PHYSICAL REVIEW E 82, 026701 (2010)

Continuous-time quantum Monte Carlo and maximum entropy approach to an imaginary-time
formulation of strongly correlated steady-state transport
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Recently, Han and Heary [Phys. Rev. Lett. 99, 236808 (2007)] proposed an approach to steady-state quan-
tum transport through mesoscopic structures, which maps the nonequilibrium problem onto a family of aux-
iliary quantum impurity systems subject to imaginary voltages. We employ continuous-time quantum Monte-
Carlo solvers to calculate accurate imaginary time data for the auxiliary models. The spectral function is
obtained from a maximum entropy analytical continuation in both Matsubara frequency and complexified
voltage. To enable the analytical continuation we construct a kernel which is compatible with the analytical
structure of the theory. While it remains a formidable task to extract reliable spectral functions from this
unbiased procedure, particularly for large voltages, our results indicate that the method in principle yields
results in agreement with those obtained by other methods.
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I. INTRODUCTION

The calculation of steady-state transport properties of
open quantum systems such as quantum dots is a challenging
and unsolved problem. Perturbative methods [1-3] may be
used to study the weak correlation regime, but they fail to
provide a reliable description of the competition between
Kondo- and Coulomb-blockade physics in strongly interact-
ing dots [4]. To avoid these limitations of conventional per-
turbation theory, various nonperturbative numerical ap-
proaches have been developed. Time-dependent density-
matrix renormalization group (tDMRG) calculations [5,6]
and real-time Monte Carlo (RT-MC) approaches [7-10] try
to compute the relaxation into the interacting steady state
after some switching of parameters, such as voltage bias or
interaction. While the short-time transients can be very accu-
rately captured with these methods [11], the approach to the
steady-state may occur on rather long, in the worst case ex-
ponentially large times scales. Due to finite-size effects in the
tDMRG and an exponentially growing sign problem with
increasing time in RT-MC, the access to long times is se-
verely limited in both approaches. Furthermore, the tDMRG
is performed for a finite, closed system; whether a relaxation
to a reasonable approximation of the interacting steady-state
is guaranteed for some intermediate time scale much smaller
than Poincaré’s recurrence time is not obvious. This latter
problems may be avoided by numerical renormalization
group (NRG) [12] and functional renormalization group
(fRG) calculations [13-18], which attempt a direct descrip-
tion of the nonequilibrium steady state. However, the former
introduces an artificial discretization and truncation of the
spectrum of the Hamiltonian, which can lead to artifacts in
the time evolution. The fRG, on the other hand, is again
perturbative in nature, and experience up to now shows that
it works best in the extreme nonequilibrium limit [17].

None of the methods developed so far is able to provide a
complete and reliable description of simple models, such as
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the Anderson impurity model, in all parameter regimes.
More importantly, the most interesting regime, where all rel-
evant energy scales—voltage, temperature, magnetic field
etc.—are of the same order as the relevant low-energy scale
of the model, is usually the one which is not accessible.
Therefore, the development of new or improved simulation
approaches is a worthwhile and important task.

Recently, a new and rather unconventional approach to
calculate the steady-state transport through interacting quan-
tum dots or similar structures was proposed by Han and
Heary [19]. Their formalism, which is based on Hershfield’s
density operator [20], maps the nonequilibrium steady-state
of the interacting model onto an infinite set of auxiliary equi-
librium systems, each characterized by some complex volt-
age. The appealing feature of this approach is that powerful
methods exist for the numerical solution of equilibrium mod-
els. There are, however, two caveats for the implementation
of this approach. First, the complexification of the voltage
bias introduces a formidable new problem in the form of an
analytical continuation in the voltage on top of the already
challenging analytical continuation from Matsubara frequen-
cies to real frequencies. In Ref. [19] this double analytical
continuation was performed using a phenomenological for-
mula based on general structures of the self-energy found in
second order perturbation theory. Second, a proper analytical
continuation requires high-quality data over a large range of
Matsubara frequencies and complex voltages. Quantum
Monte-Carlo algorithms based on a discretization of the
imaginary time axis, such as, e.g., Hirsch-Fye [21], cannot
provide unbiased data of sufficient quality [19].

The purpose of this study is to explore to what extent an
unbiased numerical implementation of the method by Han
and Heary is feasible. We will address two issues: (i) the use
of recently developed, accurate continuous-time quantum
Monte-Carlo (CT-QMC) algorithms as solvers for the effec-
tive equilibrium impurity problems with complex voltage
bias; and (ii) the analytical continuation of Matsubara fre-
quency data via some Maximum Entropy method. In particu-
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lar, we will compare the performance of the weak coupling
[22] and hybridization expansion [23] algorithms. We will
show that the weak-coupling CT-QMC is indeed an efficient
and highly accurate algorithm for solving Han’s effective
equilibrium systems, even for large Matsubara frequencies
and complexified voltages. As a second step toward turning
Han’s method into a tool to study stationary nonequilibrium
systems we propose a kernel for the maximum entropy (ME)
procedure which is compatible with the analytical properties
of the Green function. We demonstrate that the ME works in
principle, although at present we are still lacking a suitable
data selection prescription which would allow us to obtain
reliable spectral functions.

The paper is organized as follows. Section II describes the
imaginary-time approach to steady-state transport by Han
and Heary. A brief introduction to the CT-QMC for equilib-
rium problems and their suitability for models with complex
voltage bias follows in Sec. III. Section IV D is devoted to
the issue of analytical continuation in the voltage and fre-
quency domain and presents some results for equilibrium
and nonequilibrium situations. We will finish the paper with
a conclusion and outlook in Sec. V.

II. IMAGINARY-TIME FORMULATION
OF STEADY-STATE TRANSPORT

We briefly review the imaginary-time formulation of
steady-state transport through an interacting quantum dot
proposed by Han and Heary [19], which is based on the work
of Hershfield [20].

A. Physical model

We consider a spin-degenerate, single-level quantum dot
attached to two noninteracting fermionic leads. This system
can be described by the single-impurity Anderson model
with Hamiltonian (e=A=1)

H=Hy+H,,, (1)

Hy= E Sako'clko'cako'-i- 2 VGdjde"' 2 (Vakaclkado

ako T ako

+ VZku'dZ-Caklr) s (2)

Him=U<nT—%><nl—%), 3)

where a=-1 and a=+1 label the left and right reservoirs,
respectively. The index k denotes the wave vector of the lead
states and o the spin quantum number. A gate voltage Vg
may be applied to shift the dot energy level position relative
to the particle-hole symmetric configuration V;=0.

To keep things simple, we assume a k-independent hy-
bridization V,,=V/\2 and consider the wide-band limit for
the dispersion of the leads. We then end up with a bare level
broadening I'=T", +x, I',=m|V|?Ny/2, where N denotes
the density of states of the leads at the Fermi energy.
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In the case of nonequilibrium steady-state transport, the
leads are supposed to be unaffected by the current flowing
through the dot and characterized by free-Fermion correla-
tors

<C-LPU'CBP’(T'> = 5a,ﬁap,p’ U,o”fﬁa(‘gg,o - I‘La) > (4)

with fﬁ(x)z(eﬁ"+l)‘1 the Fermi distribution function for
inverse temperature 8 and u, the value of the chemical po-
tential for lead «. We restrict ourselves to the case where
the inverse temperatures of the left and right lead are the
same, [B;=Br=0, and symmetrically applied voltage bias,
pp=—pmg. The bias voltage is denoted by ®=pu; — up.

B. Y-operator

In Ref. [20], Hershfield introduced a Hermitian operator Y
by means of which the nonequilibrium, steady-state expecta-
tion value of a local observable A may be written as

Tr e PH-PY)5
A)= Ty o BT (5)

The above expectation value is of the form <(A)
=Tr pA/Tr p, and hence resembles the equilibrium expres-
sion. Under certain assumptions involving a nontrivial ex-
change of limiting procedures, the operator Y can be ex-
pressed as

Y= 2 gl/"zzkulﬁakm (6)

ako

where the scattering states i,,,, are related to the bare con-
duction states c,,, by the second-quantized Lippmann-
Schwinger equation [24].

1

— Lyl 7
sozk(r_£+i7] Vake ( )

¢Lk0 = CTak(r +
The Liouvillians are defined as £=[H,-] and Ly=[Hy,],
with Hy== (Ve dy+h.c.) the hybridization part of
the Hamiltonian. The “-” denotes the operators after £, and
the fraction in Eq. (7) denotes the corresponding geometric
series in L, i.e., a series of iterated commutators with H.
For U+ 0 it is impossible to calculate an explicit expres-
sion for the Y-operator. More importantly, although H-®Y
looks like an effective Hamiltonian for the system, it cannot
be used to define a consistent description of imaginary-time
and real-time dynamics. The real-time dynamics is always
controlled by H alone, but H and H—®Y will in general have
a different spectrum. Therefore, the analytically continued
imaginary-time dynamics does not reproduce the real-time
dynamics.

C. Imaginary voltages

Since H—-®Y does not yield the correct real-time dynam-
ics, Han and Heary [19] introduce an additional trick. Start-
ing with a fully established noninteracting steady-state en-
semble at time r=0, the fully interacting steady state is
formally reached by propagating the system to f=+%.
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Restricting to the noninteracting case, in a path integral rep-
resentation the expectation value for an observable A be-
comes

M>=<f1WWﬂMAG¢h40%%mAMDJKWM>. (8)

0

Here, the average (-), is performed using Eq. (5) with H
—H, and Y—Y,, where Y, can be explicitly constructed
using noninteracting scattering states. It was argued in Ref.
[19] that the time evolution via H maps the noninteracting
scattering states to the interacting ones and the Lagrangian
for the real-time evolution reads

L(t) = 2 lzblk(r(t)(i&t - 8ak(r) wak(r(t) . (9)

ako

Aiming at a description which yields ¢~ as real-time
evolution operator for r—¢' and ¢~(™ ~?#=%Y) a5 imaginary-
time evolution operator for —i7— —i7’, the Lagrangian is re-
expressed with respect to the spectrum of H-—®Y, &y,
=g o—a®P/2. Statistical expectation values take a form
analogous to equilibrium expectation values, with a uniform
Fermi level £,,=0. Due to the discrepancy between H and
H-®Y, the real-time Lagrangian transforms to L(z)
=3 kol 1o (D(i0,= & py— a®/2) (1), s0  the effective
Fermi levels of left and right leads have different time evo-
lution rates. These rates can be factored out as time-
dependent phase factors of the Grassmann fields by introduc-

ing new field variables i, (1)=¢"*®"2y., (7). The extra time
evolution rate is generated by id, acting on the phase factor,

and thus L(1)=2 yoth’ (000, E o) Yraso(f) describes the
correct time evolution.

To obtain a Matsubara-like theory, the fields 1] are now

Wick rotated, #(r)— {—i7). However, under the replace-
ment r— —i7 the exponential factor becomes e®®72 which
means that it diverges as 7— and decays as 7— —. To
circumvent this problem, Han and Heary introduce a second
analytic continuation to ensure Matsubara’s periodic bound-
ary conditions and thereby obtain a well-defined effective
equilibrium system. This is achieved by complexifying the
voltage occurring in the extra time evolution rate according
to ® —i¢,,, m € 7. For the particular choice ¢,,=4mm/ 3 the
Matsubara boundary conditions are conserved [19].

D. Effective action

The final result of these manipulations is that both the
Lagrangian and the fields now have their time evolution with
respect to the effective equilibrium Hamiltonian K=H— (P
—ip,,)Y. In a perturbative expansion around the noninteract-
ing limit, one may then switch to the interaction picture with
respect to the noninteracting effective Hamiltonian Ky=H,
—(®P-igp,)Y,. As before, Y, is Hershfield’s boundary condi-
tion operator for the corresponding fully established nonin-
teracting steady state, for which an explicit expression can be
given.

PHYSICAL REVIEW E 82, 026701 (2010)

We may now proceed along the usual lines and integrate
out the conduction electron degrees of freedom to obtain an
effective action

B
Sepr= 2 f f deT'djr(T,)Gallr(T’, 7)d(7)
o4 0

B
+ Uf dT|:dI(T)dl(T) - %} [d}'(r)dT(T) - %]
0
(10)

for the electrons on the dot. As we are by construction in the
stationary state, the bare dot Green’s function G,(7',7) ap-
pearing in the quadratic term in the action Eq. (10) depends
on the time difference only. We, therefore, may perform a
Fourier transform to fermionic Matsubara frequencies and
find the form [19]

1/2
GO,mn= E ) (11)
a=*1 (@)

a
iwn - E(i(Pm - (D) — &g+ i

with Gy 1= Goli,,,iw,), Fﬁr‘l"n) =I" sgn(w,—agp,,/2), and
E4= VG'

The desired Green’s function for the stationary state of the
interacting system is finally obtained by solving the quantum
impurity problem for each i¢,,, m € Z, performing the ana-
lytical continuation i¢,, — z, and evaluating the resulting ex-
pression at the physical voltage z,=®.

Although the preceding discussion seems to be based on
simple manipulations of the functional integral, one has to
show formally the equivalence of the complexified auxiliary
equilibrium time-evolution based on the action Eq. (10) and
the actual physical time evolution with respect to H as given
by Eq. (8) after the analytical continuation i@, — ® in the
former. Up to now such a formal proof is still lacking, only
an argument based on the inspection of the contributions to a
perturbation expansion has been put forward [19]. It is there-
fore interesting to see if an unbiased numerical implementa-
tion of this formalism is possible and produces physically
meaningful results.

III. CONTINUOUS-TIME QUANTUM MONTE CARLO

In order to compute the self-energy from action Eq. (10)
as a function of Matsubara frequency we employ CT-QMC
solvers. The continuous-time Monte Carlo technique in the
weak-coupling [22] and hybridization expansion [23] formu-
lation has been discussed in considerable detail in the litera-
ture and we will present here merely a short summary of the
formalism. The idea is to expand the partition function Z
=Ti[e PH] into a series of diagrams, and to sample (collec-
tions of) these diagrams by a Monte Carlo procedure. We
split the Hamiltonian H of the impurity model into two parts,
H, and H,=H—-H, and employ an interaction representation
in which the time evolution of operators is given by
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H,:0(1)=e™10e ™1, In this interaction representation, the
partition function can be expressed as a time ordered expo-
nential, which is then expanded into powers of H,,

) B 8
B
Z= Tr[e‘ﬁHlTe—foder(T)] = 2 dr - f dr,
n=0+0 Tl
XTr[e_(B_Tn)Hl(_ HZ) e e_(TZ_Tl)Hl(_ Hz)e_TIHl] )

(12)

Equation (12) represents the partition function as a sum over
Monte Carlo configurations c={r<...<7}; n=0,
1,...,7,€[0,B) with weight

W, = Tr[e_(ﬁ_T”)Hl(— H,) - e~ (- TH Hy)e H1]d7".
(13)

Two types of expansions have been considered. In the weak-
coupling approach [22] the partition function is expanded
into powers of the interaction, H,=H,,, while the time evo-
lution between operators is given by the quadratic part of the
Hamiltonian, H;=H,. The Monte Carlo configuration be-
comes a collection of interaction vertices on the imaginary
time interval and the weight Eq. (13) evaluates to

Wik = (- U)”det{Go - %I}daﬂ. (14)
Here (G);;=Gy(7,—7;) is an n X n matrix whose elements are
noninteracting Green functions evaluated at all time intervals
defined by the vertex positions. Note that in the case of half
filling of interest here, only even perturbation orders appear
in the expansion. Away from half-filling, odd perturbation
orders become relevant and Ising-type auxiliary fields must
be introduced to avoid or reduce the sign problem. We will in
this paper employ the continuous-time auxiliary field algo-
rithm described in Ref. [25], which for models with density-
density interactions and an appropriate choice of parameters
is equivalent to the weak-coupling algorithm [26].

The alternative approach is the hybridization expansion
[23] where the partition function is expanded in powers of
the hybridization term,

Hy= 2, (VyoChypody + He.),

ako

while the time evolution between operators is given by the
impurity plus bath part of the Hamiltonian. This time evolu-
tion no longer couples the impurity and the bath. It therefore

11

a
T =
1T | sen{ - S|

a==*1

i
+ 2 [iwn —&4t a(iQDm - (I))]%Sgn
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becomes possible to integrate out the bath degrees of free-
dom analytically to obtain

Wwe= Zbath Trloc[e_ﬁHlach/an(Tn) 1701/(7},1) T lpal (Tl) l//Tai(Ti)]

X det M~ ({r,a}, ... {7 it e}, .. {7, al})
X(d7)*". (15)

The configurations ¢ are now collections of n time arguments
71<...<rT, corresponding to annihilation operators with fla-
vor indices a,...,a, and n time arguments 7 <...<7,
corresponding to creation operators with flavor indices
a@;,...,a,. The element i,j of the matrix M~ is given by the
hybridization function F a{,aj(Ti’ —7;), which is defined in

terms of the hybridization parameters V,‘f’“, and the bath en-
ergy levels g [27]. In a model with density-density interac-
tions only, one can separate the operators according to fla-
vors, which leads to the so-called segment representation
[23]. This segment representation allows a simple and effi-
cient evaluation of the trace over the impurity states in Eq.
(15).

A. Implementation

The implementation of the weak-coupling CT-QMC for
the action Eq. (10) is straightforward. The noninteracting
Green’s function Eq. (11) is being Fourier-transformed and
the resulting Gy ,,,,(7) inserted into Eq. (14).

The implementation of the hybridization approach is more
subtle, as—except in the equilibrium limit &=0,
i¢,,=0—the hybridization function F a{,aj(Tt{ —7;) which ap-
pears in the action Eq. (15) lacks a physical meaning, be-
cause it is not directly related to the hopping amplitudes
V in the physical Hamiltonian Eq. (1). However, the
hybridization function is implicitly defined by rewriting
the effective action Eq. (10) as [23] Se=Sp+Sie
with  Sp==3,f[Bdrd7' d (DF(r—7)d () and Sy
=—[Bdr(S e ,d d,~ Ud}'dIdel). Consequently, the hybrid-
ization function can be constructed from Eq. (11) as

F(=iw,) =iw,— &g Goligyio,)™", (16)

|
F(D)== 2 e F(iw,).

n=—o0

(17)

After straightforward algebraic manipulation, we obtain

ig,—®\>
2

o
W, = P

2

[oa=) -

Fliw,) =
(iw) _ =

lw,— &4+

(18)

2 sgn

a==*1

(o5
wn 2¢m
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Note that the expression il" sgn(w,— a¢,,/2) emerges from
imposing the wide-band limit for the leads. The hybridiza-
tion approach is only able to cope with finite bands, because
in the limit of infinitely wide bands of constant DOS, the
expansion order diverges. The sgn-function must therefore
be replaced by a sufficiently well-behaved function corre-
sponding to a finite bandwidth and thus decaying rapidly
enough for large frequencies w,,.

The high-frequency behavior of expression Eq. (18) is
given by

‘wn‘_’m F “
Fliw) — > Lsgn(wn - 3‘¢m> + N Bliw,) + -
a=*1 2 2 lw, Lo,
. —-® 2
q=-W-Cﬂ;—), (19)

which means that the numerical evaluation of Eq. (17) re-
quires some care. Conventionally, one regularizes the sum by
analytically evaluating the dangerous parts and then numeri-
cally calculating the difference between the full function and
the problematic parts, i.e.,

AF(T) = é E {F(lwn) - |:ﬁ(l(l)n) + ic—1:|}e—iwnr.

n=—0 n

The leading order high-frequency tail ¢,/ (iw,) results in a
constant shift —c,/2 in F(7), 0<7< . The first term
. 1)
F(iwn) = E %Sgn((‘)n_ a%)

a==*1

in the high-frequency expansion yields

A1 _— w7 _ I cos(¢,,72)
F(T) - Bn:z—oc F(lwn)e B ﬁ Sin(ﬂ'T/B) (20)

and diverges for 7—0 and 7— . These divergences are a
direct consequence of the wide-band limit, i.e., we need to
regularize them in order to be able to use the hybridization
expansion algorithm. This regularization is introduced by
cutting the divergences with a sufficiently large cutoff pa-
rameter F,, i.e., we use

F(r) = AF(7) - % + min[F(7),F,y].

In practice, the value F.,=10* was used. The contribution
AF is Fourier transformed easily by accumulating the series
numerically.

Note that the term F has, besides the additional oscilla-
tions from the cosine modulation in Eq. (20), the same struc-
ture as in the plain equilibrium Anderson model, where
F (T):%[Sin(’ﬂT/ B)]™!. We will therefore illustrate the prop-
erties of the quantity

F(r) = F(r) - F(7) (1)

in the following section.
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FIG. 1. (Color online) Imaginary-time data used as input for the
CT-QMC solvers for different values of the imaginary voltage ¢,,,.
The upper panel shows the nontrivial contribution F(7), Eq. (21) to
the hybridization function F(7), the lower panel shows the
imaginary-time Green’s function G,. Raising ¢,, leads to increas-
ingly oscillating imaginary-time Green’s functions and hybridiza-
tion functions. The oscillations need to be resolved well by the
QMC solver in order to guarantee an unbiased solution. As implied
by Eq. (19) a strong negative shift —c;/2 occurs in the hybridization
function when sweeping through the region ¢,,> ®. The imaginary
parts Im F(7) and Im Gg(7) are small and also show oscillations.

B. Imaginary-time data

Typical input data for both, the weak-coupling and the
strong-coupling approach, are shown in Fig. 1. With increas-
ing imaginary voltage ¢,,, oscillations with m nodes occur in
both, the imaginary-time Green’s function and the hybridiza-
tion function. Moreover, the shift Eq. (19) grows quadrati-
cally, introducing a strong shift of the hybridization function
toward negative values.

The strongly oscillatory behavior for large ¢,, makes a
correspondingly fine resolution of the imaginary-time inter-
val necessary. In a standard Hirsch-Fye algorithm [21], the
interval [0,8) has to be represented by a comparatively
small and fixed number of equidistant mesh points, i.e., these
oscillations cannot be adequately resolved. This limitation
does not apply to CT-QMC, and it is hence the method of
choice to access also large ¢,,.

C. Phase problem

In contrast to the equilibrium case, complex sampling
weights w,=¢”|w,| are obtained in both the weak-coupling
and strong coupling formulation. As usual, one uses the
modulus |w,| of the weight to determine the acceptance prob-
ability, while the phase e!” has to be treated as additional
observable. Usually, such an approach leads to a sign prob-
lem and severely limits the applicability of the Monte-Carlo
simulations. Therefore, we must anticipate a generalized sign
problem, i.e., {¢!Y) — 0 exponentially or worse. The situation
is especially problematic for the hybridization expansion due
to the additional shift Eq. (19) toward negative values. In-
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FIG. 2. (Color online) Absolute values of the average sampling
weight phases [(w./|w])| and [(wz/|wg])| [Egs. (14) and (15)] of the
weak-coupling (solid lines) and the strong-coupling (dashed lines)
solver, respectively, as a function of the imaginary voltage. On a
logarithmic scale, the average phase decays faster than linearly for
the strong-coupling approach when ¢,, is increased. No strong de-
pendence on ¢, is found for the weak-coupling algorithm.

deed, as illustrated in Fig. 2 the sign problem becomes in-
creasingly severe with increasing imaginary voltage ¢,,, lim-
iting this algorithm to small ¢,,. From Fig. 2 it also becomes
clear that the sign problem in the weak-coupling CT-QMC
simulations is much milder and this approach allows us to
simulate impurity models with large ¢,,.

To demonstrate the quality of the imaginary-time data
which can be obtained with the weak-coupling CT-QMC
method, we show in Fig. 3 the imaginary part of the Matsub-
ara axis self-energy computed for U/I'=10, ®/I'=0.018,
T/I'=0.0098 and ¢,,=0 (m=0), ¢,/I'=123 (m=10),
¢,/ I'=2.46 (m=20), and ¢,,/I'=3.69 (m=30). The equilib-
rium Kondo temperature for this parameter set is Tyx/I’
~(.018<1, i.e.,, we are reasonably deep in the Kondo re-
gime of the Anderson model. Moreover, the values for @ and
T are such that T=Ty/2 and ® =Ty, i.e., precisely in the
parameter region which is hard or impossible to access for
other methods. Even for large complex voltage the accuracy
of the numerical data is very good (error bars on the order of
the line width) for both small and large Matsubara frequen-
cies. In contrast to the results presented in Ref. [19], which
are based on discrete-time Hirsch-Fye simulations, no dis-
continuities are observed for w,=~ * ¢,,/2 in the CT-QMC
data. We note, however, that a recently published paper [28]
reports a trick by use of which this issue could be resolved
within the discrete-time formalism.

IV. ANALYTIC CONTINUATION
A. General considerations

The usefulness of quantum Monte-Carlo approaches is
partially based on the fact that the knowledge of the Green
function for the imaginary Matsubara frequencies is suffi-
cient to uniquely determine the dynamics on the real fre-
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- @ _/T=3.69 (m=30)

n

Im (o )T
o
T
P

4 I \ I \ I \ I \ I

FIG. 3. (Color online) Imaginary part of the impurity self-
energy obtained with the weak-coupling CT-QMC solver for Vg
=0, U/I'=10, T/T'=0.0098 and ®/I'=0.018. The equilibrium
Kondo scale here is Tx/I'=0.018. We easily obtain high-quality
data for all values m=10, 20, and 30 of the complexified voltage,
even in this most challenging parameter regime T <I', ® = Ty and
T=~Tg/2. Each m value was run on a single Intel Xeon(r) E5345
CPU for approx. 24 h, so the data were obtained with relatively
moderate computational effort.

quency axis. This theorem by Barnes may be cast into the
representation

1(~ Im G(g +i0"
G(z)=——f i Gle +i0D)

T _» Z— €&

(22)

where z e C and —Im G(e+i0*)=0 and normalizable. The
latter two properties allow the application of, e.g., Maximum
Entropy approaches to extract an unbiased image for
Im G(g+i0%) from the Monte-Carlo data for z=iw,,.

To eventually turn Han’s approach into a real working
tool, we have to define a suitable analytical continuation pro-
cedure, which does not rely on any other information than on
the analytical structure of the Green function and possibly
positivity and normalizablity of the inferred spectral func-
tions. However, in the present context we have the additional
problem, that the QMC approach yields Green functions de-
pending on two variables, G(i¢,,,i®,), and one has to per-
form a double analytical continuation ig,— ® and iw,
— w+i0*. This means that we have to deal with functions of
two complex variables, which takes us into the realm of
function theory of several complex variables [29]. This para-
graph deals with rather technical aspects, which however are
vital to come up with a linear integral equation similar to Eq.
(22), which then opens the route toward an implementation
of a ME algorithm for the double analytical continuation.
The result will be motivated in the following and derived in
more detail in the Appendix. The essential formulas for the
ME procedure are Egs. (27) and (28).

B. Integral representations in several complex variables

In the function theory of one complex variable, a function
f(z) holomorphic on a domain () C C may be reconstructed
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from its values on the topological boundary () via the well-
known Cauchy integral equation f(a):ﬁ I (,-,Qé_%dz, ae ().

If the function depends on several complex variables,
however, it is possible to construct integral representations
not only with respect to the topological boundary but even
with respect to an often lower-dimensional subset of the to-
pological boundary, the so-called distinguished boundary or
Bergman-Shilov boundary S C dQ). In other words, the local
information on the distinguished boundary contains all infor-
mation about a holomorphic function.

Due to the high diversity of possible domain geometries
in (" the modern mathematical definition of the distin-
guished boundary is rather abstract and cannot be discussed
in this work. For the simple example of the bicylinder ()
=D X DC (? (with D the unit circle in C), however, it coin-
cides with the only two-dimensional set S=dD X dD,
whereas the topological boundary is the three-dimensional
set IDXDUD X JD. The integral representation with re-
spect to the distinguished boundary is straightforwardly

given by the conventional Cauchy’s integral formula,
1 fz1,2)
Hay,ay) =50 apdzi S opdzaTg ) iomay

More generally, if dQ) is defined by piecewise smooth
manifolds, the distinguished boundary is (under some regu-
larity conditions) given by the unification of the intersections
of the manifolds. Note that a full generalization of the
Cauchy integral formula for all types of domains in C" is not
possible.

C. Analytic structure

As noted in Ref. [19], at finite interaction, branch cuts
occur for Im z,=2Tm z,, (7y odd) in the complexified Green’s
function G(ig, — 2,,iw,—2,). Introducing the complex
vector variable z=(z,,z,) we hence assume the Green’s
function to be holomorphic as a function of two complex

variables in domains TCv:= R2+iC%, where for v € 27

. a ) v—1 v+1
C):= e R%:sa>0nA la| <b < |a|
b 2 2

are the cones emerging from the branch cut condition for
positive (s=+1) or negative (s=—1) imaginary voltages (see
illustration in Fig. 4). Note that domains like T are well-
known objects in the theory of functions of several complex
variables and are called tubular cone domains. For a good
introduction see, e.g., Ref. [30].

In Ref. [19] this structure is described by the Cauchy
representation

0'},(8)

Sigpio,) = 2 | de

ye2Z+1

(23)
iw, — g(i(pm -d)-¢

for the corresponding self-energy. However, Eq. (23) is only
approximate, because the i¢,, dependence of the functions
o,(&) is not taken into account. Such a nontrivial dependence
appears as a result of higher-order corrections in U.

Let us start by discussing the analytically continued bare
Green’s function

PHYSICAL REVIEW E 82, 026701 (2010)

Alm z

¢

FIG. 4. (Color online) Geometric structure of the complex space
carrying the two-variable Green’s function G(z,,z,). Branch cuts
occur for Im z,= 2Im Zo With y=*1 (solid lines), for U=0, but
also at y=*3 (dash-dotted lines), y=*5 (dashed lines), y=*7
(dotted lines), and so on, for U# 0. Concentrating on the retarded
sector of the Green’s function, Im z,>0, we introduce the cones
sz bounded by the branch cuts with imaginary-part ratios ﬁ and
Pl Adding the real subspaces (Re z,,Re z,,), the tubular cones
TC;=JR2+iC;" are obtained as domains of holomorphy.

/T
Golepz) = 2 o . (24)

a=*+ a T (a
' 20— SEe- @)+ iT'(z4,2,)

with F(“)(Z(P,zw) :=I" sgn(Im z,,— alm z,/2). The correspond-
ing geometric structure of the complex space is depicted in
Fig. 4, the branch cuts given by the black lines y= = 1. Note
that the Green’s function does not vanish for all directions

within a given T as |z] — . On the other hand, Im G(z) is
at least bounded, and we assume that nonzero interactions do
not alter this fundamental property. One can thus always find
a constant ¢ such that the imaginary part of the function
f(z):=G(z)+ic is positive. Integral representations of the
form [f({)K(z,{)d{=f(z) which are valid for the class of
holomorphic functions with non-negative imaginary part also
hold for G(z), since —ic-const(z) is also a function with non-
negative imaginary part, for a suitably chosen real number
const(z). This class of functions on tubular cone domains
was extensively studied by mathematicians. In Ref. [31],
Vladimirov finds a generalization of Herglotz-Nevanlinna
representations [32] to such domains. See the Appendix for
details. The representation provides a linear relation between
function values in the entire tubular cone domain (the
“wedge;” gray area in Fig. 5) and those on the distinguished
boundary (the “edge;” intersection of the two planes
*Im z,= ﬁlm Ze)-

The validity of the imaginary-voltage formalism is pres-
ently based on the assumption of asymptotic convergence of
the perturbation series in U. Thus, the influence of the branch
cut between TC»2 and TCv is expected to become negligible
as v— o, i.e., all branch cuts with v> v can be ignored.
The maximal value v,; may for example be estimated from
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“\ Cv -2

crit

0 0 O

.
7Ycril+2 S Nerit

FIG. 5. (Color online) Sketch of the geometry of the two-
dimensional analytic continuation problem. For the critical domain
index v the branch cut y 4 +2=v.+1 (dotted line) is negligible,
while the critical branch cuts = 7, are not. The Green’s function is
therefore holomorphic in the cone domain 7€ bounded by the ra-
tios =Im z‘p——Im z,=€ Im z,, with C, given by Eq. (26). Inves-
tigating the Green’s function at the edge of this domain is compat-
ible with the limiting procedure of taking z,— ® and then z,— @
+i0* for the spectral function A(w). This limiting procedure is in-
dicated by the bold dash-dotted arrow. Using the integral represen-
tation Eq. (27), a most likely limit of the Green’s function at the
edge, lim,_,G(z), xeR2, will be inferred from the QMC data
G(ig,,.iw,)|rc, in the domain using a Maximum Entropy Method
(Sec. IV D). The spatial locations of the QMC data points in (out
of) the domain are symbolized by the crosses (circles). In the case
of strong interaction, for small Matsubara frequencies we are lim-
ited to small values of ¢,,, i.e., with this naive data selection strat-
egy most of the data points will be lost.

the expansion order histogram of the weak-coupling QMC
simulation, since a given branch cut with index y=v+1 is
only established by diagrammatic contributions with order
larger than a certain value n, which is roughly proportional to
7.

As stated in Ref. [19] we are required to first take the
limit z,— & and then z,,— w+i0". In our language, the spec-
tral function is given by

1
Alw)=-—lim lim Im G,(z). (25)

T y—n z—(D,0)

Since branch cuts with index y=w,;+1 vanish we choose
the domain 7¢ with

CS = {(xl,xZ) S R2|X2 >0A-— EXy < X1 < sz}’ (26)

and e~ —— for the analytic continuation of the interacting
Green’s functlon This choice of domain is illustrated in Fig.
5. In practice, the critical branch cut is yet chosen arbitrarily
but to be small, see Sec. IV D. As shown in Appendix the
Poisson kernel representation resulting from Vladimirov’s
theorem is

PHYSICAL REVIEW E 82, 026701 (2010)

Im G(2)|7c, = f d2x7>a(g—)_c)?m Im G()lrc, (27)
Rr2 {—x -

with

2 Y2 — myi/e
7728;4—+1(X2 ,u,xl/s)2+(y2 M)’I/S)

Py(z) = (28)

where x and y are the real and imaginary parts of z.

D. Maximum entropy method
1. Single analytic continuation

The numerical analytic continuation of imaginary-time
quantum Monte Carlo data is a highly ill-posed problem.
Even if the finite set of QMC data did not contain any sto-
chastic noise there would exist an infinite-dimensional mani-
fold of solutions to the integral equation associated with the
continuation, i.e., the spectral representation

A(e)

n

Gliw,) = f de; —— = Ke[Al(w,) (29)
for the conventional continuation problem.

Hence, a regularization procedure picking a “most prob-
able” solution is required. Typically, this is approached with
a maximum entropy method (MEM), a rigorous framework
rooted in Bayesian logic which can be understood as an au-
tomatic Ockham’s Razor, in the sense of being “maximally
noncommittal with regard to missing information” [33-35].
The spectral function A(w) is interpreted as a probability
distribution. A default model D(w) is introduced as a priori
information about the solution A(w). Additional information,
given by the measured imaginary-time data G(iw,), is in-
ferred through the kernel K ,[A] in Eq. (29). If there is no
additional information the procedure will pick A(w)=D(w),
in Bryan’s MEM algorithm [36].

In practice, a functional

O[A]= x[A]- aS[A], a@>0 (30)

is minimized in the space of candidate solutions for a given
hyperparameter «. The QMC data must be Gaussian distrib-
uted, such that the likelihood penalty y’[A] is given by

1N
52((_?,3

p.=1

x'[Al=

- K [A],)C,,(G,— K [A],), (31)

where G are the measured mean real or imaginary parts of
the 1mag1nary -frequency Green’s function G(iw,), and C_
are the elements of the inverse covariance matrix.

The default model D(w) is invoked through the entropy

S[A]= fde [A(s) D(g) — A(e)log (( ; (32)

For a detailed theoretical justification of this choice for the
entropy see Ref. [35].

The easiest way of fixing the regularization parameter « is

to employ the condition >~ N (historic MEM). It is, how-
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ever, more reasonable to calculate a posterior probability dis-
tribution Pr(A | «). Setting a to the maximum of the posterior
probability distribution is called classic MEM. Marginalizing
a by choosing Pr(A|a) as weights for A when integrating
over « is empirically found to be most suitable and is also
most justified from the theoretical point of view (Bryan’s
MEM).

2. Double analytic continuation

In order to adapt the above procedure to the double ana-
Iytic continuation problem, a non-negative quantity has to be
found which

(1) uniquely represents any possible function in the data
range of interest—say TCs—in order to define a y* for infer-
ence;

(2) easily allows calculating the nonequilibrium spectral
function A(w).

We choose

Aly) = - Liim tm G(Dlre, (33)
'7T§~>)_c -

as such a representation, since due to the Kramers-Kronig
relations and the validity of the representation Eq. (27), A
yields a unique and simple representation of all possible
functions G |;c,. The nonequilibrium spectral function is eas-
ily accessible, since A(w) =A(D, w).

In the case of zero interaction,

~ 1 ryr
A =——1 = .
o) T maglxz—a(xl—¢>)/2—sd+ir

(34)

It is easy to verify that Ay(x) is a positive function with

fd*xA(x)=1 if one constrains the x, integration to an arbi-
trary finite interval of length /. This fact and the fact that

A(D, w)=A(w)=0 do not imply g(xl ,X;) =0 in general. We
however assume A (x;,x,) =0 and expect to obtain revealing

signatures within the MEM, in case the real A is not positive
definite for a given data set. Note that even in the presence of

regions where A<0, a MEM can be implemented, by iden-

tifying the nodes of A, as in the case of bosonic spectral
functions. In general, positivity may be enforced by adding a
positive real constant b to the spectral function and adding a
corresponding term to the image. As particular example for
this procedure, we quote here the case of the Nambu off-
diagonal Green’s function G,, where the positivity is en-
forced as G(7)+bfdwK(7,w)=[dwK(T,w)[A(w)+b]
[37].

We hence choose Eq. (27) as a kernel function for the x>
functional and only take data in 7¢ into account. The en-
tropy expression Eq. (32) is adopted for a two-dimensional

default model D(x).

3. Implementation

First note that since the input data for the Poisson kernel
Eq. (27) are obtained from statistically independent QMC

PHYSICAL REVIEW E 82, 026701 (2010)

simulations, the covariance C in the y? functional Eq. (31)
has a block-diagonal shape

C(mmin) 0
0 Crmint) e
C= . . (35)
: 0

0 C(mmax)

The submatrices C" are covariances for the subset of data
G(ip,,,iw,) at a fixed ¢,,, estimated from the output of the
corresponding equilibrium QMC simulation.

Our implementation of the maximum entropy method is
based on Bryan’s standard algorithm introduced in Ref. [36].
A singular value decomposition (SVD) of the kernel

K:Vi— Vg K=V2UT (36)

is performed, with V, U’ orthogonal, and the singular values

3 =diag(oy,0, ...,0,,0, ...,0), (37)

o =0,=... =0,>0. Many important quantities may be re-
duced to the s-dimensional singular space V. Most notably,
the (dim V})-dimensional optimization problem given by

Q[g]:! min (38)

may be solved within the singular space using Levenberg-
Marquardt iterations. As s is comparably small after truncat-
ing the singular space with respect to the floating point pre-
cision of the singular values o; (typically, s=350), the
algorithm is still sufficiently efficient, even though a two-
dimensional frequency grid is required for the numerical res-
olution of A, and hence dim Vi=10°.

The algorithm enables us to calculate several important
data qualifiers and posterior probabilities and therefore to
classify both input data quality and candidate solutions. The
posterior

Y
ZLZS(Q’) '

Pr(a|G) = Pr(a) f DA (39)
with ZL=fD[KZ]e‘X2/2, Zg()=[DAe™, and the Jeffreys
prior [38] Pr(a)*a”!, is calculated using a Gaussian ap-
proximation for Q, centered around the solution gopw of Eq.
(38).

The usual procedures and strategies for data qualification
and improvement of results as described in [34] are adopted:

Assuming a flat prior Pr(D), the posterior for the default
model

o2
ZLZS( a)

Pr(D|G) = f de f DA Pr(a) (40)
is computed easily. Pr(D |G) serves as evidence for the qual-
ity of prior information when comparing within sets of de-
fault models for given QMC data. Whereas a posterior prob-
ability for the domain parameter e for given data and given

default model, Pr(e | 6,5), would be a sensible extension to
the algorithm, we have not derived it yet. Useful ingredients
might be found in the literature on blind deconvolution in
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signal processing, see [39]. In our implementation, a small
enough ¢ is chosen a priori.

Picking appropriate data sets with well-estimated covari-
ance from the QMC output is also a nontrivial part of the
problem. A good check is to determine the most probable
mock error rescaling o where the covariance C is formally
substituted by o>C. If the most probable o (“merit”), i.e., the
solution of

2
Xclassi
%+Ng=N (41)

deviates from 1 by more than a few tens of percent, the input
data are rejected [34]. X2, 1S the x? value of the classic
MEM solution, the number of data points N, and the number

. i
of “good” data points Ng:E,-a1 Y
of

with \; the eigenvalues

Aijz {\/AT: (92)(2/2 \/Ej] . (42)

Aclassic
In practice, a maximal Matsubara frequency n,,,, compatible
with the error rescaling merit was determined, and all data
Im G(ig,,,iw,) in T, with n=<n,,,, were used for inference.
Presumably, better data selection strategies do exist. For ex-
ample, using independent measurements for Re G and taking
them into account by using a Schwarz representation (see the
Appendix) could yield better results. Furthermore, the largest
Matsubara frequency index n,,, could be determined for
each ¢,, individually. The latter appears to be necessary for
nonequilibrium data.

For the truncation of singular values, a threshold N was
used,

o;, if ;= \o; max{M,N},
o; (43)

0, else

for an M by N kernel matrix. While for the conventional
Wick rotation A= 10~% was sufficient, A= 107!2 had to be
chosen in our case in order to take all relevant search direc-

tions in the A space into account. Quadruple precision float-
ing point arithmetic was found to be unnecessary. For dis-

cretizing the g()_c) function, logarithmic meshes for the x; and

X, variables were used. Although A(x) does not decay for all
directions as x — %, choosing a finite mesh and truncating the
integrals was not found to be critical.

4. Equilibrium

As a test case we consider the equilibrium limit ®=0. The
data for ¢,,=0 can be analytically continued with the stan-
dard Wick rotation, using Eq. (29) and the standard MEM.
Figure 6 compares this one-dimensional (1D) spectral func-
tion to the result based on the 2D data set G(i¢,,,iw,) and
continued using the domain 7€ and the kernel function de-
fined in Eq. (27). As default models for high temperatures we
use Lorentzians with variable width Ty, They read

PHYSICAL REVIEW E 82, 026701 (2010)
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FIG. 6. Analytically continued data for equilibrium (®=0) ob-
tained using the conventional Wick rotation (1D) and the unconven-
tional two-variable continuation (2D), with U=5T", V;=0. The do-
main parameter for the 2D continuation is 8=%. Subfigure (d)
shows the posterior probabilities Pr(D | G) of the default models as a
function of T gepu [Egs. (44) and (45)].

1 F efau
D(w) = — 58— (44)
T+ 1_‘dcfault
for the 1D continuation and
~ 1 T efault(X
Dlx.w) = — defautt(%X) (45)

o+ 1—‘default(x)z

for the 2D continuation, with T g (x) = VT2 5, +X% An an-
nealing procedure in the temperature was used for both, the
1D and 2D data for invoking adequate prior information, i.e.,

we used the A solution of the next higher temperature as
default model, starting with the Lorentzian at the highest
temperature. This default model selection procedure appears
not to have any strict Bayesian justification, however the
physical argument is freezing out the high-frequency degrees
of freedom and using present data for inferring low-energy
details of the spectrum step by step [37]. A similar idea plays
the key role in several modern renormalization group tech-
niques. Note that Gaussian default models are not well suited
for our data, since the high-frequency tail in the wide-band
limit is Lorentzian. This manifests itself quantitively in the
following way: For the Gaussian default models we tested all

had Pr(5|(_}) one order of magnitude lower than the Lorent-
zian ones. For both, the Gaussian and the Lorentzian, we can
expect the quantity I/ to be >1, due to the overall
broadening introduced by a finite interaction U.

Indeed, for the parameters U=5I", V;=0, ®=0 shown in

Fig. 6(d), the (unnormalized) posterior probabilities Pr(D|G)

and Pr(D|G) as a function of the parameter Iy are
peaked at =2T for both, the 1D and 2D continuation proce-
dures, respectively. These probabilities were calculated for
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FIG. 7. (Color online) Lorentzian default model Eq. (45) with
best Pr(D|G) used for the first annealing step in equilibrium.

BI'=10T". The most probable I'y.;,,; Was chosen as default
model. However, a strong dependence of the results on I'
was not observed.

The spectral functions shown in Fig. 6 were obtained for
Br'=5, 10, and 20. We chose &= 15 for the 2D domain, using
Nmax=10, 20, and 40 for BI'=5, 10, and 20, respectively.
Note that due to the simple data selection strategy described
in the previous section we only took into account data points
with ¢_, = ¢,,= ¢,. Using a global n,,,,, the estimate for the
covariance submatrix C"=% in Eq. (35) eventually becomes
singular, even though C" with |m|=3 and w,> , could
still be estimated for a limited set of Matsubara freq{lencies.
We expect that using such additional, well-estimated ctm
might lead to more structured spectral functions. In practice,
however, the merit o must yet be viewed as a rather crude
measure of the quality of the covariance estimate. So for the
purpose of both simplicity and reproducibility we used the
stronger restriction.

The Kondo temperature for U=5T"is Tx/I'=0.1, i.e., we
can expect first signatures of strong coupling physics like
Hubbard bands and a temperature dependent quasiparticle
peak of reduced width in the spectra. Indeed both the 1D and
2D MEM reproduces these features. More importantly, the
overall shape of the spectra obtained agrees for all tempera-
tures shown in Figs. 6(a)-6(c). The results depend only
slightly on the choice of I'yy,, for relevant values of

Pr(D|G). Although the spectra inferred from the 2D proce-
dure using our current implementation appear to be less
structured, the overall shape seems to be reconstructed quite
well. For more serious calculations, the detailed high-
frequency behavior (and behavior for large x) should be in-
troduced with a more sophisticated default model, e.g., based
on perturbation theory.

5. Inferred representation

Figure 7 shows the Lorentzian default model we used at
the highest temperature in the annealing procedure, SI'=2.
At the lowest temperature BI"=20, the representation shown
in Fig. 8 was obtained. The equilibrium spectral function
shown in Fig. 6(c) is given by the cut A(®=0,w). Other
values of Re z, do not have any physical meaning. Note that
certain structures appear in the inferred Alx, y) which vary as
the domain parameter & is changed: they occur for Re z,,
= *Re ez, We interpret them as resulting from the proper-
ties of the kernel function discussed in Sec. IV D 8 in com-
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Rez, /T

FIG. 8. (Color online) MEM solution for A inferred from the
QMC data at the lowest temperature, SI'=20, for the equilibrium
test case shown in Fig. 6.

bination with the MEM principle of only incorporating
changes which are strongly supported by data. Also, at larger
distance from the origin, discretization errors from the dis-
cretization of the double integral are most dominant for this
most structured region of the kernel. At finite bias, the quali-
tative structure of the inferred representation remains un-
changed.

6. Finite bias

The rule of thumb n,,, = % appeared to be a good choice
for preparing the equilibrium QMC data for inference. For
® >0 a first interesting observation is that at sufficiently low
temperatures n,,,, seems to be considerably smaller than %]
In fact, the simple data selection strategy yielding n,,,, does
not appear to produce a sufficiently informative data set to
obtain quantitative agreement with for example RT-MC cal-
culations [4]. We observed this problem for BI'=10 and the
interaction strengths U=4I" and U=6I" and several values of
the bias voltage ®. On the other hand, by picking an n,,,, for
each ¢,, separately, we found larger sets of admissible input
data, which tend to show a good agreement with RT-MC data
for the current-voltage characteristics. While the procedure is
yet somewhat arbitrary, the following criteria were used to
restrict the choices of data sets producing convergent MEM
solutions:

(i) ensure an error rescaling o= 1;

(ii) discard strongly oscillating solutions and solutions
with obvious artifacts around w=0;

(iii) discard solutions which strongly violate the physical
sum rule ||A||:= [dwA(w)=1. In many cases, too small values
[A]|=0.9 were obtained. Note that the MEM as we imple-
mented it only has prior information about the value of the

truncated double integral [[d2xA(x), because two-
dimensional probability densities are considered when the
entropy expression Eq. (32) is straightforwardly generalized

with respect to A;

(iv) use as many data points as possible, starting with
small w,,, to maximize the amount of accessible information.

Note that the domain parameter & was, again, chosen
somewhat arbitrarily: For U=4I" we only investigated v,,,,
=16, for U=61" we picked =20, with £=,~=. The de-
pendence of the results on the particular choice of £ was not
studied systematically yet, but work along these lines is un-
der way and the results will be presented elsewhere. The
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FIG. 9. (Color online) Current-voltage characteristics obtained
using the 2D MEM compared to RT-QMC [4] data for indicated
Coulomb interactions at temperature SI'=10.

usual annealing procedure with temperatures BI'=2, BI'=5,
BI'=10, and for BI'=2 the Lorentzian default models with
I gepaue=1.5T (U=4T") and I jo4,;=2.1T" (U=6I") were found

to be most suitable based on the posterior Pr(5| G).
The current J was computed using Meir and Wingreen’s
equation [40].

J= Jmaxf dw[fL(w) _fR(w)]A(w)s (46)

With =56

Our experience up to now indicates that for too small sets
of QMC data the method systematically underestimates the
current, because Bryan’s algorithm by convention does not

incorporate any changes to A=D in case the data do not
provide sufficient evidence for such modifications. As a re-
sult, the current is too small, because in the vicinity of w
=~() the less structured default model obtained from the next
higher temperature [initially the broad Lorentzian Eq. (45)]
is much flatter than the true solution, which features a sharp
Abrikosov-Suhl resonance in the relevant frequency range.
Hence, the spectral function obtained from the MEM has less
spectral weight in the integration window in Eq. (46) than
the true A(w).

Due to this trend of underestimation, in Fig. 9, we com-
pare the largest values of the current compatible with the
above-listed restrictions to data obtained using a recently de-
veloped RT-MC approach [4]. A generally good agreement is
obtained. However, the data selection procedure is still too
arbitrary to consider these results unbiased. Error bars are not

available. If we only considered a fixed set of data (_}, the

covariance Cov{A[x("],A[x?]} would be estimated easily
[36]. However, due to large off-diagonal terms, attempting to
estimate an error bar for J is rather cumbersome. The ® /I
=0.0625 run did not converge to a solution meeting our cri-
teria for U=4I" and was not taken into account.
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FIG. 10. (Color online) Spectra A(w)=A(P,w) used for the
computation of the current shown in Fig. 9.

7. Non-equilibrium spectral functions

Spectra resulting from the procedure described above are
shown in Fig. 10. These are the spectral functions used to
compute the current in Fig. 9. Because the data selection
criteria which we suggested for the nonequilibrium case ne-
glect the error of the covariance estimate [41] and—more
importantly—rely on a somewhat arbitrarily chosen 7., we
obtain an overfitting resulting in oscillations in the spectra.
The number of Matsubara frequencies for each Matsubara
voltage resulting from the criteria is listed in Table I. We do
not believe that the oscillations indicate a formal inconsis-
tency of the theory beyond the neglected influence of branch
cuts within 7€, because the inferred equilibrium functions,
Figs. 6 and 8, do not show these features although they result
from the same formal analytical structure. In fact, when we
add artificial noise to the free Green’s function, a strong
overfitting is obtained whenever a wrong covariance estimate
is passed to the MEM. Therefore, the continuation problem
is merely more demanding from a stochastic point of view as
discussed in Sec. IV D 8.

We observe a tendency toward suppression of spectral
weight at small w with increasing U. This is consistent with
the expectation that the quasiparticle resonance for U=6I" is
already reduced, because 8'=0.1I"> Ty, whereas 8! =Ty
for U=4T".

In Fig. 11, we show a comparison of the spectral functions
for U/T'=4 and BI'=10 to the result obtained from fourth-
order perturbation theory [3]. Based on the results presented

TABLE I. Number N,, of Matsubara frequencies taken into ac-
count for each value of m considered in the data selection at SBI’
=10 for U/T'=4 and for the voltages plotted in Fig. 9.

/T Nm=0 Nm=:1 Nm=t2 Nm:“"%
0.0625
0.125 26 12
0.25 24 12 5
0.5 24 12
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FIG. 11. (Color online) Spectra Alw)=A(D,0) for U=4T" as
compared to fourth-order perturbation theory.

in Ref. [4], we expect that fourth-order perturbation theory is
quite accurate at this interaction strength and temperature.
Besides the unphysical oscillations in the MEM result and a
bias toward the high-temperature default model, especially
for larger voltage biases, the agreement between the spectral
functions seems satisfactory.

Table 1I shows the norm ||A||=fA(w)dw for the functions
presented in the figure. Obviously, the physical sum rule
[A|[=1 is not strictly obeyed, and there is a slight tendency
toward too small norms whose origin is unclear but which
appears to be consistent with the trend of current underesti-
mation. Moreover, the selection of data we chose at BI'
=10 for U=4I" and U=6I" is shown in Tables II and III,
respectively. The tables present the number N,,= n,(m)
—2m/e of Matsubara frequencies which are located within
the cone domain 7€ for the chosen 7, (m). We did not
consider larger values of m, although at least m= *=4 yields

further relevant information about A. For a test case the spec-
tra did not show dramatic qualitative changes as additional
values at larger ¢,, were included, as long as the error scaling
merit remained o= 1. However, the level of arbitrariness in
the data selection would have been even larger, because of
the corresponding additional n,,,, parameters.

Obtaining reliable spectral functions at finite bias will ob-
viously require more effort. In principle, better nonequilib-
rium spectral functions should be obtained by using longer
QMC runs, as long as the choice of the critical branch cut
index v, is adequate. However, increasing the number of
Monte-Carlo sweeps, we found that in some cases the noise

TABLE II. Norms of the spectral functions shown in Fig. 10.

o/T Al y=ar Al y=6r
0.0625 091
0.125 0.92 0.92
0.25 0.92 0.95
0.5 1.03 1.16
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TABLE III. Same as Table II but for U/I'=6.

/T Nm=0 Nm=:1 Nm=‘_"2 Nm:“"%
0.0625 20 11 6 1
0.125 21 11 6 8
0.25 21 11 6 3
0.5 20 11 6 1

on the spectral function increased as the QMC data accuracy
was improved, while in other cases the quality increased.
The fact that the quality of the output spectra does not im-
prove systematically with the data quality illustrates the in-
herent difficulty of the proposed maximum entropy ap-
proach. It is our impression that in cases, where the noise
grows as a function of the number of QMC sweeps, the
neglected branch cuts within the 7¢ domain become impor-
tant. This in turn appears to be amplified by the increased
difficulty of the continuation problem at finite bias (see Sec.
IV D 8). An elimination of the restriction to the domain 7
and thus the necessity to arbitrarily determine a critical
branch cut index is therefore highly desirable. Promising but
technically demanding on-going efforts therefore concentrate
on the formal elimination of the function-theoretical restric-
tion of the data space to the cone domain 7.

8. Kernel structure

We finish with some remarks about the structure of the
kernel function Eq. (27) and its role in the continuation prob-
lem. In the language of Bayesian inference the kernel func-
tion defines the information channel through which evidence

about the shape of the representation function g()_c) and thus
also the physical spectral function A(w) is extracted from the
Monte Carlo data.

For the information provided by a single data point, this
channel may result in rather vague or rather strong evidence
for changes in a given compact region R C Vj, see Eq. (36).
It depends on whether the subset of column vectors u; of U
spanning R is associated with rather small or rather large
singular values o;, respectively. Furthermore, the overlap of
the column vectors v; of V with the data point is important.
For this reason, very small singular values yield irrelevant
components of the channel and are therefore projected out in
Bryan’s algorithm by introducing the threshold \, Eq. (43).

We can neither perform the SVD analytically, nor can we
analytically take into account structural changes which occur
when rotating the basis of Vg, to the eigenbasis of the co-
variance matrix C in order to consider statistically indepen-
dent data. We can however consider values of the kernel in
V3 for a given data point, assuming it to be uncorrelated with
other data points so that it may be investigated separately.
Within our QMC implementation, experience shows that cor-
relations between Matsubara frequencies w,, w,, are mono-
tonically decreasing as a function of distance |w, —w),
though very slowly.

Let us first consider a single uncorrelated imaginary part
of a Green’s function at Matsubara frequency w, in the stan-
dard Wick rotation problem. The spectral function A(g) is

s

026701-13



DIRKS et al.
T T T
0.1+ |
-- ®=2T
g - ®=5T
£ -' - ®=20T
C -" o
S : e AT .
Z005F i U Gniidaa
s [
g I
P
1 -
I =
.'l * 7L
K 20 ' 20 : =

Expansion Order

FIG. 12. (Color online) Expansion order histogram obtained us-
ing the weak-coupling solver for K=—pBU/4+1, which suppresses
the odd perturbation orders [4]. The results are for U=7T", BI'
=51.2, and ¢,,=2.46I" for indicated voltages ®. The average order
decreases as ® is increased. A similar behavior is obtained for dif-
ferent values of ¢,, and U.

inferred through the Lorentzian-shaped kernel Eq. (29),

Im K JA@E))(0,) = - 5. (47)
e+ w,

For all w, the kernel Eq. (29) is centered around £=0 and
higher frequencies are associated to larger values of the ker-
nel as the width given by w, is increased. As compared to
e=0 the values of the kernel at large frequencies are still
small. We can therefore expect large singular values and thus
relevant components of the kernel to be associated with
small frequencies only. This is in agreement with the well-
known observation that high-frequency information about
the spectral function is better put into the default model as
prior knowledge and a good resolution is obtained for the—
fortunately most interesting—Ilow-frequency region.

In the case of our two-dimensional continuation the situ-
ation is quite similar. For given data Im G(i¢,,,iw,) the Pois-
son kernel in Eq. (27) is

i w, = Iu'(Pm/s
7728 u==*1 (XZ - ll’(’xl/s)2 + (wn - ,UJQDm/S)z .

It is the product of two Lorentzians. In analogy to the argu-
ment given above one may expect the best resolution for data

A"()_C(best)) with
x(2best) ~ + x(lbest)/s and x(zbesl)’x(lbest) =~ 0. (48)

This does not depend on the physical voltage @, except that
the critical branch cut index 7., appears to be decreasing as
a function of ®. This can be estimated from the expansion
order histogram for the example shown in Fig. 12. Conse-
quently, the domain parameter & could presumably be raised
as @ is increased. However, in the limit of very large volt-
ages, especially the low-frequency region of the physical
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spectrum Alw)=A(P, ) is not expected to be in the best
resolvable region Eq. (48).

Thus, the approach based on a representation of data in
TC: appears to be limited to relatively small voltages. Note
that, since @ = Ty is the most interesting parameter regime,
this is presumably no serious drawback. However, identify-
ing subtle details in the range —®/e < w<<P/e may require
more care than the case w=0 for the standard Wick rotation.
Fixing the x, and x, variables in the kernel and analyzing the
dependence as a function of the data coordinates ¢,,, w, we
similarly find that large values of the kernel are found in the
vicinity of the domain boundary, i.e., for (m,n) pairs close to
the cone boundary, w,= * ¢,,/ &, with ¢,,, o, not being too
large. Hence, data close to the boundary provide the most
relevant information. This appears to explain the importance
of an m-dependent n,,, in our computation of nonequilib-
rium spectra.

V. CONCLUSION AND PERSPECTIVE

The imaginary time formulation for steady state transport
in strongly correlated quantum impurity systems proposed by
Han and Heary is based on the solution of a family of quan-
tum impurity models subject to complex voltages, and a sub-
sequent double analytical continuation with respect to fre-
quency and voltage. A main purpose of the study presented
in this paper was to investigate to what extent an unbiased,
numerical implementation of this approach is feasible and
whether or not it yields physically plausible results.

To solve the impurity problem we employed two recently
developed continuous-time impurity solvers. The hybridiza-
tion expansion approach was found to be unsuitable in the
case of large complex voltages, due to a serious sign problem
resulting from the shift of the hybridization function to nega-
tive values. The weak-coupling approach, on the other hand,
works well for small and large ¢,,. Even though the nonin-
teracting Green’s function G, becomes complex and oscillat-
ing, the resulting sign problem is mild, enabling us to obtain
highly accurate, unbiased imaginary-frequency data for all
relevant complex voltages. This part of the problem can be
considered as solved, leaving us with the double analytical
continuation problem.

A main result of this work is the derivation of an analyti-
cal expression of the kernel [Eq. (28)] for the analytical con-
tinuation procedure. This kernel is consistent with the ana-
lytical structure (branch cuts) of the theory and maps a

function of two variables, A (x1,x,), to the interacting Green’s
function in a tubular cone domain of the complex voltage
and frequency space. The physical spectral function for a dot

under voltage bias ® is obtained as A(w) =A(D,w).

We have implemented and tested an analytical continua-
tion procedure based on the maximum entropy method and
our proposed kernel. We want to emphasize that both the
data selection procedure and the estimate of the covariance
entering into the maximum entropy employed for ® >0 are
at this point still rather rudimentary and leave room for im-
provement. Furthermore, the choice of the critical branch cut
Yeric and the neglection of higher-order branch cuts are nu-
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merically uncontrolled. Our results for the nonequilibrium
case should therefore be viewed as preliminary. They illus-
trate the presently most plausible spectral functions and cur-
rents which can be obtained using our current implementa-
tion.

Nevertheless, taking into account the obvious challenges
inherent in a double analytical continuation procedure, we
find physically reasonable spectral functions for the interact-
ing equilibrium model and, to a lesser extent, also under
finite bias. A comparison of the spectral functions with
fourth-order perturbation theory shows that the approach is
able to reproduce the correct trends, albeit the strong oscil-
lations resulting from the maximum entropy approach render
a detailed comparison meaningless. On the other hand, the
current calculated using these spectral functions is in fair
agreement with recent results from a real-time Monte-Carlo
approach.

We hope that further improvements in data selection strat-
egies, a better understanding of the precise behavior of the
Green’s function across the branch cuts, improved default
model functions, and the inclusion of sum rules into the
maximum entropy algorithm will eventually enable us to ob-
tain more accurate results and turn the combination of
Monte-Carlo simulation and double analytical continuation
into a reliable tool for the study of steady-state properties of
quantum impurity systems using Han and Heary’s formal-
ism. A technically challenging but hopefully worthwhile ef-
fort to eliminate the restriction of the data space to the cone
domain 7€ is under way. We expect that the uncontrolled
determination of a vy, can be avoided, while the inverse
problem remains an exact linear equation which may be
tackled with the MEM. The results of this effort will be
reported elsewhere.
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APPENDIX: DERIVATION OF THE KERNEL

Based on the argument given in Sec. IV C, we restrict
ourselves to the class of functions with positive imaginary
part in the domain 7=, typically denoted as H,(7 ) in the
mathematical literature. For a good overview of the concepts
and terminologies used in the mathematical context see Ref.
[29] and the first volume of Ref. [30]. Vladimirov found the
following generalization of Herglotz-Nevanlinna representa-
tions to several complex variables [31,32]. It is essentially
[30] the

Theorem. (Vladimirov, 1978/79) The following condi-
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tions for a function fe H,(TC) are equivalent for a cone
CCR™ and u(x):=Im f(x):
(1) The Poisson integral P{du] is pluriharmonic in T¢;
(2) the function Im f(z), z=x+iy e TC, is represented by
the Poisson formula -

Im f(z) = Pldul(z) + (a.y),

for some a € C*, where C* is the dual cone of C;
(3) for all z° € T¢, under the assumption that C is regular,
the Schwarz representation

(A1)

fQ)=i f Sclz-t.2°-t)du(®) +(a.2) +b  (A2)

holds, with b=b(z%)=Re f(z°)-(a,x°).

Let us introduce the relevant mathematical termin-
ology. A cone CCR™ with vertex at zero is defined
[29] by the property that ye C=VA>0:Ay e C. Its dual
cone C*:={éeR™|VxeC:(£,x)=0}. Here, PJdul(z)
= [pmd"xu(x)Po(z—x) with the Poisson kernel

K
Pd)=—— 7, z=x+iy (A3)
T 2K (2iy) -
and the Cauchy kernel
Kelz) = f d"ge'@?, zeTC. (A4)
C*

We will not explicitly use the Schwarz kernel S, the reader
may find it in Ref. [30]. A holomorphic mapping is said to be

biholomorphic iff it is one-to-one. Two domains G,G are
biholomorphically equivalent iff a biholomorphic mapping
G— G exists. For the concept of pluriharmonicity see intro-

ductory volumes of Ref. [30].
In the case of TC¢ we rewrite Eq. (26) as

C.= U {(x;,x) € R%x; >0 Ax; =\xy}.
Ne(-¢,8)

(AS)

Hence, the dual cone

C.= N

e(-¢e,e

={(£.&) e R&E= 0§ e [- &fe, el

Evaluating the integrals [d"é=[gd&,[ %’;,Edfl in Eq. (A4)
yields

){(51,52) e R?| Vx> 0:6\x, + &yx, = 0}

2 1
Ke@=-=I1 ———. (A6)
€ -r1 L~ MZI/E

Equation (28) follows immediately from the definition Eq.
(A3).

In order to prove the validity of the representation Eq.
(27) based on Vladimirov’s theorem, we first determine a
=0 due to the boundedness of the Green’s function. Now we
need to show that the Poisson integral Pcs[d,u] with respect
to the measure u(x)=Im f(x) is pluriharmonic for all func-
tions f e H,(TC). Note that for the m-dimensional octant
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c™ = R"={(x,, ... .,x,) € R"|x;> 0} (A7)

it was proven [30,42] that the Poisson kernel Pctm is pluri-

harmonic for all functions f e H (TC+ ) Fortunately, as we
restrict ourselves to m=2 in our application, all tubular cone
domains are known to be biholomorphically equivalent—
they are simply connected through linear transformations.
To see the advanta%e more explicitly, we introduce the

biholomorphism M : TC+ — TC given by the linear operation

M@ = M-7 1 (e (1+82)/2) - (aB)
IR a2 \-1 eve2) E
Obviously,
_ 1 (e+e )2 —(1+&)2
M= 2( . (A9)
V1+e 1 €

We explicitly show that the kernel representation Eq. (27) for
a function f(z) € H,(T¢) may also be derived by applying
the corresponding Poisson kernel PC<2) for the tubular octant
to the corresponding function f(z) f(MZ) eH+(TC+ ) and

transforming back to TC+ Since the representation for f is
valid, we will have shown explicitly that Eq. (27) is valid for
all fe H (T ).

For this purpose it suffices to show that

Ke,(2)=Kco(M™'z), (A10)

because then Pc (z- x) PC(2>(M z—=M™'x) and therefore
PC (z-M3x)= PC(2>(M z-%). ‘We introduced the integration
variables x and X of the Poisson integrals Pc_ [du], w(x)

PHYSICAL REVIEW E 82, 026701 (2010)

=Im f(x) and Pcolda). D=f().
det M=1, transforn;ing X—x in P then yields Eq. (27).

With a similar procedure as for +ICC it is straightforward
to show that ’

respectively. Since

1
Ko@) =——.
- 2122

Fe1 (A11)

To finish the argument we verify that Eq. (A10) holds by
inserting

e+e!

1+&2 \7!
i1 - > 22 (7

KoMz =(1+¢%) - (
+ez,)7 L.

Representations for any tubular cone domains in C? are simi-
larly related due to the biholomorphic equivalence. In par-

ticular, valid representations for TC are obtained easily. For
+
example, the Poisson kernel with respect to T¢v reads

Plo) = 1 I Yo = (v+ wy,/2

7T2,u=i1 vt :
Xy — > Xy -

(A12)

and could in principle be used for an enhanced continuation
procedure invoking data from all sectors of the complex
space.
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