with a specific physical
observable operator OT of interest. From Eq. �5�, the dynami-
cal invariant O�t� can be formally written as

O�t� = U0�t,T�OTU0
†�t,T� , �6�

where the propagator U0�t ,T� is governed by the backward
propagated time-dependent Schrödinger equation

�

�t
U0�t,T� =

1

ı�
	H0 − �E�0��t�
U0�t,T�, U0�T,T� = I .

�7�

From Eq. �6� and the state ���0��t���U0�t ,0����0��, it can be
shown that the following expectation value,

���0��t��O�t����0��t�� = ���0��t��U0�t,T�O�T�U0�T,t����0��t��

= ���0��T��O�T����0��T��

= ���0��O�0����0�� , �8�

is independent of the time t, i.e., d���0��t��O�t����0��t�� /dt
=0. Taking the time derivative of Eq. �4� renders the Heisen-
berg equation of motion

d

dt
�O�t�� �

d

dt
���t��O�t����t��

= ���t�� −
1

ı�
�H0,O�t�� +

�O�t�
�t

���t��

+ ���t��
1

ı�
��,O�t�����t��E�t� . �9�

After invoking Eq. �5�, then Eq. �9� can be manipulated into
a simple equation

d

dt
�O�t�� = f��t�	E�t� − E�0��t�
 , �10�

where

f��t� � ���t��
1

ı�
��,O�t�����t�� = −

2

�
Im	���t��O�t�����t��
 ,

�11�

is a functional of the control field E�t� and of the reference
field E�0��t�, since, as shown in Eq. �8�, O�t� is a dynamical
invariant associated with the control field E�0��t�, cf. Eq. �5�.
Here “Im” denotes the imaginary part. Integrating Eq. �10�
produces the nonlinear integral equation

�O�T�� − �O�0�� = �
0

T

f��t�	E�t� − E�0��t�
dt , �12�

where

�O�T�� = ���T��OT���T�� = ���0��U�0,T�OTU�T,0����0��

is a functional of the control field E�t� and �O�0��
= ���0��O�0����0��= ���0��U0�0,T�OTU0�T ,0����0�� is a
functional of E�0��t�.

Equations �1�, �5�, and �12� form the TBQCP for comput-
ing the desired control field E�t�: Given the expectation value
�O�T�� of a dynamical invariant O�t� associated with an ar-
bitrarily chosen reference control field E�0��t� and the initial
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state ���0�� of the quantum system, a solution E�t� of Eq.
�12� is sought by iteratively integrating Eq. �1� forward and
Eq. �5� backward over the interval �0,T�. To this end, a self-
consistent solution to Eq. �12� may be formally cast as

E�t� − E�0��t� = S�t�	��t� − ��0��t�
 = �S�t��f��t� + f��t�� ,

�13�

where S�t� is the control field envelope function S�t��0
�such that E�t�=S�t���t� and E�0��t�=S�t���0��t��, � is defined
as

� �
�O�T�� − �O�0��

�
0

T

S�t��f��t��2dt

. �14�

and f��t� is a function of time in the null space of f��t�, i.e.,

�
0

T

S�t�f��t�f��t�dt = 0. �15�

Although a nonzero function f��t� in principle can only be
determined post facto �i.e., after f��t� is computed over the
whole time interval �0,T��, in practice it can be chosen by
approximating f��t� from earlier iterations. Moreover, the
expectation value �O�T��, which depends on E�t�, thus on the
value of � and the function f��t� via Eq. �13�, in general
cannot be determined a priori; as a result, the parameter �
can be judiciously chosen initially as a positive number �
�0 such that �O�T��� �O�0��. From Eq. �15�, it can be
shown that the square norm �E−E�0��2 is bounded by the
relation:

�E − E�0��2

�2 �
1

�2�
0

T

S�t����t� − ��0��t��2dt

= �
0

T

S�t��f��t��2dt + �
0

T

S�t��f��t��2dt

� �
0

T

S�t��f��t��2dt . �16�

The equal sign in Eq. �16� holds when f��t�=0, correspond-
ing to the minimum norm for the difference E�t�−E�0��t�.
Equations. �13� and �15� can be succinctly recast as

E�t� − E�0��t� = �S�t�	�1 − ��f��t� + f�t�
 , �17�

where f�t� may be zero or a nonzero function of time t, t
� �0,T�, and

� �
�

0

T

S�t�f��t�f�t�dt

�
0

T

S�t��f��t��2dt

, �18�

which in practice may be approximated using f��t� from the
preceding iteration by noting that f��t�= f�t�−�f��t�. Using
Eq. �17� in Eq. �12� leads to

�O�T�� − �O�0�� = ��
0

T

S�t�f��t�	�1 − ��f��t� + f�t�
dt

= ��
0

T

S�t��f��t��2dt � 0. �19�

For ��0, and using Eqs. �8� and �19�, the following inequal-
ity holds

���T��O�T����T��

� ���0��O�0����0��

= ���0��U0�0,T�O�T�U0�T,0����0��

= ���0��0��U0�0,T�O�T�U0�T,0����0��0��

= ���0��T��O�T����0��T�� , �20�

regardless of the temporal behavior of E�t� and E�0��t�. Equa-
tions. �2�, �5�, �10�, �11�, �17�, and �18� are the basic relations
for implementing TBQCP.

Equations �10�, �11�, �17�, �19�, and �20� can be readily
exploited to attain various monotonically convergent proce-
dures for determining the control field. In particular, for the
special case of f��t�=0, Eq. �17� reduces to the LCT in Ref.
�17�.

E�t� = E�0��t� + �S�t�f��t� �21�

and we readily obtain the LCT characteristic

d

dt
�O�t��� f�t�=0 = �S�t��f��t��2 � 0. �22�

It can be shown in this case that the norm �E� is bounded by
the Minkowski’s integral inequality

�E�
�

��
0

T

S�t����t��2dt

	�
0

T

S�t����0��t��2dt +�
0

T

S�t��f��t��2dt .

Equations �20� and �22� guarantee that the iterative scheme
�i.e., the Mirrahimi-Turinici-Rouchon algorithm �17�� based
on the recurrence relation

E�n��t� = E�n−1��t� + �S�t�f��t�, n = 1,2, . . . , �23�

is monotonically convergent not only from iteration to itera-
tion, but also throughout the time evolution. The function
f��t�, defined in Eq. �11�, is evaluated for the control field
E�t�=E�n��t� and the reference field E�0��t�=E�n−1��t� at the
nth iteration �for practical implementation, see Sec. VI�. For
the general case of f��t��0, we have instead f�t��0 in Eq.
�17�. In this case, substituting Eq. �17� in Eq. �10� results in
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d

dt
�O�t��� f�t��0 = �S�t�	�1 − ���f��t��2 + f��t�f�t�
 , �24�

which may be further manipulated for accelerating the con-
vergence of �O�t�� toward the target value �O�T�� over time.
In principle, the free function f�t� in Eq. �24� may be chosen
to satisfy

q�t� � − ��f��t��2 + f��t�f�t� � 0 ∀ t � �0,T� �25�

such that the relation

d

dt
�O�t��� f�t��0 �

d

dt
�O�t��� f�t�=0 �26�

holds over time. In practice, the sign of the function q�t� will
alternate over the time interval �0,T� and may be kept pre-
dominantly positive throughout, for example, by choosing
f�t� such that the parameter satisfies �
0 in Eq. �25�, or
equivalently the acceleration parameter becomes �1−���0
in Eq. �24�.

III. COMPARISON WITH THE KROTOV ITERATIVE
METHOD

It can be shown that a simple approximation of f��t� in
Eq. �11�,

f��t� � g�
�1��t� � −

2

�
Im	���0��t��O�t����̃�t��
 , �27�

yields the well-known Krotov iterative method �23–25�

Ẽ�t� = E�0��t� + �S�t�g�
�1��t� . �28�

Here the Krotov wave function

��̃�t�� = Ũ�t,0����0�� �29�

evolves according to the time-dependent Schrödinger equa-
tion

�

�t
��̃�t�� =

1

ı�
	H0 − �Ẽ�t�
��̃�t�� , �30�

which in turn leads to the equation

�

�t
Ũ�t,0� =

1

ı�
„H0 − �Ẽ�t�…Ũ�t,0�, Ũ�0,0� = I . �31�

From Eq. �10� and defining �O�t��˜ ���̃�t��O�t���̃�t��, it is
seen that Eq. �28� leads to

d

dt
�O�t��˜ = �S�t� f̃��t�g�

�1��t� , �32�

where

f̃��t� � −
2

�
Im	��̃�t��O�t����̃�t��
 . �33�

The rate of change d�O�t��˜ /dt, cf. Eq. �32�, may not always
be positive �i.e., the Krotov method does not have the LCT
characteristic�, in contrast to Eq. �22�. However, a further
manipulation using Eqs. �8�, �27�, and �28� produces the fol-
lowing relation:

�O�T��˜ − �O�0�� � ��̃�t��O�T���̃�T�� − ���0��T��O�T���0��T��

= ���0��T� + ���T��O�T����0��T� + ���T�� − ���0��T��O�T����0��T��

= 2R	���0��T��O�T�����T��
 + ����T��O�T�����T��

= �
0

T �−
2

�
Im���0��t��O�t����̃�t���	Ẽ�t� − E�0��t�
dt + ����T��O�T�����T��

= ��
0

T

S�t��g�
�1��t��2 + ����T��O�T�����T�� � 0, �34�

which is always positive, thus guaranteeing the monotonicity
of the Krotov iterative method based on Eq. �28�, as long as
the observable O�T�=OT is positive semidefinite. Here “R”
denotes the real part of a complex number and the following
relations were used in the derivations:

����T�� = ��̃�T�� − ���0��T�� = U0�T,0��Ũ�T,0����0�� ,

�35�

�Ũ�T,0� = −
1

ı�
�

0

T

U0
†�t,0��Ũ�t,0�	Ẽ�t� − E�0��t�
dt .

�36�

It is in general difficult to quantitatively compare any
TBQCP iterative scheme based on Eq. �17� with its Krotov
counterpart based on Eq. �28�, since there exists no simple
relation between the Krotov wave function ��̃�t�� and the
exact wave function ���t��. However, in the limit of �→0,
we have Ẽ�t��E�t�, leading to ��̃�t������t�� and f̃��t�
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� f��t�. Then, it can be shown, by invoking Eqs. �19�, �27�,
�32�, and �34�, that

�O�T�� − �O�T��˜ = ��
0

T

S�t��f��t��2dt − �
0

T d

dt
�O�t��˜

� ��
0

T

S�t�	� f̃��t��2 − f̃��t�g�
�1��t�
dt

= ��
0

T

S�t��−
2

�
Im����t��O�t����̃�t���2

dt

+ ����T��O�T�����T�� � 0, �37�

which implies that the TBQCP method based on Eq. �17�
may have a numerical advantage over the Krotov method
based on Eq. �28� when the parameter � is sufficiently small,

since �O�T��˜ may be considered as a lower bound of �O�T��.

IV. RELATIONSHIP WITH VARIATIONAL OCT

The OCT equations �the first-order necessary optimality
conditions� are commonly derived upon the variation of a
cost functional �2–6,25�

J��,�,E� = ���T��O���T�� − �
0

T 

S�t�
�E�t� − E�0��t��2dt

+ ��
0

T ���t��� 1

ı�
„H0 − �E�t�… −

�

�t
����t��dt

+ c.c.� , �38�

where ���t�� is the corresponding Lagrange multiplier. The
penalty term with �0 in Eq. �38� seeks to minimize either
the difference of the optimal control field and its reference
control field E�0��t� or the fluence of the control field with the
commonly adopted zero reference control field E�0��t�=0.
The resultant first-order OCT conditions, in addition to Eq.
�1�, are

�

�t
���t�� =

1

ı�
	H0 − �E�t�
���t�� , �39�

subject to the boundary condition ���T��=OT���T��, and

E�t� = E�0��t� +
1

2
S�t�g��t� , �40�

where the gradient g��t� is

g��t� �
����T��OT���T��

�E�t�

= −
2

�
Im	���t������t��


= −
2

�
Im	���t���U�t,T�OTU�T,t������t��
 , �41�

which may be compared with f��t� in Eq. �11�. It is readily

found that upon E�0��t� approaching an optimal solution, then
U0�t ,T�→U�t ,T� and f��t�→g��t�. Consequently, the
TBQCP Eqs. �11� and �21�, respectively, lead to OCT Eqs.
�41� and �40�, indicating that the time-dependent operator
O�t��U�t ,T�OTU†�t ,T� associated with an optimal control
field is necessarily a dynamical invariant, i.e.,

�

�t
O�t� =

1

ı�
�H0 − �E�t�,O�t��, O�T� = OT, �42�

such that �� /�t��O�t����t���= �1 / ı��	H0−�E�t�
�O�t����t���
and �d /dt����t��O�t����t��=0 �39�. Equations �39� and �42�
are equivalent and can be exploited for efficient numerical
implementation. In principle, Eqs. �1�, �42�, and �40� need to
be solved iteratively, via forward-backward propagations
starting with the initial condition ���0�� and the reference
field E�0��t�. Computationally, various numerical schemes
can be adopted for practical implementation of the underly-
ing iterative procedures. For example, the substitution of E�t�
by E�0��t� in Eq. �42� yields the relations O�t�
=U0�t ,T�OTU0

†�t ,T� and g��t�= f��t�, which immediately
lead to TBQCP in Eq. �21�.

V. ACCELERATED MONOTONICALLY CONVERGENT
TBQCP SCHEMES

To implement efficient and robust monotonically conver-
gent schemes based on TBQCP, we recast Eqs. �11�, �17�,
and �18� into the following recurrence relation:

E�n+1��t� = E�n��t� + �1 − ��n+1���S�t�f�
�n+1��t�

+ �S�t�f �n+1��t�, n = 0,1, . . . , �43�

where

f�
�n+1��t� � −

2

�
Im	���n+1��t��O�n��t�����n+1��t��
 �44�

and

��n+1� �
�

0

T

S�t�f�
�n+1��t�f �n+1��t�dt

�
0

T

S�t��f�
�n+1��t��2dt

�
�

0

T

S�t�f�
�n��t�f �n+1��t�dt

�
0

T

S�t��f�
�n��t��2dt

.

�45�

Here ��0 denotes the iteration step parameter, �1−��n+1�� is
the acceleration parameter, and f �n+1��t� is a free function that
can be chosen as either zero or a nonzero function of time t.
Moreover,

�

�t
O�n��t� = −

1

ı�
�O�n��t�,H0 − �E�n��t��, O�T� = OT

�46�

and

�

�t
���n+1��t�� =

1

ı�
	H0 − �E�n+1��t�
���n+1��t�� ,
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��n+1��0� = ���0��0�� . �47�

From Eq. �20�, it can be shown that the expectation value
�O�n��t�� increases from iteration to iteration:

�O�0��0�� → �O�0��T�� = �O�1��0�� → �O�1��T�� ¯ �O�n��0��

→ �O�n��T�� = �O�n+1��0�� → �O�n+1��T�� ¯ . �48�

The following material presents three numerically expedient
schemes for implementation of Eq. �43�. The first scheme
corresponds to the zero free function f �n+1��t�=0 for all n
=0,1 ,2 , . . .. The second and third schemes are chosen for
nonzero free functions f �n+1��t��0 to make the acceleration
parameter �1−��n+1�� as large as possible throughout the it-
erations, cf. Eq. �25�. To avoid the expensive computation of
the integrals in Eq. �45� that gives rise to the parameter
��n+1�, these two latter schemes are formulated based on the
behavior of the parameter ��n+1� in the limit of a sufficiently
small � �i.e., �→0� �or of a sufficiently large n �i.e., n�1��.

Scheme (i): f �n+1��t�=0 ∀n�0, ��0, and ��n+1�=0: Here
Eq. �43� reduces to the monotonic convergence algorithm of
Mirrahimi, Turinici, and Rouchon �17�:

E�n+1��t� = E�n��t� + �S�t�f�
�n+1��t� �TBQCP-1� , �49�

for n=0,1 , . . ., in agreement with Eq. �23�. This scheme ad-
vances the control field from E�n��t� to E�n+1��t�, with an it-
eration step parameter equal to �, along with the evolution of
the wave function ���n+1��t�� from its initial one ���0��0��, cf.
Eq. �47�.

Scheme (ii): f �1��t�=0 and �S�t�f �n+1��t�=−a	E�n��t�
−E�n−1��t�
, 0
a	1, for n�1. Here Eq. �43� becomes

�
E�1��t� = E�0��t� + �S�t�f�

�1��t�

E�n+1��t� = �1 − a�E�n��t� + aE�n−1��t� �TBQCP-2n� ,

+ �1 − ��n+1���S�t�f�
�n+1��t� ,

for n = 1,2, . . . ,

�50�

where

��n+1� = −
a

�

�
0

T

f�
�n+1��t��E�n��t� − E�n−1��t��dt

�
0

T

S�t��f�
�n+1��t��2dt

� −
a

�

�
0

T

f�
�n��t��E�n��t� − E�n−1��t��dt

�
0

T

S�t��f�
�n��t��2dt

. �51�

For a sufficiently small � �as well as for a sufficiently large
n�, E�n+1��t�−E�n��t��E�n��t�−E�n−1��t�, thus leading to
��n+1��−a
0, after invoking Eqs. �50� and �51�. By choos-
ing f �1��t�=0 and ��n+1�=−a ∀n�1, Eq. �50� may be simpli-
fied as

�
E�1��t� = E�0��t� + �S�t�f�

�1��t�

E�n+1��t� = �1 − a�E�n��t� + aE�n−1��t� �TBQCP-2� ,

+ �1 + a��S�t�f�
�n+1��t� ,

for n = 1,2, . . .

.

�52�

The value of the parameter a in Eq. �52� is chosen to lie
between 0 and 1 to prevent the factor �1−a� from becoming
a negative number, which would result in a undesired sub-
traction of the current control field E�n��t�. Of special interest
in this scheme are the two cases: �1� a=1 and �2� a=0.5,
which lead, respectively, to two distinct iterative steps:

E�n+1��t� = E�n−1��t� + 2�S�t�f�
�n+1��t�, n � 1, �53�

and

E�n+1��t� =
1

2
�E�n��t� + E�n−1��t�� +

3

2
�S�t�f�

�n+1��t�, n � 1.

�54�

The former, Eq. �53�, advances the control field from
E�n−1��t� to E�n+1��t� with an iteration step size equal to 2�,
while the latter, Eq. �54�, advances from the midpoint of
E�n��t� and E�n−1��t� to E�n+1��t� with a step size equal to 1.5�,
compared to the step size � in the TBQCP-1 scheme, Eq.
�49�. A larger step size allowed in the TBQCP-2 scheme may
result in better convergence behavior.

Scheme (iii): f �1��t�=0 and f �n+1��t�=−bf�
�n��t�, b�0, for

n�1. Here we have

�
E�1��t� = E�0��t� + �S�t�f�

�1��t�

E�n+1��t� = E�n��t� − b�S�t�f�
�n��t� �TBQCP-3n� ,

+ �1 − ��n+1���S�t�f�
�n+1��t� ,

for n = 1,2, . . . ,

�55�

where ��2�=−b and

��n+1� = − b

�
0

T

S�t�f�
�n+1��t�f�

�n��t�dt

�
0

T

S�t��f�
�n+1��t��2dt

� − b

�
0

T

S�t�f�
�n��t�f�

�n−1��t�dt

�
0

T

S�t��f�
�n��t��2dt

, n � 2. �56�

For a sufficiently small � �as well as for a sufficiently large
n�, f�

�n��t� changes only gradually, i.e., f�
�n��t�� f�

�n+1��t�, thus,
from Eq. �56�, we obtain ��n+1��−b. By adopting f �1��t�=0
and ��n+1�=−b ∀n�1, Eq. �55� may be cast as
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�
E�1��t� = E�0��t� + �S�t�f�

�1��t�

E�n+1��t� = E�n��t� − b�S�t�f�
�n��t� �TBQCP-3� ,

+ �1 + b��S�t�f�
�n+1��t� ,

for n = 1,2, . . . .

�57�

It is instructive to note that E�n+1��t� in Eq. �57� can be suc-
cinctly cast as

E�n+1��t� = Ē�n��t� + �1 + b��S�t�f�
�n+1��t�, n � 0, �58�

where

Ē�n��t� = �E�n��t� + �1 − ��Ē�n−1��t�

= ��
k=0

n−2

�1 − ��kE�n−k��t� + �1 − ��n−1Ē�0��t� �59�

with 0
��1 / �1+b�
1.0 and Ē�0��t��	�1−b�E�1��t�
+bE�0��t�
. Here Ē�n��t� is the exponentially weighted �geo-
metric� moving average �EWMA� �45–48� of the �n+1� con-
trol fields E�n��t� ,E�n−1��t� , . . . ,E�2��t� ,E�1��t� ,E�0��t� gener-
ated at the current and all past iterations �including the initial
reference control field E�0��t��, with exponentially decreasing
weights 1 ,1−� , �1−��2 , . . . , �1−���n−2� , �1−���n−1� and �1
−��n−1, respectively. Of special interest is the case of b=1
which results in

E�n+1��t� =
1

2
�E�n��t� +

1

2
�E�n−1��t� + ¯

+
1

2
�E�2��t� +

1

2
�E�1��t� + E�0��t���¯��

+ 2�S�t�f�
�n+1��t� , �60�

showing that the control field is being advanced from the
corresponding EWMA of the current and past control fields
with an exponential weighting factor equal to 1/2 and with
an iteration step size equal to 2�.

There are several relevant observations regarding the
three TBQCP schemes given in Eqs. �49�, �52�, and �57�:
First, �1� in the limit of a→0 and b→0, the schemes
TBQCP-2 and TBQCP-3 reduce to the scheme TBQCP-1.
�2� In general, all three schemes start off at the same pace,
i.e., E�1��t�=E�0��t�+�S�t�f�

�1��t�, however, they behave dif-
ferently after the second iteration. For example, the second
step can be written as

�
E�2��t� = E�1��t� + �S�t�f�

�2��t� , �TBQCP-1� ,

E�2��t� = E�0��t� + 2�S�t�f�
�2��t� , �TBQCP-2� ,

E�2��t� =
1

2
�E�1��t� + E�0��t�� + 2�S�t�f�

�2��t� , �TBQCP-3�

�61�

in the case of a=b=1.0, and

�
E�2��t� = E�1��t� + �S�t�f�

�2��t� , �TBQCP-1� ,

E�2��t� =
1

2
�E�1��t� + E�0��t�� +

3

2
�S�t�f�

�2��t� , �TBQCP-2� ,

E�2��t� =
1

2
�E�1��t� + E�0��t�� + 2�S�t�f�

�2��t� �TBQCP-3�

�62�

in the case of a=0.5 and b=1.0. These two special cases
clearly display the advantage of TBQCP-3 and TBQCP-2
over TBQCP-1. Finally, �3� the parameter b of TBQCP-3, cf.
Equation �57�, may be chosen to be as large as possible for
maximize the convergence as long as it does not cause nu-
merical instability. Especially, in the limit of b�1, i.e., �
�0, Eq. �58� reduces to

E�n+1��t� � �1 − b�E�1��t� + bE�0��t�

+ �1 + b��S�t�f�
�n+1��t�, n � 1, b � 1,

�63�

corresponding to a rather large iterative step size of �1
+b���b��1.

Moreover, the parameters ��0, 0
a	1, and b�0 may
all be optimized throughout the iterations to maximize the
convergence, for example, by exerting some adaptive control
over these parameters. Only the scheme TBQCP-1 assures
monotonicity over time, cf. Eq. �22�. Although, in principle,
the monotonicity of TBQCP-2 and TBQCP-3 holds strictly
in the limit of �→0 �as well as in the limits of n�1�, in
practice, it may still hold for finite � and n values. The extent
that both TBQCP-2 and TBQCP-3 iterative schemes behave
monotonically is examined numerically in Sec. VI. The con-
vergence behavior of the three TBQCP-based iteration
schemes proposed in Eqs. �49�, �52�, and �57�, as well as that
of the Krotov algorithm in Eq. �28�, will be illustrated in Sec.
VI for optimal control simulations on a model quantum sys-
tem. To facilitate the implementation of efficient and robust
TBQCP iterative schemes, a numerical procedure for solving
Eq. �46� and computing f�

�n+1��t� in Eq. �44� is described in
Appendix A.

VI. ILLUSTRATIONS

The aim of this section is to assess and demonstrate the
capability of the TBQCP-based schemes using a prototypical
quantum control problem. Specifically, we consider control
of state-to-state vibrational transitions based on a model of
the OH diatom in the ground electronic state. The one-
dimensional �1D� potential energy of the OH is expressed as
a Morse oscillator �27�

V�r� = De	1 − exp�− ��r − re��
2 − De, �64�

where De=0.1994 a.u., re=1.821 a.u., and r are, respec-
tively, the corresponding dissociation energy, the equilibrium
bound length, and the internuclear distance, and �
=1.189 a.u.. The OH model potential has 22 bound levels
and a well depth of approximately 0.2 a.u., corresponding to
a characteristic time of ��=2� /0.2 a.u. �31.4 a.u.. The di-
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pole moment function ��r� of OH has form �27�

��r� = 3.088r exp�−
r

0.6
� �in a.u.� . �65�

The calculations are performed with 512 evenly spaced dis-
cretized grid points over the OH internuclear distance 0.0
	r	15.0 a.u. �i.e., rmax=15 a.u.�. The model OH dipole
moment matrix elements between the immediate adjacent
bound levels range from 0.0371 a.u. for the 0→1 transition,
to 0.0788 a.u. �i.e., the largest value� for the 8→9 transition,
and finally to 0.010 a.u. �i.e., the smallest value� for the 20
→21 transition. In general, the transition dipole moment be-
tween any two bound levels � and �� decreases rapidly as the
difference ��= ��−��� increases. For example, the transition
dipole moments are 6.882�10−3 a.u., 1.051�10−4 a.u.,
4.238�10−7 a.u., 1.17�10−7 a.u., and 1.829�10−8 a.u.,
respectively, for the 0→2, 0→5, 0→9, 0→15, and 0
→21 transitions. As a result of these rapidly decreasing tran-
sition dipole moments, it is more difficult to obtain an opti-
mal control field for maximizing the transition probability
between two disparate levels than between adjacent or
nearby levels.

To show the utility of various TBQCP based monotoni-
cally convergent algorithms, in the following numerical
simulations we will consider the control of the transition
probability for the two far separated vibrational levels �=0
and ��=15. These calculations will be compared with those
using the Krotov method. The target observable O�T� in the
following simulations is taken to be the projection operator

O�T� = �������� , �66�

corresponding to the target state ��. The resultant expectation
value of the corresponding dynamical invariant O�t� can then
be expressed as

�O�n��t�� = ���n+1��t�����
�n��t������

�n��t����n+1��t�� � 0, �67�

and Eq. �44� reduces to

f�
�n+1��t� = −

2

�
Im���n+1��t�����

�n��t������
�n��t������n+1��t�� ,

�68�

where

�

�t
����

�n��t�� =
1

ı�
	H0 − �E�n��t�
����

�n��t��, ����
�n��T�� = ���� .

�69�

It is expected that ����
�n+1��t��→ ���n��t��, f�

�n+1��t�→0, and
�O�T��→1 in the limit of a sufficiently large number of it-
erations �n�1�. The function f�

�n+1��t� in Eq. �68� at the �n
+1�th iteration, expressed in terms of the quantities
���n+1��t� ����

�n��t�� and ����
�n��t������n+1��t��, can be computed

from �i� the time-dependent dynamical invariant eigenstate
�r ����

�n��t�� �as a function of the internuclear distance r� and
�ii� the time-dependent wave function �r ���n+1��t�� corre-
sponding to the boundary conditions �r ����

�n��T��= �r ���� and
�r ���n+1��0��= �r ���. The control field E�n+1��t� is then evalu-

ated iteratively using various TBQCP-based updating
schemes described in Sec. V. These operations are set out in
Appendix B.

Furthermore, we have considered two different initial
control fields in the simulations in order to assess the con-
vergence properties of the TBQCP schemes in comparison
with the Krotov method. The calculations in Figs. 1–4 were
based on the LCT generated initial control fields and Figs.
5–7 used negative linearly chirped initial control fields. Spe-
cifically, the LCT initial control fields were generated using
the relation

E�0��t� = S�t��−
2

�
Im����0��t��OLCT����0��t���� �70�

and the negative linearly chirped initial control fields were
computed using the expression
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FIG. 1. �Color online� �Color online� The transition probability
P0→15�T� for T=50 000 a.u.��1.21 ps�, as a function of iteration,
for the schemes TBQCP-2, TBQCP-2n, TBQCP-3, and TBQCP-3n
schemes �Eqs. �52�, �50�, �57�, and �55�� for the parameters �
=0.2, a=0.5, and b=1.0: �a� A=8.8 a.u., corresponding to an initial
transition probability of P0→15�T�=0.121, and �b� A=8.0 a.u., cor-
responding to an initial transition probability of P0→15�T�
=0.000 11, based on the LCT generated initial control fields. In
panel �a�, the dashed �TBQUCP-2� and solid �TBQCP-2n� curves
are indistinguishable, the dash-dotted �TBQCP-3� and dotted
�TBQCP-3n� curves are indistinguishable.

TAK-SAN HO AND HERSCHEL RABITZ PHYSICAL REVIEW E 82, 026703 �2010�

026703-8



E�0��t� = S�t�cos��1.2 −
t

2T
��10t� , �71�

where OLCT���k=�
�� �k−���k��k� / ���−��� commutes with the

field-free Hamiltonian H0, S�t� �=A sin2 �t /T ,A�0� denotes
the pulse shape, and �10�=0.01724 a.u.� is the transition fre-
quency between the ground and first excited vibrational lev-
els of the 1D OH model diatom. The transition frequency
between the 14th and 15th vibrational levels is 0.00579 a.u.
and that between the ground vibrational level and the 15th
vibrational level is 0.17276 a.u., compared to a width of
�0.0044 a.u. at the half-maximum and a frequency of
�0.0119 a.u. at the maximum of the negative chirped field
given in Eq. �71�. The initial negative linearly chirped field
in Eq. �71� was adopted to explore the convergence behavior
of the TBQCP schemes over a wide range of different values
of � �for all TBQCP schemes, as well as the Krotov method�
and b �for TBQCP-3�. In the following simulations, we con-
sider two different pulse lengths T=50 000 a.u.��1.21 ps�,
for both the LCT generated initial control fields and the

negative linearly chirped initial control fields, and T
=10 000 a.u.��0.24 ps�, for the negative linearly chirped
initial control fields. In both cases, the time interval �0,T� is
divided into 215=32768 evenly divided subintervals for nu-
merical integration of the corresponding time-dependent
Schrödinger equation, cf. Appendix B. The time integration
step size �t is �t�1.5 a.u. for T=50 000 a.u. and �t
�0.3 a.u. for T=10 000 a.u., compared to ���31.4 a.u.,
which is the characteristic time of the 1D OH model diatom,
cf. Equations �64� and �65�. We remark that it is in general
difficult to use the LCT scheme for generating a viable short
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FIG. 2. �Color online� The transition probability P0→15�T� for
T=50 000 a.u.��1.21 ps�, as a function of iteration, for different
TBQCP schemes �a=0.5, and b=1.0� and the Krotov method for
the parameters �=0.2: �a� first 10 iterations and �b� iterations near
the maximum yield �15–300�. The initial transition probability is
P0→15�T�=0.121, corresponding to a LCT generated initial control
field with A=8.8 a.u. The filter frequency window is �0.005, 0.05�
in atomic units.

FIG. 3. �Color online� The windowed Fourier transform �WFT�
power spectra, as a function of the propagation time and frequency,
for the initial LCT and final TBQCP-3 ��=0.2, b=1.0� control
fields for T=50 000 a.u.��1.21 ps�: �a� LCT initial control field
WFT power spectrum �A=8.8 a.u.�, �b� unfiltered TBQCP-3 con-
trol field WFT power spectrum, �c� filtered TBQCP-3 control field
WFT power spectrum. The time-window width for the WFT is 6250
a.u. ��0.15 ps�.
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initial control field �for example, T=10 000 a.u. in the cur-
rent study� that yields even a very small transition probabil-
ity between two disparate vibrational levels �here �=0 to
��=15�, due to the rather restrictive long temporal character-
istics of the LCT method �17�. The control field may also be
filtered to remove its DC and high-frequency components.
For example, the time-dependent laser field E�t� may be fil-
tered post facto at the end of each iteration according to the
relation

F−1�F�E�n��t��h���� → E�n��t�, n � 0, �72�

where F and F−1 are, respectively, Fourier and inverse Fou-
rier transforms and the filter function h��� is chosen �in this
work� as the Butterworth band pass filter �49�

h��� = ��1 + ���

�
�2m��1 + � �

�h
�2m��−1/2

, �73�

with �� and �h being the low and high cutoff frequencies,
respectively.

Figures 1�a� and 1�b� compare the iterative schemes
TBQCP-2 and TBQCP-3 �Eqs. �52� and �57�� with their re-
spective, more expensive counterparts TBQCP-2n and
TBQCP-3n �Eqs. �50� and �55��. Here we have considered
two different LCT generated initial control fields described
in Eq. �70�: �a� A=8.8 a.u. in Figs. 1�a� and 1�b� A
=8.0 a.u. in Fig. 1�b�, respectively. Furthermore, the param-
eters �=0.2, a=0.5, and b=1.0 were adopted for the corre-
sponding TBQCP schemes. The integrals involved in Eqs.
�51� and �56�, for computing the parameter ��n+1�, n
=1,2 , . . ., were carried out using the extended Trapezoidal
rule �50� on 215+1=32769 evenly spaced grids over the time
interval �0,50 000 a.u.�. It was found in Fig. 1�a� that the
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FIG. 4. �Color online� The transition probability P0→15�T� for
T=50 000 a.u.��1.21 ps� as a function of iteration. �a� Different
TBQCP schemes �a=0.5, b=1.0� and the Krotov method for dif-
ferent �: �=0.1 �thick curves� for TBQCP-1a,TBQCP-2a,TBQCP-
3a, and Krotov-a and �=0.4 �thin curves� for TBQCP-1b,TBQCP-
2b,TBQCP-3b, and Krotov-b; and �b� the TBQCP-3 scheme ��
=0.1� for different b: 1.0 �TBQCP-3a�, 2.0 �TBQCP-3b�, 4.0
�TBQCP-3c�, 8.0 �TBQCP-3d�, 16.0 �TBQCP-3e�, and 32.0
�TBQCP-3f�. The initial control field is generated by the LCT
method with A=8.0 a.u.
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FIG. 5. �Color online� The transition probability P0→15�T� for
�a� T=50 000 a.u.��1.21 ps� and �b� T=10 000 a.u.��0.24 ps�,
as a function of iteration for different TBQCP schemes �a
=0.5, b=1.0� and the Krotov method for different �: �=0.2 �thick
curves� for TBQCP-1a,TBQCP-2a,TBQCP-3a and Krotov-a; �
=0.4 for TBQCP-1b,TBQCP-2b,TBQCP-3b, and Krotov-b; and �
=0.8 �thin curves� for TBQCP-1c,TBQCP-2c,TBQCP-3c, and
Krotov-c. The amplitude of the initial negative linearly chirped con-
trol fields: �a� A=0.015 a.u. and �b� A=0.06 a.u.
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simulations for the schemes TBQCP-2 and TBQCP-2n �as
well as the simulations for TBQCP-3 and TBQCP-3n�, start-
ing with a moderate initial transition probability ��0.121 at
n=0�, agree with each other well throughout the iterations.
On the other hand, it is found in Fig. 1�b� that the transition
probabilities P0→15�T� all rise quickly after 11 to 14 itera-
tions �within 3 iterations of each other� from a very small
initial transition probability ��0.00011 at n=0�. The good
agreement shown in Figs. 1�a�, and to a large degree in Fig.
1�b� �especially in the limit of n�1�, demonstrates that the
numerically expedient schemes TBQCP-2 and TBQCP-3
maintain the same iterative monotonicity as do the
TBQCP-2n and TBQCP-3n schemes, in spite of being de-
rived in the limit of �→0 as well as n�1. The same results
�not shown� have also been found in simulations based on
negative linearly chirped initial control fields. The remaining
simulations have been carried out in terms of the TBQCP-1,
TBQCP-2 and TBQCP-3 schemes, as well as the Krotov
method �Eq. �28��.

The numerical calculations in Figs. 2 and 3 were per-
formed with all three TBQCP schemes, as well as with the
Krotov method, using �=0.2, a=0.5 and b=1.0. These simu-
lations started with either �i� an LCT generated trial control

field with A=8.8 a.u., corresponding to an initial transition
probability of P0→15�T�=0.121, and T=50 000 a.u. or �ii� its
filtered counterpart. All three TBQCP simulations possessed
monotonically convergent behavior throughout the iterations,
cf. Eq. �48�. Figure 2 compares the results of the TBQCP
schemes and the Krotov method. In the illustrations here the
TBQCP schemes exhibit faster convergence behavior than
the Krotov method, consistent with the mathematical analy-
sis given in Sec. IV. The TBQCP-1 scheme has the fastest
convergence rate in the first five iterations, which may arise
due to its continuous monotonicity over time, cf. Eq. �22�;
the TBQCP-2 and TBQCP-3 scheme closely follow the con-
vergence behavior of the TBQCP-1 scheme. As shown in
Fig. 2�b�, the TBQCP-3 scheme has the fastest convergence
rate asymptotically �i.e., near the optimal global maximum�,
which may attributed to a larger acceleration parameter 2�
adopted in the current TBQCP-3 simulations, compared to �
and 1.5� in the TBQCP-1 and TBQCP-2 simulations, respec-
tively. The Krotov simulation provides a lower bound of the
TBQCP simulations.
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FIG. 6. �Color online� The transition probability P0→15�T� for
�a� T=50 000 a.u.��1.21 ps� and �b� T=10 000 a.u.��0.24 ps�,
as a function of iteration for different TBQCP schemes �a
=0.5, b=1.0� and the Krotov method for �=6.4. The amplitude of
the initial negative linearly chirped control fields: �a� A
=0.015 a.u. and �b� A=0.06 a.u.
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FIG. 7. �Color online� The transition probability P0→15�T� for
�a� T=50 000 a.u.��1.21 ps� and �b� T=10 000 a.u.��0.24 ps�,
as a function of iteration for the TBQCP-3 scheme ��=0.2� for
different b: 1.0 �TBQCP-3a�, 2.0 �TBQCP-3b�, 4.0 �TBQCP-3c�,
8.0 �TBQCP-3d�, 16.0 �TBQCP-3e�, 32.0 �TBQCP-3f�, 64.0
�TBQCP-3g�, and 128.0 �TBQCP-3h�. The amplitude of the initial
negative linearly chirped control fields: �a� A=0.015 a.u. and �b�
A=0.06 a.u.
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We have also performed control calculations to assess the
effect of filtering using low and high cutoff frequencies ��
=0.005 a.u. and �h=0.05 a.u., respectively, cf. Eq. �73�. It
was found in Figs. 2�a� and 2�b� that the inclusion of fre-
quency filtering only slightly slows down the convergence
rates; at the 300th iteration the unfiltered TBQCP-3 transition
probability is P0→15�T�=0.999 86 and the filtered TBQCP-3
value is P0→15�T�=0.999 36, respectively. The control fields
for both the unfiltered and filtered simulations closely re-
semble each other. Moreover, the effect of frequency filtering
is minimal in both the TBQCP and Krotov approaches. The
frequency filtering of the control fields effectively removes
the DC component at the expense of slowing down the over-
all convergence rate throughout the iteration process, but fil-
tering does not degrade the monotonic convergence behavior.
The ubiquitous monotonically convergent behavior observed
in Figs. 2�a� and 2�b� may be attributed to the fact that under
mild assumptions the underlying transition probability con-
trol landscape contains only a global minimum �correspond-
ing to zero transition probability� and a global maximum
�corresponding to a transition probability equal to one�
�32–35�.

Figures 3�a�–3�c� show the windowed Fourier transform
�WFT� power spectra of the unfiltered initial LCT generated
control field, the final unfiltered TBQCP-3 control field, and
the final filtered TBQCP-3 control field, respectively, corre-
sponding to the converged results at the 300th iteration in
Fig. 2�b�. It was found that the final converged TBQCP-3
control fields not only engage earlier than the LCT generated
initial field, but also contain additional strong lower fre-
quency components corresponding to the transitions between
the highly excited vibrational states. The unfiltered
TBQCP-3 WFT power spectrum �Fig. 3�b�� also contains
weak DC and very low frequency components. All cases
show distinct chirping, although more complex structure is
also present.

Figure 4�a� further compares the convergence behaviors
of different TBQCP schemes as well as the Krotov method.
Here we have considered two different values of �: 0.1 and
0.4. The control pulse length has been chosen as T
=50 000 a.u. and the initial control field was generated by
the LCT scheme, cf. Equation �70� with the parameter A
=8.0 a.u. It was found that the TBQCP schemes converge
quicker than the Krotov method, especially for the larger �
value �here 0.4�. Figure 4�b�, based on the same LCT gener-
ated initial control field for Fig. 4�a�, shows the convergence
behavior of the TBQCP-3 scheme for different b values �b
=2.0, 4.0, 8.0, 16.0, and 32.0� and for �=0.1. The TBQCP-3
schemes stays monotonic over a wide range of b values, but
it becomes unstable near the transition probability maximum
when b becomes too large �here b=32.0�.

Figures 5 and 6 compare the convergence behavior of
different TBQCP schemes and the Krotov method using
negative linearly chirped initial control fields for two cases:
�a� A=0.015 a.u. and �b� A=0.006 a.u. Here we have con-
sidered several different � values �0.2, 0.4, and 0.8 in Fig. 5
and 6.4 in Fig. 6� and for two different control pulse lengths
�a� T=50 000 a.u. and �b� T=10 000 a.u.��0.24 ps�. In ad-
dition, the parameters a=0.5 �cf. Eq. �54�� and b=1.0 �cf.
Eq. �60�� were adopted for the TBQCP-2 and TBQCP-3

schemes, respectively. It is found that the TBQCP schemes
perform better than the Krotov method, especially for large
values of � �here �=6.4� and at the shorter pulse length T
�here T=10 000 a.u.�, as clearly seen in Fig. 6�b�. The dif-
ference in the takeoff among the TBQCP schemes �cf. Figure
5� is a manifestation of different iteration step sizes, �, 1.5�
�corresponding to a=0.5� and 2� �corresponding to b=1.0�,
respectively, for the TBQCP-1, TBQCP-2, and TBQCP-3
schemes used in the simulations. All three TBQCP schemes,
as well as the Krotov method, reach their respective maxi-
mum faster for larger � values. However, the disparity be-
tween the TBQCP and Krotov results can be quite significant
at the shorter pulse length �here T=10 000 a.u.�, cf. Figures
5�b� and 6�b�.

Finally, Fig. 7, corresponding to the same negative lin-
early chirped initial control fields adopted in Figs. 5 and 6,
depicts the convergence behavior of the TBQCP-3 scheme
for seven different b values �2.0, 4.0, 8.0, 16.0, 32.0, 64.0,
and 128.0�, and for two different control pulse lengths �a�
T=50 000 a.u. and �b� T=10 000 a.u., with a fixed value of
�=0.2. It was found that the TBQCP-3 scheme stays mono-
tonic throughout the iterations over a wide range of b values
�here up to b=128.0 for both T=50 000 a.u. and T
=10 000 a.u.�. The TBQCP-3 becomes unstable at b
=128.0 in the current simulations, as shown in the leftmost
curves in Figs. 7�a� and 7�b�. As revealed in Eq. �63�, the
TBQCP-3 scheme in the limit of b�1, corresponding to a
very large iteration step size, can cause a sudden rise of the
transition probability of the target level �here ��=15� in just
a few iterations �it takes a mere 3 iterations to reach a tran-
sition probability P0→15�T�=0.756 from P0→15�T�=0.00037
for T=50 000 a.u., Figs. 7�a� and 4 iterations to reach
P0→15�T�=0.724 from P0→15�T�=0.0021 for T=10 000 a.u.,
Fig. 7�b��.

VII. SUMMARY

This paper presented various monotonically convergent
iteration schemes for quantum control based on the TBQCP
formulation derived from the Heisenberg equation of motion
for a dynamical invariant of the observable. The TBQCP
formulation is closely related to local control theory and can
be implemented as fast convergent algorithms for tracking
dynamical invariants. Moreover, it has been shown that
TBQCP is related to various optimal control techniques, in-
cluding the Krotov method and optimal control theory. This
new paradigm may be adopted for solving a wide class of
quantum control problems, and it may make more feasible
the often computationally formidable study of multidimen-
sional quantum control. It was shown that a simple imple-
mentation of TBQCP is efficient, and physically reasonable
frequency filtering did not hinder the performance of
TBQCP-based iteration procedures. Moreover, it was dem-
onstrated that the TBQCP schemes can remain monotoni-
cally convergent over a wide range of iteration step param-
eters and control pulse lengths. The extensive flexibility
associated with the TBQCP schemes, as well as the Krotov
method, may be attributed to the underlying trap-free control
landscape characteristic of the transition probability quantum
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control dynamics �32–35�. The simulations in the paper dem-
onstrated the efficiency of the TBQCP-based schemes in re-
lation to the common Krotov method. A large scale compari-
son over a wide range of quantum systems, which is beyond
the scope of this paper, will be needed to adequately assess
features of these new TBQCP algorithms and other available
methods. In making such comparisons it is important to keep
in mind that virtually every method has a number of param-
eters that can only be chosen either judiciously or even by
trial and error. Finally, the TBQCP method can be readily
extended beyond the linear electric dipole formulation.
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APPENDIX A: NUMERICAL IMPLEMENTATION OF
O(n)(t) IN Eq. (46) AND f�

(n+1)(t) IN Eq. (44)

To facilitate the implementation of efficient and robust
TBQCP iterative procedures, the positive semidefinite opera-
tor O�T�=OT is first diagonalized,

O�T� = �
k

�kD�k��k�D†, �A1�

where 	�k�0
 are the eigenvalues �assumed to be nondegen-
erate for simplicity. Thus, the largest eigenvalue is always
greater than zero, i.e., max	�1 ,�2 , . . .
�0� of O�T�, D is a
unitary matrix, i.e., D†D=I, and 	�k�
 are the eigenstates of
the field-free Hamiltonian H0. At the nth iteration, the posi-
tive semidefinite dynamical invariant O�n��t� associated with
the control field E�n��t� can be characterized by the same set
of constant eigenvalues 	�k
 and the corresponding instanta-
neous �adiabatic� eigenstates 	��k

�n��t��
 satisfying the equa-
tion �39�.

O�n��t���k
�n��t�� = �k��k

�n��t�� , �A2�

where ��k
�n��t�� is a solution of the time-dependent equation

�

�t
��k

�n��t�� =
1

ı�
	H0 − �E�n��t�
��k

�n��t�� , �A3�

subject to the boundary condition ��k
�n��T��=D�k�. Since

O�n��t� can be written as

O�n��t� = Un�t,T�O�T�Un
†�t,T� , �A4�

where

�

�t
Un�t,T� =

1

ı�
	H0 − �E�n��t�
Un�t,T�, Un�T,T� = I ,

�A5�

we find that

O�n��t��Un�t,T�D�k�� = Un�t,T�O�T�Un�T,t�Un�t,T�D�k�

= Un�t,T�D��
�

���������D†D�k�

= �k�Un�t,T�D�k�� , �A6�

giving rise to the eigenstates

��k
�n��t�� = Un�t,T�D�k� = Un�t,T���k

�n��T�� = Un�t,0���k
�n��0�� ,

�A7�

with ��k
�n��T��=D�k�. Using the above relations, we immedi-

ately derive that

��k
�n��t����

�n��t�� = �k�D†Un�T,t�Un�t,T�D��� = �k��� = �k�,

�A8�

assuring that the eigenstates 	��k
�n��t��
 are orthogonal

throughout time. From Eqs. �A1� and �A7�, the dynamical
invariant O�n��t� can be expanded as

O�n��t� � Un�t,T�O�T�Un
†�t,T� = �

k

�k��k
�n��t����k

�n��t�� ,

�A9�

together with the identity relation

�
k

��k
�n��t����k

�n��t�� = Un�t,T�D��
k

�k��k��D†Un�T,t� = I .

�A10�

The expectation value �O�n��t�� can be written as

�O�n��t�� = ���n+1��t��O�n��t����n+1��t��

= �
k

�k���k
�n��t����n+1��t���2 � 0, �A11�

which in turns yields the inequality

�O�t�� 	 max	�1,�2, . . .
�
k

���k
�n��t����n+1��t���2

= max	�1,�2, . . .
 , �A12�

since, from Eq. �A10�,

�
k

���k
�n��t����n+1��t���2 = 1. �A13�

From Eqs. �20� and �A12�, it is readily seen that the iteration
scheme based on Eq. �43� converges asymptotically as fol-
lows:

lim
n→�

�O�n��T�� → max	�1,�2, . . .
 . �A14�

By substituting Eq. �A9� into Eq. �44�, we have

f�
�n+1��t� = −

2

�
Im��

k

�k���n+1��t���k
�n��t��

���k
�n��t������n+1��t��� . �A15�

At each iteration, Eqs. �A11� and �A15� can be quickly com-
puted by first propagating ��k

�n��t�� backward, starting at
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��k
�0��T��, and then ���n+1��t�� forward, starting at ���n+1��0��

�for example, using the second-order split-operator tech-
nique� to solve Eqs. �A3� and �47�. For multidimensional
quantum systems in the coordinate representation, it may be
prudent to first compute ��k

�n��0��=Un�0,T���k
�n��T�� �at small

overhead�, then integrate both ��k
�n��t�� and ���n+1��t�� forward

to avoid the large overhead of storing the time-dependent
dynamical invariant eigenstates ��k

�n��t�� over the whole time
interval t� �0,T�.

APPENDIX B: EVALUATION OF THE CONTROL FIELD
E(n+1)(t) AT THE (n+1)th ITERATION

The TBQCP control field E�n+1��t�, t� �0,T�, at the
�n+1�th iteration is updated using the recurrence relation

E�n+1��ti� = E�n��ti� + �1 − ��n+1���S�ti�f�
�n+1��ti�

+ �S�ti�f �n+1��ti�, i = 1,2, . . . ,M , �B1�

where ��1�=0 and f �1��t�=0 and

���n+1� = 0, f �n+1��ti� = 0 �TBQCP-1�
��n+1� = − a , �S�t�f �n+1��ti� = − a�E�n��ti� − E�n−1��ti��, 0 
 a 	 1 �TBQCP-2�
��n+1� = − b , f �n+1��ti� = − bf�

�n��ti�, b � 0 �TBQCP-3�

if n�1. Here the time interval �0,T� has been discretized
into M evenly spaced grid points. To compute

f�
�n+1��ti� = −

2

�
Im���n+1��ti�����

�n��ti������
�n��ti������n+1��ti��

�B2�

in Eq. �B1�, we first store

�r����
�n��ti�� = �r�Un�ti,ti+1� . . . Un�tM−2,tM−1�Un�tM−1,T����� ,

�B3�

i=M −1,M −2, . . . ,1 ,0, utilizing the backward propagator

Un�ti,ti+1� � exp� ı

�
	H0 − �E�n��ti�
�t� , �B4�

followed by the evaluation of

�r���n+1��ti�� = �r�Un+1�ti,ti−1� . . . Un+1�t2,t1�Un+1�t1,0���� ,

�B5�

facilitated using the forward propagator

Un+1�ti,ti−1� � exp�−
ı

�
	H0 − �E�n+1��ti−1�
�t� . �B6�

Alternatively, we may first compute �r ����
�n��0�� using Eq.

�B3�, followed by the simultaneous evaluation of

�r����
�n��ti�� = �r�Un�ti,ti−1� . . . Un�t2,t1�Un�t1,0�����

�n��0��

�B7�

and

�r���n+1��ti�� = �r�Un+1�ti,ti−1� . . . Un+1�t2,t1�Un+1�t1,0����
�B8�

for i=1,2 , . . . ,M, leading to Eq. �B2�, where the forward
propagator is

Un�ti,ti−1� � exp�−
ı

�
	H0 − �E�n��ti−1�
�t� . �B9�

This latter implementation is advantageous when the storage
of the time-dependent dynamical invariant eigenfunction
�r ����

�n��t�� over the time interval �0,T� becomes problematic,
for example, when the number of grid points in the r− t plane
becomes too large. The forward propagator Un�ti , ti−1� was
evaluated using a short-time second-ordered split-operator
scheme �51–54�

Un�ti,ti−1� � exp�−
ı

�
H�n��ti−1��t�

� exp�−
ı

2�
K�t�exp�−

ı

�
	V − �E�n��ti−1�
�t�

�exp�−
ı

2�
K�t� , �B10�

for i=1,2 , . . . ,M �1, �t=T /M, and H�n��t�=H0−�E�n��t�
=K+V−�E�n��t�, with K and V being the kinetic energy and
potential energy operators, respectively. The backward
propagator Un�ti , ti+1� was evaluated using the relation
Un�ti , ti+1�=Un

†�ti+1 , ti�. Moreover, a damping function of the
form �51�

F�ri� = sin��

2

rmask + �rmask − ri

�rmask
� ri � rmask, �B11�

was introduced, where rmask=14.7 a.u. �compared to the lo-
cation of the last spatial grid point at rmax=15 a.u. in the
calculations� is the position at which the damping function
takes effect and �rmask=rmax−rmask=0.3 a.u. is the range
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over which the damping function was applied. This proce-
dure is equivalent to adding a negative imaginary potential at
the far end of the spatial grid to prevent the artificial reflec-
tion of the propagating wave function. Thus, the time-

dependent quantum states ���n+1��t�� and ���n��t�� were effec-
tively expressed as �r ���n+1��t��= �r ���n+1��t��, �r ���n��t��
= �r ���n��t�� if r
rmask and �r ���n+1��t��= �r ���n+1��t��F�r�,
�r ���n��t��= �r ���n��t��F�r� if r�rmask.
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