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We relate the second-order structure function of a time series with the power spectrum of the original
variable, taking an assumption of statistical stationarity. With this approach, we find that the structure function
is strongly influenced by the large scales. The large-scale contribution and the contribution range are, respec-
tively, 79% and 1.4 decades for a Kolmogorov −5 /3 power spectrum. We show numerically that a single scale
influence range, over smaller scales is about 2 decades. We argue that the structure function is not a good
method to extract the scaling exponents when the data possess large energetic scales. An alternative method-
ology, the arbitrary order Hilbert spectral analysis which may constrain this influence within 0.3 decade, is
proposed to characterize the scaling property directly in an amplitude-frequency space. An analysis of passive
scalar �temperature� turbulence time series is presented to show the influence of large-scale structures in real
turbulence and the efficiency of the Hilbert-based methodology. The corresponding scaling exponents ���q�
provided by the Hilbert-based approach indicate that the passive scalar turbulence field may be less intermittent
than what was previously believed.
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I. INTRODUCTION

The most intriguing property of fully developed turbu-
lence is its scale invariance, characterized by a sequence of
scaling exponents �1,2�. Since Kolmogorov’s 1941 �K41�
milestone work, structure function analysis is widely used to
extract these scaling exponents �3–6�. The second-order
structure function is written as �we work in temporal space
here, through Taylor’s hypothesis�

S2��� = ��u��t�2� � ���2�, �1�

where �u��t�=u�t+��−u�t� is the velocity increment, � is
the separation time, and according to K41 theory ��2�=2 /3
in the inertial range �1,2�. However, the structure function
itself is seldom investigated in detail �7,8�. Structure func-
tions have been considered as “poor man’s wavelets” by
some authors �7�. This was mainly linked to a bound in the
singularity range that can be grasped by structure functions.

In this paper, we address another issue, the contribution
from the large-scale structures part and the influence range of
a single scale. By taking a statistic stationary assumption and
the Wiener-Khinchin theorem �9�, we relate the second-order
structure function to the Fourier power spectrum of the origi-
nal velocity �2�. We define a cumulative function P�f ,�� to
characterize the relative contribution of large-scale struc-
tures, where � is the separation scale. It is found that for a
pure Kolmogorov 5/3 spectrum the large-scale contribution

range is more than 1.4 decades and the corresponding
relative contribution is about 79%. We show an analysis of
experimental homogeneous and nearly isotropic turbulent
velocity database. The compensated spectra provided by
different methods show that, due to the influence of large-
scale structures, the second-order structure function predicts
a shorter inertial range than other approaches. The cumula-
tive function estimated from the turbulence database shows
that the largest contribution of the second-order structure
function is coming from the large-scale part. We then
check the influence of a single scale by using fractional
Brownian motion �fBm� simulations. We show that the influ-
ence range over smaller scales is as large as 2 decades. We
also show that the Hilbert-based methodology �10–12�
could constrain this effect within 0.3 decade. We finally ana-
lyze a passive scalar �temperature� time series, in which the
large-scale “ramp-cliff” structures play an important role
�13–15�. Due to the presence of strong ramp-cliff structures,
the structure function analysis fails. However, the Hilbert-
based approach displays a clear inertial range. The corre-
sponding scaling exponents are quite close to the scaling
exponents of longitudinal velocity, indicating a less
intermittent passive scalar statistics than what was believed
before.

This paper is organized as follows. In Sec. II, we briefly
introduce the empirical mode decomposition �EMD� and ar-
bitrary order Hilbert spectral analysis. By considering
Wiener-Khinchin theorem, an analytical model for the
second-order structure function is proposed in Sec. III. In
Sec. IV, analysis results of passive turbulence �temperature�
experiment data are presented. We draw the main results and
conclusions in Sec. V.
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II. ARBITRARY ORDER HILBERT SPECTRAL ANALYSIS

Arbitrary order Hilbert spectral analysis is an extended
version of the Hilbert-Huang transform �16,17�. It is de-
signed to characterize scale invariant properties directly in an
amplitude-frequency space �10–12�. The method possesses
two steps: EMD and Hilbert spectral analysis. We present a
brief introduction below.

A. Empirical mode decomposition

The idea behind EMD is to consider the multiscale prop-
erties of real-time series. Then intrinsic mode functions
�IMFs� are proposed as monoscale components. To be an
IMF, a function has to satisfy the following two conditions:
�i� the difference between the number of local extrema and
the number of zero crossings must be zero or 1 and �ii� the
running mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero
�16,17�. Figure 1 shows an example of IMF from EMD,
showing both amplitude and frequency modulations of
Hilbert-based method �12,16�. The EMD algorithm, a sifting
process, is then designed to decompose a given time series
x�t� into a sum of IMF modes Ci�t�,

x�t� = �
i=1

n

Ci�t� + rn�t� , �2�

where rn�t� is the residual, which is either a constant or a
monotone function �16–18�. Unlike classical decompositions
�Fourier, wavelet, etc.�, there is no basis assumption before
the decomposition. In other words, the basis is deduced by
the data themselves, which means that this is a completely
data-driven method with very local abilities in the physical
domain �16,19�.

B. Arbitrary order Hilbert spectral analysis

After obtaining the IMF modes, Hilbert transform �20,21�
is applied to each IMF,

C̄i�t� =
1

�
P	 Ci�t��

t − t�
dt�, �3�

where Ci�t� is the ith IMF mode and P indicates Cauchy
principal value. Then the analytical signal is constructed as

Ci
A�t�=Ci�t�+ jC̄i�t�. The instantaneous frequency � and am-

plitude A are estimated by

��t� =
1

2�

d�

dt
, A = �Ci

2�t� + C̄i
2�t��1/2, �4�

in which �=arctan C̄i�t� /Ci�t�. Since the Hilbert transform is
a singularity integration, � thus has very local ability in
spectral space and is free with limitation of the Heisenberg-
Gabor uncertainty principle �20–22�. After performing this
on all modes series obtained from the analyzed series x�t�,
one obtains a joint probability density function �pdf�
p�� ,A�, which can be extracted from � and A �10–12,23�.
The arbitrary order Hilbert marginal spectrum is defined by
considering a marginal integration of the joint pdf p�� ,A�,
which reads as

Lq��� =	 p��,A�AqdA , �5�

where q�0, � is the instantaneous frequency, and A is the
amplitude �10–12�. In the case of scale invariance, we expect

Lq��� � �−��q�. �6�

We have shown elsewhere that ��q�=1+qH for fractional
Brownian motion, where H is the Hurst number �10–12�.
This generalized Hilbert spectral analysis has been success-
fully applied to turbulence velocity �10�, daily river flow
discharge �24�, surf zone �25�, etc. to characterize the scale
invariance directly in the amplitude-frequency space �12�.

The main drawback of the Hilbert-based methodology is
its first step, empirical mode decomposition, which is an al-
gorithm in practice without rigorous mathematical founda-
tion �16,22�. Flandrin and his co-workers obtained some the-
oretical results on the EMD method �19,26–28�. However,
more theoretical work is still needed to fully mathematically
understand this method.

III. SECOND-ORDER STRUCTURE FUNCTION

The structure function is the most widely used method in
turbulence research to extract the scaling exponents
�2–6,29�. It has also been used in may other fields to char-
acterize the scale invariance properties of time series, e.g.,
climate data �30� and financial research �31� to quote a few.
The relationship between the second-order structure function
and the corresponding Fourier power spectrum has been in-
vestigated previously by Lohse and Müller-Groeling �32,33�.
They obtained an analytical expression of Fourier power
spectrum for turbulent velocity by considering a Batchelor fit
for the second-order structure functions. They found that the
energy pileups at the ends of scaling ranges in Fourier space,
which leads to a bottleneck effect in turbulence. Here, we
focus on another aspect of the second-order structure func-
tion: the scale contribution and contribution range from the
large-scale part.

Considering a statistical stationary assumption and the
Wiener-Khinchin theorem �9�, we can relate the second-order
structure function to the Fourier power spectrum of the origi-
nal velocity �2�
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FIG. 1. �Color online� An example of IMF from EMD: local
extrema points ���, envelope �thick solid line�, and running mean
�dashed line�. It indicates both amplitude and frequency modula-
tions of the Hilbert-based method.
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S2��� = ��u���2� = 	
0

+	

Eu�f��1 − cos�2�f���df , �7�

where we neglect a constant in front of the integral, and
Eu�f� is the Fourier power spectrum of the velocity. Let us
introduce a cumulative function

P�f ,�� =

	
0

f

Eu�f���1 − cos�2�f����df�

	
0

+	

Eu�f���1 − cos�2�f����df�


 100%. �8�

P�f ,�� is increasing from 0 to 1 and measures the relative
contribution to the second-order structure function from 0 to
f . We are particularly concerned with the case f =1 /�,
P1�f�=P�f ,�� 
 f=1/�, which measures the relative contribution
from large scales. If we assume a power law for the spectrum

Eu�f� = cf−�, c � 0. �9�

When substituted into Eq. �7�, this gives a divergent integral
for some values of �. The convergence condition requires
1
�
3 �2�. In the Appendix, we derive an analytical ex-
pression for S2���,

S2��� =

c��−1/2��3

2
−

�

2
�

�� − 1����

2
� ��−1, �10�

and for P�f ,��,

P�f ,�� =
1

a���

�3 − ���cos�f� − 1�f1−� + g�f ,��f3−��


 100%, �11�

in which a���=���3−��21−���3 /2−� /2���� /2�−1, and
g�f ,��= 1F2�3 /2−� /2,3 /2,5 /2−� /2,−f2 /4� is a general-
ized hypergeometric function �34�. For fully developed tur-
bulence, the Kolmogorov spectrum corresponds to �=5 /3
�1,2�.

We apply here the above approach to a database from an
experimental homogeneous and nearly isotropic turbulent
channel flow at downstream x /M =20, where M is the mesh
size. The flow is characterized by a Taylor microscale-based
Reynolds number Re�=720 and the sampling frequency is
fs=40 000 Hz �35�. The detail of this experiment can be
found in Ref. �35�. Figure 2 shows the compensated spectra
for transverse velocity components on the range
5
 f 
10 000 Hz, in which the spectra are estimated by
Fourier analysis �solid line� �35�, the second-order structure
function ���, and the arbitrary order Hilbert spectral analysis
��� �10,12�, respectively. The compensated values � are es-
timated case by case. For comparison convenience, we rep-
resent the structure function as a function of f =1 /�. Except
for the structure function, there is a plateau which is more
than 2 decades wide. We also note that the curves provided
by second-order structure function and the Fourier power
spectrum are not identical with each other, which is required
by Eq. �7�. This has been reported by several authors

�2,36,37�. The difference may come from the finite scaling
range �37,36� and also violation of the statistical stationary
assumption �12�.

We note that P�f ,�� is independent of � since we assume
a pure power-law relation �9�; see the Appendix for more
details. Below we only consider the case �=1 s, e.g.,
P�f ,1�. We concentrate on the large-scale �f 
1 Hz�
contribution to the second-order structure function, e.g.,
P1�1�=P�f ,1� 
 f=1, which measures the contribution from
large scales. Figure 3 and Table I show, respectively, the
analytical curve P�f ,1� and various index values on the
range 0.01
 f 
100 Hz for a pure Kolmogorov power law
by taking �=5 /3. The contribution from the large-scale part
�f 
1 Hz� is 79% ��� �see Table I�. The contribution from
the first decade large scales, 0.1
 f 
1 Hz, is about 69%.
For the second decade, 0.01
 f 
0.1 Hz, the contribution is
about 9.5%. The large-scale contribution range of the
second-order structure function is more than 1.4 decades if
we neglect the 3% contribution from f 
0.04 Hz �see Table
I�. We have given elsewhere an analytical model for the au-
tocorrelation function of velocity increments based on the
same idea �38�. It writes as

R��,�� = 	
0

	

Eu�f��1 − cos�2�f���cos�2�f��df , �12�

in which � is the separation time and � is the time delay �38�.
We are particularly concerned with the case �=�, in which
R�� ,�� takes its minimum value �38�. Power-law behavior is
found as R�� ,�� 
�=����−1 if one substitutes Eq. �9� into the
above equation. The corresponding cumulative function
reads as
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FIG. 2. �Color online� Compensated spectra of transverse veloc-
ity. A plateau is observed on the range 40
 f 
4000 Hz for Fourier
spectrum �solid line� and 20
 f 
2000 Hz for Hilbert spectrum
���, respectively. For comparison, the compensated spectra for the
second-order structure function ��� are also shown. The compen-
sated values � are estimated case by case. For display convenience,
the curves have been vertically shifted.
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Q�f ,�� =

	
0

f

Eu�f���1 − cos�2�f����cos�2�f���df�

	
0

	

Eu�f���1 − cos�2�f����cos�2�f���df�


 100%.

�13�

Again, assuming the pure power law of Eq. �9�, we have an
analytical expression for the above equation; see Eq. �A7� in
the Appendix.

For comparison, the analytical expression Q with
�=5 /3 is also shown as a dashed line in Fig. 3. We note that
Q crosses zero at f �0.496 Hz ��� �see also Table I�, which
indicates that at this position, contributions from large scales
f �0.5 Hz are vanishing �canceled by themselves�. It indi-
cates that the large-scale contribution range is about 0.3 de-
cade, e.g., 0.496
 f 
1 Hz, and the contribution itself is
found to be 49% �see Table I�. This explains why the
minimum value of the autocorrelation function of the
velocity increments is a better indicator of the inertial range
than structure functions �38�. The corresponding
P1=P�f ,�� 
 f=1/� based on Eu�f� from the experimental data
are shown in Fig. 4 for transverse velocity on the range
40
 f 
4000 Hz, which is the inertial range predicted by

Fourier power spectrum �see Fig. 2�. The analytical value of
P1�1��79% provided by Eq. �11� is shown as a solid line.
Below this line, the second-order structure function is influ-
enced by both the finite length of power law and, more im-
portantly, large-scale structures �see the next paragraph�.
Above this line, it is thus influenced by the finite length of
the power law �or viscosity�. The index value of P1 is sig-
nificantly larger than 50%, showing that the largest contribu-
tion of the second-order structure function is coming from
the large-scale part.

We then consider the influence of a single scale. We
simulate a fBm time series x�t� with Hurst number H=1 /3,
corresponding to the Hurst value of turbulent velocity. A sine
wave is superposed to the normalized fBm data with
frequency f0=0.001 Hz and various intensities I :x�t�
=x�t� /Var�x�+ I sin�2�f0t�. We then perform structure func-
tion analysis and Hilbert spectral analysis on these data. Fig-
ure 5 shows the second-order structure function. It is
strongly influenced by the periodic component �10�. The in-
fluence range down to the small scale is as large as 2 de-
cades. It indicates that the structure functions are strongly
influenced by a large energetic scale structures, e.g., coherent
structures. Figure 6 shows the corresponding second-order
Hilbert marginal spectrum where the influence down to the
small scale is constrained within 0.3 decade. It might be
linked to the fact that the first step of the arbitrary order
Hilbert spectral analysis, the empirical mode decomposition,
acts a dyadic filter bank for several types of time series
�10,19,39�.

IV. PASSIVE SCALAR TURBULENCE

The above arguments and results indicate that the struc-
ture functions are strongly influenced by the large scales and
that this approach is not a good methodology to extract the
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FIG. 3. �Color online� Semilogarithmic plot of analytical ex-
pressions of P�f ,1� �solid line� and Q�f ,1� �dashed line� with
�=5 /3 on the range 0.01
 f 
100 Hz. Symbols are for,
respectively, the index values of P1�1��79% ���, the large-scale
part contribution to the second-order structure function,
Q�0.496,1��0 ���, the zero-crossing point of the autocorrelation
function, and Q1�1��49% ���, the large-scale part contribution to
the autocorrelation function �see also Table I�.

TABLE I. Index values of analytical expressions P�f ,1� and
Q�f ,1� with �=5 /3 for several frequencies.

f �Hz� 0.01 0.04 0.1 0.2 0.5 1 10 100

P �%� 0.46 2.95 9.91 24.0 62.7 78.6 95.3 99.0

Q �%� −2.3 −14.1 −44.4 −83.5 1.8 49.0 88.5 97.6

1 0 1 0 0 1 0 0 0 1 0 0 0 0

f = 1 / � ( H z , s − 1 )
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P
1
(f
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E x p e r i m e n t
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FIG. 4. �Color online� Cumulative function P1�f� estimated
from turbulent experimental data for transverse velocity on the in-
ertial range 40
 f 
4000 Hz. The analytical expression for P
shows P1�79% �horizontal solid line�. We note that all
P1�50%, which means that most contributions of the second-order
structure function come from the large-scale part f 
1 /�.
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scaling exponents when the data possess large energetic scale
structures. This is the case of scalar turbulence: ramp-cliff
structures are an important signature of the passive scalar
�13–15,42�. To consider this experimentally, we analyze here
a temperature time series obtained in a shear layer between a
jet flow and a cross flow. The bulk Reynolds number is about
Re=60 000. The initial temperatures of the two flows are
TJ=27.8 °C and T=14.8 °C. The measurement location is
close to the nozzle of the jet. Figure 7 shows 0.2 s portion
temperature data, illustrating strong ramp-cliff structures.

Figure 8 shows the Fourier power spectrum �dashed line�
and Hilbert marginal spectrum �solid line�, where the inset
shows the compensated spectra by f5/3. Both methods predict
more than 1.4 decades power law behavior on the range
80
 f 
2000 Hz. However, the Fourier analysis requires
high-order harmonic components to represent the ramp-cliff
structures. It leads to an artificial energy transfer from low
frequencies �large scales� to high frequencies �small scales�
in Fourier space, causing a less steep spectrum �12,16�. Since

both EMD and Hilbert spectral analysis have a very local
ability, the effect of ramp-cliff structures is constrained.

Due to the presence of ramp-cliff structures, the structure
function analysis fails �figure not shown here; see Ref. �12��.
However, the Hilbert-based methodology shows a clear iner-
tial range also for other moment orders, up to q=8 �not
shown here�. Figure 9 shows the scaling exponents provided
by Hilbert-based approach ���q�−1 ���. For comparison, the
scaling exponents are directly estimated by structure func-
tions ���q� ���, the scaling exponents ���q� ��� compiled by
�40� for passive scalar, and the extended self-similarity �ESS�
scaling exponents ��q� �dashed line� for velocity �41�. Due to
the effect of ramp-cliff structures, the scaling exponents pro-
vided directly by the structure functions seem to saturate
when q�2. The scaling exponents ���q�−1 provided by the
Hilbert-based methodology are quite close to the ESS for the
longitudinal velocity �41�, indicating a less intermittent sca-
lar field than what was believed before. We must underline
here that the Hilbert-based approach provided the same ex-
ponents as the structure function for the velocity field �10�
when there is no large-scale energetic forcing. The difference
found here for the passive scalar case may thus come from
the fact that temperature fluctuations have a strong large-
scale contribution. Apparently the ramp-cliff structure is a
large scale on the order of an integral scale �13�. The cliff is
sharp and thus is manifested at the small scales: this may be
interpreted as a coupling between the large ramp-cliff struc-
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FIG. 8. �Color online� Fourier power spectrum and Hilbert mar-
ginal spectrum for temperature. Compensated spectra by f5/3 are
shown as inset. Both methods predict power-law behavior on the
range 80
 f 
2000 Hz. For display convenience, the curves have
been vertically shifted.
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FIG. 5. �Color online� Periodic effect on the second-order struc-
ture function with various intensities I, where the vertical line illus-
trates the location of the perturbation sine wave.
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FIG. 7. �Color online� A 0.2 s portion of the temperature time
series, showing strong ramp-cliff structures.
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tures and the small scales �13�. As we argued above, the
inertial range, if it exists, is strongly influenced by these
large-scale structures.

V. DISCUSSION AND SUMMARY

In summary, based on an assumption of statistical station-
arity, we investigated here an analytical model of the second-
order structure function. By introducing a cumulative func-
tion, we have found that the structure function is strongly
influenced by the large scales. The large-scale contribution
range is found as being 1.4 decades wide and the contribu-
tion is about 79%. We have shown numerically that the
single scale influence range down to the small scale is as
large as 2 decades. The Hilbert-based methodology may con-
strain the large-scale effect to 0.3 decade. We then showed an
analysis from a passive scalar time series with strong ramp-
cliff structures, in which the classical structure functions fail.
Surprisingly, the scaling exponents predicted by Hilbert-
based approach are almost the same as the scaling exponents
for longitudinal velocity in fully developed turbulence, indi-
cating a less intermittent passive scalar statistics than what
was believed before.

This should be verified using more databases, but it may
be giving an explanation to the question, open for a long
time, of why passive scalars, being passive quantities, are
more intermittent than the velocity field. We hope that the
result obtained here can contribute to reconsidering the sta-
tistical properties of turbulence with large energetic scale
structures.

ACKNOWLEDGMENTS

This work was sponsored by the National Natural Science
Foundation of China under Grant No. 10772110. Z.M.L. is
supported by STCSM under Grant No. 08JC1409800. Y.X.H.
was financed in part by a grant from the French Ministry of
Foreign Affairs and by part from University of Lille 1.
Y.X.H. also acknowledges financial support from Pr. Her-
mand, EHL of Université Libre de Bruxelles �U.L.B.� and Pr.
Verbanck, STEP of U.L.B. during the preparation of this

manuscript. We thank Professor Meneveau for sharing his
experimental velocity database, which is available for down-
load at C. Meneveau’s webpage �43�. Finally, we thank two
anonymous referees for useful comments.

APPENDIX: ANALYTICAL EXPRESSION OF THE
SECOND-ORDER STRUCTURE FUNCTIONS

In this appendix, we show how to obtain the analytical
expressions �10� and �11� for the second-order structure
functions and its cumulative function �8�, respectively, for a
scaling power-law spectrum given by Eq. �9�.

We substitute Eq. �9� into Eq. �7�,

S2��� = 	
0

	

cf−��1 − cos�2�f���df . �A1�

After a scaling transform f�=2��f , we have

S2��� = �2����−1	
0

	

cf�−��1 − cos�f���df�. �A2�

We rewrite the integration range from 0 to f ,

S2��, f� = �2����−1	
0

f

cx−��1 − cos�x��dx . �A3�

By applying integration by parts, we have

S2��, f� =
c�2����−1

1 − �

���x1−��1 − cos�x��

A

�0
f − �

0

f

x1−� sin�x�dx

B

� ,

�A4�

where 1
�
3. It is not difficult to show that limf→0 A=0.
An analytical expression for B is

B=1F2�3/2 − �/2,3/2,5/2 − �/2,− f2/4� , �A5�

in which 1F2 is a generalized hypergeometric function �34�.
In the limit f →	, we have

lim
f→	

A = 0, lim
f→	

B =

����3

2
−

�

2
�

2�−1���

2
� . �A6�

We finally obtain Eqs. �10� and �11�.
The analytical expression for Q can be obtained by the

same procedure, which reads as

Q�f ,�� =
1

b���

�3 − ���cos�f� − 1�cos�f�f1−� + h�f ,��f3−��


 100%, �A7�

in which b���=−���3−���21−�−1 /2���3 /2
−� /2���� /2�−1 and g�f ,��=2 1F2�3 /2−� /2,3 /2,5 /2
−� /2,−f2�− 1F2�3 /2−� /2,3 /2,5 /2−� /2,−f2 /4�, and 1F2
is again a generalized hypergeometric function. It is also
independent of �.
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FIG. 9. �Color online� Scaling exponents for passive scalar,
which is estimated by Hilbert-based approach ���q�−1 ���, and the
structure functions ���q� ���. For comparison, the scaling expo-
nents compiled by �40� ��� for passive scalar and compiled by �41�
for the velocity �dashed line� are also shown.
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