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The linearized potential of a moving test charge in a one-component fully degenerate fermion plasma is
studied using the Lindhard dielectric function. The motion is found to greatly enhance the Friedel oscillations
behind the charge, especially for velocities larger than half of the Fermi velocity, in which case the asymptotic
behavior of their amplitude changes from 1 /r3 to 1 /r2.5. In the absence of the quantum recoil �tunneling� the
potential reduces to a form similar to that in a classical Maxwellian plasma, with a difference being that the
plasma oscillations behind the charge at velocities larger than the Fermi velocity are not Landau damped.
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I. INTRODUCTION

The Debye shielding of a moving test charge in a classical
plasma is one of the most fundamental problems in plasma
physics �1–15�. In the collisionless case the motion is known
to result in the 1 /r3 dependence of the potential at large
distances �4�. The angular dependence of this asymptotic
form is determined by the velocity distributions of the
plasma components �4�; and, for instance, for a one-
component Maxwellian plasma the potential is repulsive �for
a particle of like charge� in front of the test charge and at-
tractive behind it and perpendicular to the motion �5,10,16�.
In addition, behind the charge a large number of potential
minima are formed at substantially suprathermal velocities
�1,10,16�. The presence of collisions can lead to the 1 /r2

dependence of the potential �8�, while the excitation of ion-
sound waves can result in the formation of an oscillatory
wake structure inside the corresponding Mach cone �12–14�.

While the above studies deal with classical plasmas, re-
cently there has been a rapidly growing interest in quantum
plasmas, motivated primarily by the development of nano-
structured metallic and semiconductor materials �17–24�.
Much attention has been given to a one-component weakly
coupled fully degenerate fermion plasma �25–35�. Such a
plasma is often described by the Lindhard dielectric function
�30,36� where the only quantum effects included are the de-
generacy and the quantum recoil �tunneling�. It can be de-
rived using the Wigner-Poisson system �18,34,37–41�, a
quantum analog of the Vlasov-Poisson system.

We present an investigation of the shielding of a moving
classical charge in a quantum plasma using the Lindhard
dielectric function. The free parameters in this model are the
velocity of the test charge in units of the Fermi velocity and
the plasma coupling parameter. The latter governs the role of
the quantum recoil and should be small for the model to
apply, as discussed in Sec. IV. In the limit of zero coupling
parameter �i.e., in the absence of the quantum recoil� the
potential is semiclassical in the sense that it can be found
using the classical approach but with a degenerate velocity
distribution �34�. Such a potential has the aforementioned
1 /r3 asymptote at large distances and was investigated in
Ref. �42� at small velocities. At a finite coupling parameter
but zero velocity the potential is known to have Friedel os-
cillations �30,43�. Our study extends these results to the gen-

eral case of arbitrary velocity and coupling parameter and
shows how the quantum recoil changes the semiclassical po-
tential and how the motion modifies the Friedel oscillations.

II. MODEL

The potential around a point test charge Q moving at a
constant velocity v in a three-dimensional plasma is given in
the linear approximation by the formula �4,30,44�

��r� =
Q

4��0

1

2�2� exp�ik · r�
k2D�k · v,k�

dk , �1�

where r denotes the position relative to the instantaneous
position of the charge, �0 is the electric constant, and D�� ,k�
is the dielectric function of the plasma. We take the screening
to be due to the response of a single fully degenerate plasma
component �e.g., electrons�, with all the other components
remaining fixed as a homogeneous neutralizing background.
To describe their response, we use the Lindhard dielectric
function �27,29,30,32,36�

D��,k� = 1 +
m�p

2

�nk2� f�p + �k/2� − f�p − �k/2�
� + i� − k · p/m

dp , �2�

where �p=�ne2 / ��0m� is the plasma frequency; n is the par-
ticle number density �of the component that responds to the
test charge�; e and m is their charge and mass, respectively; �
is an infinitesimal positive number �i.e., the limit �→0+

should be taken�; and f�p� is the three-dimensional Fermi-
Dirac distribution function

f�p� = �2� 1

2��
	3

if 
p
 � pF

0 if 
p
 � pF,
� �3�

where pF=��3�2n�1/3 is the Fermi momentum and � is the
Planck constant over 2�. The applicability of the model is
discussed in Sec. IV.

Carrying out the integral in Eq. �2� gives �30,36�

D��,k� = 1 +
1

k2	TF
2

1

2a
�F�� + i� + a,k� − F�� + i� − a,k�� ,

�4a�

where
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a =
�k2

2m
, �4b�

F�
,k� =



2
+

�kvF�2 − 
2

4kvF
ln�
 + kvF


 − kvF
	 , �4c�

vF= pF /m is the Fermi velocity, and 	TF=vF / ��p
�3� is the

Thomas-Fermi screening length; the principal branch of the
complex logarithm should be taken.

Unless otherwise stated, the figures in this paper have
been generated by numerical integration of Eq. �1� using the
dielectric function �4�. We choose the free parameters to be
the degenerate Mach number M =v /vF and the parameter

� =
��p

4EF
, �5�

where EF= pF
2 / �2m� is the Fermi energy. Note that the pa-

rameter � is related to the plasma coupling parameter �
=e2n1/3 / �4��0EF� via

� =� ��

2�3�2�2/3 . �6�

In Appendix A, we have reformulated the problem in nondi-
mensional form in terms of the free parameters � and M.

III. RESULTS

A. Semiclassical limit

We first consider the semiclassical limit �→0, where the
degeneracy of the unperturbed state is the only quantum ef-
fect. The extent to which the results of the present subsection
are relevant despite the fact that we neglect relativistic ef-
fects is discussed in Sec. IV. In the semiclassical limit we
have �31�

D�k · v,k� = 1 +
1

k2	TF
2 G�Mk̂ · v̂� , �7�

where the hat denotes unit vectors,

G�x� = 1 −
x + i�

2
ln� x + i� + 1

x + i� − 1
	 , �8�

and � is an infinitesimal positive number. If we set v=0 we
get the exponentially screened potential of the Debye form:

��r� =
Q

4��0r
exp�−

r

	TF
	 . �9�

Now, for M �1, the reciprocal dielectric function
1 /D�k ·v ,k� does not have singularities at real k and, hence,
as shown in Ref. �4�, the asymptotic potential as r→
 is

��r� =
Q

4��0
H���

	TF
2

r3 + O� 1

r5	 , �10�

where � is the angle between r and v, and �45�

H��� = −
i

�2 lim
�→0+

�
0

2�

d��
−1

1

d�

�
1

G�M�� cos � + �1 − �2 sin � sin ���

�
1

�� + i��3 . �11�

As M→0, we can expand H��� in powers of M, giving the
asymptotic formula

��r� =
Q

4��0r
exp�−

r

	TF
	 +

Q

4��0

	TF
2

r3 �2M cos �

+ ��2

4
− 1	M2�3 cos2 � − 1�


+ O�M3

r3 	 + O�M

r5 	 , �12�

as r→
, M→0. The term linear in M in Eq. �12� was given
in �42�, although they appear to be missing the factor of 2.
This asymptotic result is qualitatively identical �the only dif-
ference is in the numerical coefficients in front of the two
terms� to the classical case of a Maxwellian plasma �5�.
Equation �12� shows that for small nonzero M, an attractive
�for like charges� potential forms antiparallel and perpen-
dicular to the motion, whereas the potential parallel to the
motion remains repulsive �but decays as 1 /r3 instead of ex-
ponentially as for M =0�. These features persist at velocities
up to and including the Fermi velocity, as illustrated in Figs.
1 and 2. �Note that although Fig. 1 exhibits a cone-shaped
feature in front of the charge, this is not an oscillatory Mach
cone of the kind that occurs behind fast-moving charges and
is shown in Fig. 3.�

On the other hand, for M �1, the reciprocal dielectric
function 1 /D�k ·v ,k� has a pole for real k �the parameter �
sets the rule for avoiding this pole in integral �1��. Physically,
this corresponds to the fact that a test charge moving faster
than the Fermi velocity can excite plasma oscillations. Fur-
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FIG. 1. �Color online� The quantity �r3 �in units of
Q	TF

2 / �4��0�� in the semiclassical case ��→0�, with the test charge
at the origin and moving at speed v=0.5vF to the right. The white
superimposed curve denotes the boundary between positive and
negative potentials �for Q�0, the positive potential is on the right
of the figure�.
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thermore, since these oscillations have phase velocity greater
than the Fermi velocity, they are not Landau damped, as can
be seen mathematically in the fact that D�� ,k� has no imagi-
nary part at � /k�vF. This is because, with the unperturbed
velocity distribution given by Eq. �3�, there are no particles
with velocities greater than vF and hence no particles satis-
fying the resonance condition to contribute to Landau damp-
ing �this resonance condition is, since the quantum recoil
disappears in the semiclassical limit, the same as in classical
plasma physics� �31,32�. The result is a strong oscillatory
wake �with amplitude decreasing as 1 /r� behind the test
charge with an infinite number of minima, as shown in Fig.
3. Note that an oscillatory structure behind the charge is also
present in the case of a Maxwellian distribution at substan-
tially suprathermal velocities, but it is Landau damped �10�.
As a result, the number of minima is finite �although very
large� because the 1 /r3 asymptote falls off slower than the
exponentially damped amplitude of oscillations.

B. General case

1. Case of 0�v�vF

As is well known �30�, at nonzero � the static dielectric
function D�0,k� has a nonanalyticity �the “Kohn anomaly”

�46�� at wave numbers 
k
=2kF, where kF= pF /� is the Fermi
wave number. The Kohn anomaly is related to the discon-
tinuous Fermi surface and gives rise to the Friedel oscilla-
tions �47�, with the potential as r→
 given by �30�

��r� =
Q	TF

2

4��0

36�4

�2 + 3�2�2

cos�2kFr�
r3 + o� 1

r3	 . �13�

For nonzero velocities, the Kohn anomaly occurs at wave
numbers k such that


k
 = 2kF�1 � Mv̂ · k̂� , �14�

as illustrated in Fig. 4. The asymptotic potential as r→
 is
the superposition of the contribution from the Kohn anomaly
and from the small wave numbers �k→0�; the latter is iden-
tical with the total semiclassical asymptotic potential since
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FIG. 5. �Color online� The amplitude of oscillations of the quan-
tity �r3 �in units of Q	TF

2 / �4��0��, in the limit r→
, behind the
charge �green curves, increasing� and in front of the charge �blue
curves, decreasing�, as a function of test charge velocity, for values
of � �in order of increasing amplitude�: 0.15, 0.3, and 0.5. �The
amplitude for �=0.15 in front of the charge is too small to be
visible on this graph.� Inset: the amplitude of oscillations of the
quantity �r2.5 �in units of Q	TF

1.5 / �4��0�� behind the charge, for
v /vF�0.5.
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FIG. 2. �Color online� The quantity �r3 �in units of
Q	TF

2 / �4��0�� in the semiclassical case, with the test charge moving
at the Fermi velocity, in the directions parallel to the motion �r̂ · v̂
=1�, perpendicular to the motion �r̂ · v̂=0�, and antiparallel to the
motion �r̂ · v̂=−1�.
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FIG. 3. �Color online� The ratio of the potential ��r� to the
unscreened Coulomb potential Q / �4��0r�, in the semiclassical case
with the test charge at the origin and moving at speed v=1.4vF to
the right. Also shown �dashed lines� is the “Mach cone,” defined by
r� / 
r�
=−�M2−1.
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FIG. 4. The wave numbers k at which the Kohn anomaly in the
dielectric function D�k ·v ,k� occurs; the velocity v is directed hori-
zontally. This figure is valid for any value of � since the axes are
normalized to the Fermi wave number kF.
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the semiclassical and general forms of the dielectric function
coincide in the limit k→0.

In Appendix B, we outline the derivation of expressions
for the asymptotic contribution resulting from the Kohn
anomaly. The result is, for r and v parallel,

��r� =
Q

4��0r3�H�0�	TF
2

+
1

2kF	TF
2 Re� f+�1�

exp�2kF�1 + M�ir�
1 + 2M

− f+�0�
�
+ o� 1

r3	 , �15�

where the first term inside the curly brackets represents the
semiclassical asymptotic contribution as described in Sec.
III A, with H��� given by Eq. �11�, and the second term
represents the contribution due to the Kohn anomaly, with

f���� =
1

k�
3 �D�k�v�,k���2�� �

2kFM

k�

�1 − �2�
2

,

�16a�

k� = 2kF�1 � M
�
� . �16b�

For r and v antiparallel, we get a similar expression as long
as M �1 /2:

��r� =
Q

4��0r3�H���	TF
2

+
1

2kF	TF
2 Re� f−�1�

exp�− 2kF�1 − M�ir�
1 − 2M

− f−�0�
�
+ o� 1

r3	 . �17�

The difference between the two directions arises because, for
r and v parallel, only the outer surface of the Kohn anomaly,

i.e., 
k
=2kF�1+M
k̂ · v̂
�, contributes to the asymptotic form;
whereas, for r and v antiparallel, only the inner surface, i.e.,


k
=2kF�1−M
k̂ · v̂
�, contributes. Finally, for r and v antipar-
allel and 1 /2�M �1, a different asymptotic form emerges,
with the amplitude of oscillations now decaying as 1 /r2.5

rather than 1 /r3:

��r� =
Q

4��0
��

M

1

2	TF
2 �kFr2.5

Re��1 − i�f−� 1

2M
	

�exp�− i
kFr

2M
	
 + o� 1

r2.5	 . �18�

This is related to the change in concavity of the inner surface
of the Kohn anomaly for M �1 /2, which can be observed in
the last pane of Fig. 4. The velocity dependence of the am-
plitude of oscillations derived from Eqs. �15�, �17�, and �18�
is shown in Fig. 5. It can be seen that, with increasing ve-
locity, the Friedel oscillations become stronger behind the
charge �especially for M �1 /2� and weaker in front. This is
qualitatively illustrated in Figs. 6 and 7. Note, however, that
no substantial change occurs in the Friedel oscillations in the
direction perpendicular to the motion for any v�vF.

When the test charge is moving at the Fermi velocity �see
Figs. 8 and 9� the stronger Friedel oscillations are still
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FIG. 6. �Color online� The quantity �r3 �in units of
Q	TF

2 / �4��0��, along the direction of motion, in the semiclassical
case �blue curves, nonoscillatory�, and the case �=0.5 �green
curves, oscillatory�, at various velocities of the test charge.
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present behind the test charge in the far field, but close to the
test charge a strong irregular wake field of a somewhat dif-
ferent character emerges. In particular, this near-field wake is
still distinctly present even for very small values of � �e.g.,
�=0.02�.

2. Case of v�vF

The inclusion of quantum recoil increases the lower
bound on the phase velocity � /k of undamped longitudinal
oscillations �32�. This can be shown by numerically solving
the equation D�� ,k�=0 for real � and k, where D�� ,k� is
given by Eq. �2� or its equivalent Eq. �3�. The minimum
phase velocity vthresh is greater than the Fermi velocity, coin-
ciding with it in the semiclassical limit, as shown in Fig. 10.
Hence, for test charge velocities in the range vF�v�vthresh,
the charge cannot excite undamped oscillations, and the
wake depicted in Fig. 11 is formed. This is not as strong as in
the semiclassical case �it falls off faster than 1 /r�, and is also
of a markedly different character, bearing no resemblance to
a Mach cone.

For v�vthresh, on the other hand, all undamped longitudi-
nal oscillations with phase velocity vthresh�v��v are ex-
cited. We have not performed calculations for this case, but
the results of Ref. �48� show a strong oscillatory wake, al-
though its asymptotic behavior is not apparent. For very
large velocities �v�vF�, the wake formed will be identical to
the semiclassical wake �49�.

IV. DISCUSSION

Let us discuss the applicability of the model. First, our
model is based on the mean-field approximation which is
justified at ��1 �18,29,34�. In the limit �→0, however, the
quantum recoil disappears �34�. Thus, the fact that our model
includes the quantum recoil but does not include particle
correlations makes it inconsistent in a certain sense. Never-
theless, it is widely used in the literature, i.e., at small � the
quantum recoil is assumed to be more important than particle
correlations. Their effects are discussed, e.g., in Refs.
�29,50–53�.

Second, our model does not include relativistic effects.
This imposes a lower bound on the parameter � since the
latter can be represented as

� =� �

3�

c

vF
, �19�

where c is the speed of light and �=e2 / �4��0�c��1 /137 is
the fine-structure constant �here, we assumed that the charge
of the particles is equal in its absolute value to the elemen-
tary charge�. The condition vF�c requires ���� / �3��
�0.03. Hence, the limit of �→0, as considered in Sec.
III A, cannot be taken strictly. Nevertheless, the results of
Sec. III A are relevant in a certain parameter regime. Indeed,
the limit �→0 corresponds physically to the neglect of the
quantum recoil, while the quantum recoil provides a contri-
bution given approximately by Eq. �13� �for M �1 and r
�	TF�. This is negligible compared to the 1 /r3 term in Eq.
�12� for 5�4�M. �To be exact, the latter inequality is for

cos �
�1, while for cos �=0 it changes to 2�2�M.� Thus,
the applicability range of Eq. �12� due to the above restric-
tion ��0.03 is 4�10−6�5�4�M �1 �again, it is for

cos �
�1, while for cos �=0 it changes to 2�10−3�2�2

�M �1�. As the velocity increases, the effect of the quan-
tum recoil becomes less important in front of the charge
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main graph, for �=0.5 �green curve� and �=0.3 �magenta curve�.
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�such that for v /vF not too close to zero the semiclassical
and general forms of the potential are very similar even for
�=0.5, as can be seen in Fig. 6�, and more important behind
the charge, especially at v /vF�0.5.

Third, our model deals with the linearized potential. The
linearization is justified when the potential energy of the in-
teraction of a plasma particle with the test charge at the char-
acteristic screening length �i.e., the length at which the Cou-
lomb potential and the actual potential start to significantly
deviate from each other� is much smaller than the character-
istic kinetic energy of the particles in the frame of the test
charge. At small velocities �v�vF� this condition reads

Qe
 / �4��0	TF��EF, which is equivalent to 12��
Q /e
��3

�1, while at large velocities �v�vF� the characteristic
screening length becomes v /�p and the above condition
changes to 
Qe
�p / �4��0v��mv2, which can be rewritten as
12��
Q /e
��3�vF /v�3�1. Thus, larger velocities imply bet-
ter applicability of the linear theory.

Finally, there are a number of other effects which are not
considered in our model but may be important under certain
conditions. For instance, in our model the shielding is due to
one plasma component �e.g., electrons� only. The screening
in the presence of both electron and ion responses is consid-
ered in Refs. �54,55� using the quantum hydrodynamic
model �34�. Furthermore, we did not include plasma produc-
tion and loss processes. In classical plasmas they can intro-
duce an additional nonscreened term and/or a weakly
screened term in the potential and thus change its long-range
behavior, even in the absence of the charge motion �56–59�.
In quantum plasmas these processes �e.g., pair creation and
annihilation� can have an important effect on the wave dis-
persion �60� and thus can affect the shielding of a moving
charge.

The potential of a moving test charge under the Lindhard
dielectric function has previously been investigated in Ref.
�48�. That paper focused on the potential along the line of
motion and surrounding the first potential minimum behind
the test charge, for values of � approximately in the range
0.3–0.6, while the present paper is focused on the three-
dimensional distribution and asymptotic behavior. Since the
authors of Ref. �48� considered only the “wake potential,”
i.e., with the Coulomb potential subtracted, the actual behav-
ior of the potential is not apparent from their work except
when the wake is strong enough that the Coulomb potential
is small by comparison, which occurs only when undamped
oscillations are excited, i.e., v�vthresh. We have not studied
this case in the present paper.

Our results can be applied, for instance, to the investiga-
tion of bound electron states in the wake fields of ions in
solids. This problem was studied in Ref. �48� using a para-
bolic fit to the potential around the first potential minimum,
while a detailed investigation requires accurate knowledge of
the whole potential distribution. Furthermore, our model can
be extended to calculate the stopping power or the drag
force, similar to classical plasmas �44,61–64�.

V. CONCLUSION

We have studied the shielding of a moving classical test
charge in a fully degenerate fermion plasma in both the semi-

classical case �when the degeneracy of the unperturbed state
is the only important quantum effect� and the case when
quantum recoil is included. In the semiclassical case for v
�vF, the potential goes asymptotically as 1 /r3, and is repul-
sive in front of the test charge and attractive behind the test
charge and perpendicular to the motion; for v close to vF the
attraction is especially pronounced perpendicular to the mo-
tion. For v�vF the test charge excites plasma oscillations
and a strong oscillatory wake is formed inside the Mach
cone.

We have also found that the inclusion of quantum recoil
leads to other effects entirely absent from the semiclassical
case and the case of a Maxwellian distribution. The Friedel
oscillations, already present in the screening of a static
charge, are increased in strength behind a moving charge,
and for v�vF /2 the asymptotic behavior of their amplitude
behind the charge changes from 1 /r3 to 1 /r2.5. Furthermore,
the inclusion of quantum recoil makes the threshold velocity
for excitation of an oscillatory wake of undamped plasma
oscillations larger than the Fermi velocity. These findings
extend the previous results on the shielding of a moving
charge in a classical plasma to the quantum case and can be
applied, for instance, to the investigation of bound electron
states in the wake fields of ions in solids.
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APPENDIX A: NONDIMENSIONAL FORM
OF THE EQUATIONS

In order to demonstrate that our choice of free parameters
M and � determines the potential up to scaling, we express
the problem in nondimensional form in terms of these pa-
rameters. Defining the normalized wave number and fre-
quency by q��vF /�p�k and w�� /�p, the dielectric func-
tion of Eq. �4� can be written as

D��,k� = D̃�w,q� = 1 +
3

q2

1

2�q2 �F̃�w + i�̃ + �q2,q�

− F̃�w + i�̃ − �q2,q�� , �A1a�

where �̃=� /�p is an infinitesimal positive number, and

F̃�W,q� =
W

2
+

q2 − W2

4q
ln�W + q

W − q
	 . �A1b�

If we now define the normalized variables x�r /	TF and �
��4��0	TF /Q��, the nondimensionalized form of Eq. �1�
becomes

��x� =
1

2�2�3
� exp�iq · x/�3�

q2D̃�Mq · v̂,q�
dq , �A2�

where v̂ is the unit vector pointing in the direction of motion
of the test charge.
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APPENDIX B: DERIVATION OF EQS. (15), (16a), (16b),
(17), and (18)

In order to derive the asymptotic contribution to the po-
tential from the Kohn anomaly, we first integrate Eq. �1� by
parts twice. The surface terms at k=0 and at infinity vanish;
in order to avoid having to evaluate surface terms at the
locations of the Kohn anomaly, we take the limit �→0+ only
after integrating by parts. This leaves

��r� = −
Q

4��0

1

2�2r2� ��r̂ ·
�

�k
	2� 1

k2D�k · v,k�	

�exp�ik · r�dk . �B1�

Assuming now that r is parallel or antiparallel to the motion,
we can write

� dk → 2��
−1

1

d��
0




k2dk , �B2�

where �= k̂ · v̂. Replacing the integral over k with the
asymptotic contribution thereto from the locations of the
Kohn anomaly, k=2kF�1�M��, we obtain an intermediate
expression, which we denote �kohn, for the asymptotic con-
tribution to the potential from the Kohn singularity. For r and
v parallel, this is

�kohn�r� = i
Q

4��0

1

2r2	TF
2 �

−1

1 � sgn���
k+

3�D�k+v�,k+��2

��
�
 −
2kFM

k+
�1 − �2�
2

exp�ik+r���d� ,

�B3�

where k+=2kF�1+M
�
�. Only the outer surface of the Kohn
anomaly, i.e., 
k
=k+, contributes to this expression; the con-
tribution of the inner surface vanishes because it involves the
integral �−



 eix / �x+ i0�dx, which evaluates to zero by closing
the contour in the upper half-plane. For r and v antiparallel,
on the other hand, we get

�kohn�r� = − i
Q

4��0

1

2r2	TF
2 �

−1

1 � sgn���
k−

3�D�k−v�,k−��2

��
�
 +
2kFM

k−
�1 − �2�
2

exp�− ik−r���d� ,

�B4�

where k−=2kF�1−M
�
�. This time only the inner surface,
i.e., 
k
=k−, contributes.

The asymptotic formulas given in the body of the paper,
Eqs. �15�, �16a�, �16b�, �17�, and �18�, follow from Eqs. �B3�
and �B4� by changing the variable of integration to �
=�k+��� �in Eq. �B3��, or �=�k−��� �in Eq. �B4��, and con-
sidering the asymptotic contribution as r→
 from �= �1
�the end points of the integration� and from �=0 �where the
integrand is discontinuous�. In addition, the stronger �1 /r2.5

Friedel oscillations arise from points where d� /d�=0; this
does not occur for r and v parallel, whereas for r and v
antiparallel and M �1 /2, it occurs at �= �1 / �2M�.
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