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Discrete rogue waves of the Ablowitz-Ladik and Hirota equations
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We show that the Ablowitz-Ladik equation, which is an integrable form of the discretized nonlinear
Schrodinger equation, has rogue wave solutions in the form of the rational solutions. We show that there is a
hierarchy of rational solutions and we derive the two lowest-order ones using the Hirota technique. More
generally, we present rational solutions for the discrete Hirota equation which includes, as particular cases,
both the discrete Ablowitz-Ladik equation and the discrete modified Korteweg-de Vries (mKdV) equation.
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I. INTRODUCTION

The Ablowitz-Ladik (A-L) equation [1,2] is an integrable
form of the discretized nonlinear Schrodinger equation
(NLSE). As such, it has multiplicity of solutions which are
analogous to solutions of the NLSE. Among the known ones,
we can mention soliton and multisoliton solutions of the A-L
equation. The close relation seems straightforward; but, in
reality, there is much confusion over attempts to integrate the
A-L equation. The difficulty is related to the nonlinear term,
which is not the result of a direct discretization, but has some
nonlocality involved. At this price, the equation becomes in-
tegrable.

Solutions of the A-L equation on a zero background level
have been studied extensively. The inverse scattering tech-
nique, with zero boundary conditions for this equation, has
been developed in Ref. [2]. In particular, the basic zero back-
ground one-soliton (“sech”) and the two-soliton solutions
have been given in [3]. The latter work also covers the case
of the discrete Hirota equation. The inverse scattering tech-
nique for nonvanishing boundary conditions has been devel-
oped in [4]. N-dark soliton solutions of the A-L equation
have been given in terms of the Casorati determinant in [5].

There have been many endeavors to use the inverse scat-
tering technique [2], zero-curvature representation [6], and
Darboux transformations [7,8] for the A-L equation. Stan-
dard techniques allow us to obtain a certain class of solu-
tions. Moreover, in the case of the A-L equation, they are not
always entirely convenient, as pointed out in [9]. If we are
interested in solutions that do not belong to a specific class,
we can use nontraditional methods. In this regard, new solu-
tions have been obtained by using the Hirota method [3,10]
or by guessing the form of the solutions from the NLSE case
and substituting them directly into the A-L equation [11].
The standard form of the integrable A-L equation can be
written as

Y

I Gt )1+ P =20,20, (1)

where 1 is the continuous evolution variable (time or longi-

tudinal spatial variable) and n=0, =1, ®£2,... are integers.
Our aim in this work is to analyze the existing solutions

and derive other results for the A-L equation. In particular,
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we are interested in solutions that are located on a finite
background. These could be either localized or periodic so-
lutions. In the case of the NLSE, the latter are known to be
related to modulation instability and to rogue waves [12]. In
this work, we are interested in similar objects generated by
the A-L equation. Generally, discrete breathers have a variety
of applications [13]. In particular, discrete rogue waves can
be used as spatial energy concentrators in arrays of nonlinear
waveguides [14]. Thus, presenting these solutions may well
find practical applications.

II. INVARIANTS AND CONSERVED QUANTITIES

To start with, let us list relevant invariants of the equation.
For the A-L equation, a solution multiplied by a complex
number of unit modulus produces another solution. This
property is known as phase invariance. For localized solu-
tions with zero background at infinity, i.e., when n— %,
there is an “energy invariant” that is conserved. If the back-
ground is not a zero but has a finite value ¢, we can redefine
energy since, with the usual definition, it would become in-
finite. It is also conserved. Namely, for a solution i, labeled
by j located on a background field g, we define

o

0"=2 0 2)
n=—0
where
I N
0 =S Wwli+ vl ul) - 4. (3)

Another conserved quantity is the momentum

PO=i 20 (W)= i) (4)
n=—oo
The expression for the momentum is the same for solutions
on zero or nonzero background.

Solutions of the A-L equation are translationally invariant
relative to shifts along the ¢ axis. They are also translation-
ally invariant relative to shifts along the n axis by an integer
number. It is less obvious that they are translationally invari-
ant relative to real (noninteger) shifts along the n axis. In-

©2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.82.026602

ANKIEWICZ, AKHMEDIEV, AND SOTO-CRESPO

deed, all solutions presented below can be shifted by real
number n,. They then look different but are still solutions of
the A-L equation. For this reason, we plot the solutions in a
“continuous way,” although the functions are defined only at
the discrete sites.

III. NARITA SOLUTION

A rich family of solutions of the A-L equation on a back-
ground has been obtained by Narita in 1991 [10]. Although
the initial description was “a soliton on a background,” the
family actually covers a wider variety of physical situations.
A comprehensive analysis of it would be instructive for ob-
taining more complicated solutions. This family is given by

g(n,1)
f(n,1)

P()=-¢q exp(2ig’t), (5)

where

g(n,t) =cos[x;(n,t) +i0,]+ G cosh[x,(n,1) +i6,], (6)

f(n,1) =cos[x;(n,t)] + G cosh[x,(n,1)]. (7)
The coefficient G is found from
o sin(k,)sinh(#6,)
sin(6,)sinh(k,)”
and

X1 =k1n +W1t+x10,

Xy = kz}’l + W2t + Xp0-

This family of solutions has five free parameters ¢, k;, k»,
X10, and x,q. The value g sets the background amplitude. The
two latter parameters are responsible for translations. For
simplicity, we can set them to be zero x;y=0, x,,=0. Two
other parameters, w; and w,, depend on ¢, k|, and k,. If we
define y as

~ 2(4°+ 1)
Y= cosh(6,) —cos(6,)’

then
wy = y{sin(k,)sin(6,)sinh(k,) +[1
— cos(k;)cosh(k,)]sinh(6,)},

w, = y{[cos(k;)cosh(k,) — 1]sin(6,)
+ sin(k,)sinh(k,)sinh(6,)}.

In order to find 6, 6#,, we need to solve the following two
coupled equations:

1 — cos(6,)cosh(8)) = m[1 — cos(k,)cosh(k,)], (8)

sin(6,)sinh(6,) = — m sin(k;)sinh(k,), 9)

where
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FIG. 1. (Color online) Narita solution on a background for the
A-L equation presented first in [10] and given by Eq. (5) here.
Although this plot shows the solution continuously along the 7 axis,
it is valid only at integer values of n. Here, g=1, k;=m/4, while
ky=arccosh(2) so that 6;,=1.818 93 and 6,=-0.9546.

(1+4°)
m=-——>5—.
q

As stated, the parameter ¢ defines the background amplitude.
Two other parameters, k; and k,, define the inclination of the
line where the field maxima are located and their periodicity.
The value of the maximum amplitude depends on this pe-

riod.

We plot an example of this solution in Fig. 1 for the
values of parameters g=1, k;=m/4, and k,=arccosh(2). The
conserved energy and momentum can be calculated from
Egs. (2) and (4). They are independent of 7 and given by
0=4.898 98 and P=-5.163 72. Let us now consider two im-
portant limiting cases.

IV. “MA SOLITON” LIMIT

If we take the limiting case where ¢ and k, are arbitrary,
but k;, — 0, and hence 6, — 0, then
e

Y= sinh2(ky2)”

The relation between 6, and k, can be found from Eq. (8),
viz.,

1 —cosh(6,) =m[1 = cosh(k,)],

while Eq. (9) is automatically satisfied, as each side is zero.
Now w,—0, and

wy =— 24 sinh(6,).

We take x,o=0 and x,,=0, so that x;=w, ¢ and x,=k,n. In this
case, solution (5) can be simplified to

cos[wyt+i6,]+ G cosh(k,n)
cos[w,t] + G cosh(k,n)

P ()=—q exp(2ig°t),
(10)

where
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FIG. 2. (Color online) Soliton on a background defined by Eq.
(10). Here, g=1, k,=1, while k;=6,=0.

k
0= +2 arcsinh{\ﬂ% sinh(f)},

and G is determined taking into account Eq. (9):

_ sinh(6,)
" \m sinh(k,)”

To give a more explicit form of Eq. (10), we can expand the
term with the complex argument as follows:

cos[wt+i6,]1=[1+ 2m sinh?(ky/2)]cos[w,{]

k
—2iVmA[1+m sinh2<52>
k
Xsinh(zz)sin[wlt].

Solution (10) is plotted in Fig. 2 for fixed values of the two
independent parameters. Clearly, the background is defined
by ¢, while k, determines the period of the structure along
the ¢ axis.

As can be seen from the figure, it is a soliton on a back-
ground, with zero velocity, which propagates along the ¢
axis. Beating of the soliton with the background field leads to
the periodicity in the solution. It is an analog of the Ma
soliton in the case of the NLSE [15].

Limit of the rational solution

Solution (10) is still a one-parameter family. If we take k,
to be small and expand f and g to order k% we obtain

41+ ¢»)(1 +4ig*t)
1 +4n°¢* + 16¢°* (1 + ¢°)

P()=q| 1 it (11)

This is the infinite period limit of the periodic solution (10),
meaning that || has only one peak. We note that ,(0) <O.
The solution is rational as it depends on the ratio of two
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FIG. 3. (Color online) Rational solution of the first order defined
by Eq. (11). Here, g=1, while k;=k,=6,=0. The maximum ampli-
tude is 7.

polynomials. This solution is analogous to the Peregrine so-
lution of the NLSE [16]. It is shown in Fig. 3. The resem-
blance to the NLSE case (see Fig. 3 of [17]) is quite remark-
able.

V. MODULATION INSTABILITY LIMIT

In the opposite limit, when ¢ and k; are arbitrary but
k,—0 and so 6; —0, we get w;—0,

wy = y{[cos(k;) — 1]sin(6,)},

where

_ 207+ 1)
Y= —cos(6y)

The relation between 6, and k; can be found from Eq. (8),
ie.,

0, = arccos{l —m[1 - cos(k,) ]},

while Eq. (9) is automatically satisfied since each side is
zZero.

We take x;,=0 and x,;,=0, so that x;=k;n and x,=w,t,
while

wy==23g" = [(1+ g*)cos(k;) - 11°.
The solution is then given by

cos[kn] + G cosh[w,t +i6,]
cos[kn] + G cosh[wyt]

() =-q exp(2ig’1),
(12)
where G is determined using Eq. (9):

G == \’,%M.
sin(6,)

We can write solution (12) in a more explicit form by ex-
panding the term with complex argument as follows:
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FIG. 4. (Color online) Transversely periodic solution of the A-L
equation given by Eq. (12). The evolution starts with a constant
background ¢, slightly modulated, then the modulation increases to
reach its maximum at r=0 and finally the solution returns to the
original background, ¢. Here, g=1 and k;=1.

cosh[wyt +i6,]={1 —m[1 — cosh(k,) ]}cosh[w,]

k k
+2iVmAl1 =m sin2<31> sin(j)sinh[wzt].

This solution also has two free parameters, viz., g and k.
The value of ¢ defines the background field while k; defines
the period of the structure in the transverse direction. An
example is shown in Fig. 4 for fixed values of g and k;.

It can be seen from Fig. 4 that solution (12) starts
(at t=—o) with the constant background field slightly per-
turbed by a periodic modulation. Due to the instability, the
modulation increases until it reaches its maximum value
(at r=0) and decreases symmetrically afterward. Thus, the
solution of Eq. (12) is analogous to the solution of the NLSE
commonly known as an Akhmediev breather [18-22]. The
latter is the closed form solution of the NLSE whose initial
stage of evolution corresponds to the growth of a modula-
tionally unstable background [23]. It is quite instructive to
compare Fig. 4 with Fig. 1 of Ref. [17].

It is worth noting here that the solution of Eq. (12) is, in
fact, the complete solution of the Fermi-Pasta-Ulam (FPU)
paradox for a system modeled by the A-L equation. Namely,
the evolution starts with a single mode of the discrete chain,
spreads into a multiplicity of spectral components at =0,
and then returns to the original single mode state afterward.
Moreover, the solution of Eq. (12) represents FPU recurrence
for a discrete system, rather than a continuous one, just like
that in the original work of FPU [24], which dealt with a
discrete set of oscillators. More clarifications in this regard
can be found in [25], while experimental results in fiber op-
tics are presented in [26].

A. Limit giving the rational solution

The long-period limit of solution (12) can be obtained by
taking k; to be small. In this case we find 6, — Jmk,;, while
w2—>—2q\r’rcfkl. Choosing the minus sign for G and ex-
panding f and g to order k%, we again get the rational solu-
tion [Eq. (11)]. Thus, both the modulation instability limit
and the Ma soliton limit produce the same rational solution
of the A-L equation. Similar limits can be also obtained in
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the case of the NLSE. A simple diagram explaining the rela-
tion between these solutions is presented in Fig. 1 of [12].

B. Another reduction

A transversely periodic solution similar to Eq. (12) has
also been obtained in the recent work [11] [see Eq. (20) and
Fig. 2 of that work]. However, there is a major difference
between these two solutions. To see this, we can specify
ky=arccos[1/(1+¢4*)], which we label as r (so r=k;), thus
reducing the number of parameters to just one, viz., g. Now,
wo==24¢2, while 6,=7/2 and

2 +q°
G=/—"%L.
1+gqg

In this case, the solution of Eq. (12) can be significantly
simplified to

2+q2
—_ . . h 2 2t
cos(rn) ¥ i e sinh(2¢~1)

2Tt (13)

lﬂn - q 2
cos(rn) = \/2 T4 cosh(2¢%1)
o 1+ q2

As expected, this solution has ¢ as its only free parameter. It
defines both the background level and the transverse period
along the n axis. Of course, we can replace n with n—n, to
set the maximum at the origin. We can further transform this
solution by dividing the numerator and denominator simul-
taneously by cosh(2¢%f). Then after simple calculations, tak-
ing the upper signs in Eq. (13), noting G=12 cos(r/2), and
setting the shift to be ng=/r, we find

sech(st)cos(rn) + i \E cos(r/2)tanh(st)

— ei2q21
V2 cos(r/2) — sech(st)cos(rn)

b)) =q

i

(14)

where s=2¢>. This is exactly the form of the solution derived
by Chow er al. [11] by taking limits of the doubly periodic
solutions which involve Jacobi elliptic functions. The maxi-
mum amplitude of this solution is

| 2
¢(0)—%
0 V"2+q2—\1+q2'

Thus, when g—0, the solution disappears. This solution
does not produce the limit of the rational solution of the A-L
equation as the two-parameter family (12). In addition, solu-
tion (14) does not describe the growth of modulation insta-
bility, as the background and the period of perturbation can-
not be taken as independent. Thus, in order to keep the
generality of the solution, we need to retain the form of Eq.
(12), rather than Eq. (14).

VI. RATIONAL SOLUTIONS IN MORE DETAIL

The lowest-order rational solution comes naturally from
the family of Narita solutions as a limiting case with long
period. Using an analogy with the NLSE, we can imagine
that higher-order rational solutions may also exist. They can
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FIG. 5. (Color online) The first-order (j=1) rational solution of
the A-L equation given by Eq. (16) for 7=0. (a) The offset is zero,
i.e., 1p=0, and ny=0 and g=1. The maximum amplitude here is 7.
(b) The offset is =0, but ng=1/2. The maximum amplitude is
reduced to 3 compared to case (a).

be derived independently, using a bilinear Hirota-type ap-
proach. We suppose that a whole hierarchy of rational solu-
tions with increasing order does exist. Then, we can write
them all with a single expression:

GY(1) + 4ig*tHY (1)
D;(1)

) =q[4(1 +4%) + (= 1) [,

(15)

where j=1,2,3,... is the order of the solution and where
G(’) H(’ and D(’) are polynomials in 7. In writing Eq. (15),
we assume that D(’ has no real zeros. The form of the solu-
tion that we have chosen ensures that 1/1(’)(0) is real and that
its value at the origin 1//0 )(0) is positive.

First, we concentrate on the first-order rational solution.

In order to conveniently show up the scaling factors, we
define

N(n)=2¢qn,

T(t) = 4¢°\1 + ¢°t.

The first-order (j=1) solution can then be written as follows:

GD(1) + 4ig*H\D(r) 2,
¢2')(t)=q[4(1+q2) Dﬁlli(qt) - 1|,
(16)
where
V=1, (17)
HVY (1) =1, (18)
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DY) =1+N*+T2. (19)

This form agrees with the limiting case (11) found above.

Generally, we allow the translations n—n—-n, and
t—t—ty, where ny and t, are arbitrary real numbers. Two
forms of the solution at =0 are shown in Fig. 5. The central
maximum, which occurs at r=n=0, is |¢//§)1) , and it equals
g(3+44?%). The maximum is always higher than three times
the background level g. For comparison, we note that the
NLSE first-order rogue wave maximum is exactly three
times the background level [17].

For t,=0 and unit background (¢g=1), we have

8(1 +4ir)
1 +4(n—ny)?+ 328

() = At (20)
The central maximum is then 7 as can be seen from Fig. 5(a).
An offset of % reduces it to ://é”(O):(/fﬁ“(O):& This case is
shown in Fig. 5(b). The two zeros on the line r=0 occur
when (n—ng)*= %, so it can happen that a zero does occur for
integer n. For example, node n=0 is a zero if n0=§

A. Generalization: Rational solution of the discrete Hirota
equation

Following Narita [3], we can also introduce the discrete
Hirota equation

d
i% +[(a=ib),_, + (a+ib) i, )11 + |,|H) = 24, =0,

(21)

where a and b are arbitrary real numbers. Similar to the
continuous Hirota equation [27], this generalization of Eq.
(1) has two limiting cases. It is reduced to the A-L equation
(1) when a=1 and b=0, while it reduces to the discrete
mKdV equation

— )1+ y,[) =0, (22)

when a=0 and b=1 [3]. In fact, the solutions [Egs. (5) and
(20)] presented above are retained for arbitrary values of a
and b.

Thus, for arbitrary real values of a, b, and ¢, we can write
the rational solution to Eq. (21) as follows:

. T .
GY(1) + ——HY(r)

V=gl 4(1 + ¢ . +(=1) [
(23)
where j=1,
d=21(1+g*)Na*+b* — a] + n arctan(b/a),

and N(n)=2gqn is retained as before, but we have generalized
the value of T(¢) to

T(t) = 4¢°Na® + b*\1 + ¢*t. (24)

For j=1, the forms of G,(j)(t), H,(,i)(t), and D,(lj)(t) are the same
as in Egs. (17) and (19). If a=0, we use arctan(b/a)=/2.
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Clearly, for the A-L equation (a=1 and b=0), Eq. (23) re-
duces to Eq. (15).

B. Rogue wave conserved quantities

For the rogue wave ¢, of order j and background ampli-
tude g, we use the definitions given by Egs. (2) and (4). For
g=1, we find

16(n+1) 16n

= - . @5
O L+4(n+1)2+322  1+4n”>+327 (25)

This expression is symmetric on the line n=-1/2 for all #.
Changing the variable n+1—m in the first part of Eq. (25),
we can see that the two summations are exactly equal. Thus,
they subtract to zero, showing that energy is conserved for
all ¢, viz., 0"=0. The momentum is

1

. 1
P =641 2, ( )

1+4n?+3222  1+4(0n+1)2+327

(26)

which is clearly zero for all ¢, showing that momentum is
also conserved.

VII. SECOND-ORDER ROGUE WAVE

As we have seen from the previous analysis, the Narita
solutions to some extent play the role of first-order solitons
of the NLSE [28]. Thus, detailed knowledge of its properties
is essential for constructing higher-order solutions. Follow-
ing the example of the first-order solution, we can present the
second-order one (j=2) as a one-parameter family with ar-
bitrary background level ¢:

G2(1) + idg*tH' (1)
DY)

2ig?t
1 [e”9",

P (1) = q[4(1 +47)

(27)
where
GP(1)=3[3 - 6(N* - 2¢7)
+N*(4¢> = N*)- 6(3 +2¢°> + N*)T* - 5T*],
(28)

H?(1) = 3[15 + 6(N* + 447
+N* (16> = N*)-2(1 + N1 )T* =T,  (29)
while
DP(1) =9 + (27 + 244> + 16¢")N* + N*(3 - 84°)
+N°+3(33+72¢° — 6N? + 484" — 16¢°N* + N)T*
+3(9+842 + N))T* + T°. (30)

Here, we have used N(n)=2gn and T(t)=4¢*\1+¢%, so we
have the same scaling as in previous sections. An example of
solution (27) with g=1/4 is plotted in Fig. 6. In contrast to
the previous examples, we have chosen a relatively small
value of ¢, viz., ¢=0.25, as in this case the solution is less
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FIG. 6. (Color online) The second-order (j=2) rational A-L so-
lution [Eq. (27)], for g=1/4 with zero offset (n,=0).

peaked and covers more sites than in the g=1 case. A quick
glance at Fig. 6 shows that it has a striking resemblance to
the second-order rational solution of the NLSE (see Fig. 4 of
[17]).

As the background level is ¢, then for zero offset
(ny=0), the central maximum is

$2(0) = ¢(5 + 204 + 164"). (31)

This means that the maximum amplitude is always more than
five times the background level. For comparison, the NLSE
second-order rogue wave maximum is exactly five times the
background level [17,29]. As ¢ increases, the distribution
becomes more sharply peaked around the origin, and the
maximum amplitude increases rapidly (Fig. 7). In fact, the
height of the maximum amplitude above the background
level is ¥{?(0)—g=4q(1+¢*)(1+44>).

The solution with the unit background is found by taking
g=1. Then N=n and T= \2t. The maximum amplitude
at the central point in this case is 41. As a function
of n, 1/ff,2)(t=0,n) has four zeros. An offset of % produces
a considerable change—the maximum 1is reduced to
1,09(0): z,//(z)(O):Sq, as shown in Fig. 8. Despite the nonzero
offset, fo (r) is symmetric in the line n=1/2 for all 7. Thus,
it is easy to see that energy is conserved, viz., 0?=0. Simi-
larly, momentum is also conserved PP =0.

The same polynomials given by Egs. (28)—(30) provide
the solution to the Hirota equation [Eq. (21)]. In this case
j=2 in Eq. (23), with T(r) given by Eq. (24).

P [t=0]

FIG. 7. (Color online) Plot of the second-order (j=2) rational
solution of the A-L equation given by Eq. (27) at 75=0. The back-
ground level g=1/4 and the offset ny=0.
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Y P[t=0]

_lo“m.gwg wlo 1

FIG. 8. (Color online) Plot of the second-order (j=2) rational
solution of the A-L equation given by Eq. (27) at 75=0. The back-
ground level g=1/4 and the offset ny=1/2. The central maximum
in this case is reduced to l/;gz)(o)=z//§2>(0)=5/4.

VIII. CONCLUSION

We have found the second-order rational solution for the
discrete A-L equation. This solution can be used as an ap-
proximation for rogue waves of light in an array of strongly
coupled optical waveguides [14]. Depending on the param-

PHYSICAL REVIEW E 82, 026602 (2010)

eters of the system, the light can be concentrated into very
strong peaks.

Our main result here is that higher-order rational solutions
exist for the discrete A-L equation and exhibit an analogy
with rogue waves of the continuous NLSE [30]. However,
the coefficients and scaling in the expressions for the rational
solutions for the discrete case are quite different from those
found for the NLSE [17,31]. The most remarkable feature of
a discrete rogue wave is that the height of the central maxi-
mum relative to the background is much greater than in the
corresponding NLSE case. More generally, we have pre-
sented rational solutions for the discrete Hirota equation,
which includes, as particular cases, both the discrete A-L
equation and the discrete mKdV equation.
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