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Three-dimensional flow in electromagnetically driven shallow two-layer fluids
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Recent experiments on a freely evolving dipolar vortex in a homogeneous shallow fluid layer have clearly
shown the existence and evolution of complex three-dimensional (3D) flow structures. The present contribution
focuses on the 3D structures of a dipolar vortex evolving in a stable shallow two-layer fluid. Experimentally,
Stereoscopic Particle Image Velocimetry is used to measure instantaneously all three components of the
velocity field in a horizontal plane and 3D numerical simulations provide the full 3D velocity and vorticity
fields over the entire flow domain. Remarkably, the experimental results, supported by the numerical simula-
tions, show to a large extent the same 3D structures and evolution as in the single-layer case. The numerical
simulations indicate that the so-called frontal circulation in the two-layer fluid is due to deformations of the
internal interface. The 3D flow structures will also affect the distribution of massless passive particles released
at the free surface. With numerical studies it is shown that these passive particles tend to accumulate or deplete
locally where the horizontal velocity field is not divergence-free. This is in contrast with pure two-dimensional

incompressible flows where the divergence of the velocity field is zero by definition.

DOLI: 10.1103/PhysRevE.82.026314

I. INTRODUCTION

Large-scale geophysical flows such as the Earth’s atmo-
sphere and oceans can be considered as quasi-two-
dimensional (quasi-2D) due to the combined action of back-
ground rotation, density stratification, and the limited vertical
dimension as compared to the horizontal ones [1]. On
smaller scales, the effects of background rotation and strati-
fication do not play an important role. However, the limited
vertical dimension H as compared to the horizontal length
scale £ suppresses vertical motions, and the flow is predomi-
nantly planar. Examples where the shallowness alone pro-
motes quasi-two-dimensional flow behavior are rivers, chan-
nels, and estuaries (see, e.g., [2,3]). Furthermore, two-
dimensional (2D) turbulence can be seen as an extremely
shallow flow configuration. Therefore, many experiments
have been performed in shallow fluid layers to investigate
the dynamics of vortices and 2D turbulence, see Refs. [4—10]
and [11] for a review.

Despite the shallowness of the flow, deviations from two-
dimensionality occur. This is due to the way the flow is gen-
erated but also due to friction at the solid bottom, which
induces vertical gradients of the velocity field [10]. In shal-
low fluid layer experiments the interaction of the flow with
the no-slip bottom boundary is usually modeled by adding a
linear friction term (Rayleigh friction) to the 2D Navier-
Stokes equations under the assumption that the vertical
variation of a predominantly horizontal flow field is
Poiseuille-like [12-14]. However, several studies have re-
cently shown that the existence of this vertical Poiseuille-like
profile is questionable [9,10,15].

In the last years the 3D flow structure of elementary vor-
tices in a shallow fluid layer has received considerable atten-
tion [9,10,15-19]. For the monopolar vortex without back-
ground rotation, numerical studies by Satijn er al. [16]
revealed the presence of a secondary circulation as a result of
the Bodewadt flow (see, e.g., [20,21]).
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Similar secondary flows are also expected within the vor-
tices constituting the dipole. However, several other 3D flow
structures have been found for propagating dipoles in shal-
low fluids. Lin er al. [17] showed the emergence of a vortex
orthogonal to, and just in front of the propagating dipole.
This roll-like vortical structure is referred to as the “frontal
circulation” [18,19]. In both the experiments by Lin et al.
[17] and those by Sous et al. [18,19] the dipole was created
by injecting horizontally a small amount of fluid in the fluid
layer. Furthermore, Sous et al. [18,19] report that the frontal
circulation was not present in experiments carried out in a
two-layer fluid (based on qualitative observations).

Recently, Akkermans et al. [9,10] confirmed the presence
of this frontal circulation in experiments (and numerical
simulations) of electromagnetically forced vortex dipoles in
a shallow fluid layer. The importance of this roll-like struc-
ture was quantified by the magnitude of the horizontal vor-
ticity component of the frontal circulation cell. This horizon-
tal vorticity exceeded the magnitude of the primary vorticity
by at least a factor two during its evolution. In addition to the
frontal circulation, strong upwelling in the wake of the di-
pole and axial motion inside the two individual vortex cores
of the dipole are present, the latter even oscillating in time
[10].

The above mentioned studies concerned flow structures
far away from lateral walls. Cieslik et al. [22] studied the
influence of a lateral wall on the three-dimensionality of the
flow for the canonical case of a dipole-wall collision. Re-
markably, the influence of the wall on the vertical motion
inside the dipolar vortex becomes stronger for decreasing
fluid depths, which was attributed to the role of the frontal
circulation [22].

Obviously, in a shallow fluid layer the presence of the
bottom boundary plays an important role in causing devia-
tions from purely two-dimensional flow behavior. A way to
minimize the influence of the solid bottom is to adopt a
two-layer fluid setup, consisting of a lighter fluid layer on top
of a heavier bottom layer [14,23-25]. The rationale behind
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the two-layer setup is that the measurement layer (the top
layer) is now shielded from the no-slip bottom by an extra
layer (the bottom layer) to minimize the influence of the
no-slip bottom on the flow evolution.

The first study employing the two-layer configuration was
by Tabeling and co-workers [26] in 1995. They used a stable
configuration of two electrolytes. Basically there are three
variations possible for the two-layer configuration: (i) two
layers of electrolyte in a stable configuration [14,23,26-28],
(ii) a layer of fresh water above an electrolyte [24], and (iii)
an electrolyte on top of a dielectric fluid (which is immis-
cible with the electrolyte) [25,29]. The latter configuration
has the advantage that molecular diffusion of salt between
the two layers is virtually absent. More importantly, higher
Reynolds numbers can be achieved without destroying the
stratification (due to absence of mixing between the two lay-
ers).

The emergence of 3D flow structures in a shallow fluid
layer has received considerable attention [9,10,15-19]. How-
ever, whether the two-layer configuration is a significant im-
provement over the single-layer setup remains an open ques-
tion.

The present paper reports on a detailed study of the ver-
tical motions developing in shallow two-layer flows. Stereo-
scopic particle image velocimetry (SPIV) has been used for
an experimental investigation of the flow induced by a
propagating dipole in the top layer of the two-layer fluid.
Additionally, 3D numerical simulations have been carried
out, which provide the full 3D velocity and vorticity fields
over the entire flow domain. Experiments have been per-
formed, where the upper fluid-layer thickness was decreased
in steps down to almost 3 mm, mimicking the traditional
fluid-layer configuration for 2D turbulence experiments. Re-
markably, the same 3D flow structures and a similar evolu-
tion was observed in this two-layer setup as was previously
found to occur in a single layer. Furthermore, the importance
of internal interface deformations on the 3D motions is elu-
cidated. In order to quantify deviations from pure 2D or
quasi-2D flow behavior in the present two-layer fluid, we
have compared the kinetic energy contained by the horizon-
tal and the vertical motion and we analyzed the horizontal
divergence of the flow. For pure 2D flows vertical motion is
absent and the horizontal divergence is zero. The profound
influence of the three-dimensionality of the flow is illustrated
with passive tracer transport at the free surface. Particles
concentrate or deplete in regions where the horizontal flow
field is not divergence free, in contrast to 2D incompressible
flows where it is divergence free by definition.

The paper is organized as follows: In Sec. II the experi-
mental setup and the measurement technique are introduced
and in Sec. III the numerical method is briefly discussed. The
experimental and numerical results of the dipole evolution
during the forcing and the subsequent free-evolution phase
are then presented in Sec. IV. Furthermore, the influence of
the deformable internal interface on the 3D flow, the effects
of decreasing upper fluid-layer thickness, the degree of two
dimensionality of the flow, and tracer transport at the free
surface are discussed. Finally, in Sec. V the conclusions are
summarized.
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FIG. 1. (Color online) Schematic of the setup for the shallow
fluid layer experiments; Left: top view, right: cross section. The
electrical current is denoted by /, the fluid depth of the top layer by
H,,;, and B represents the magnetic field produced by the magnet.
The field of view is indicated by the dashed rectangle. The
x,y,z-coordinate system is also indicated in the figure.

II. EXPERIMENTAL SETUP

The experimental setup used for the two-layer experi-
ments is identical to the setup described in a previous paper
(see [10]), except for the fact that now a two-layer fluid
system is used. The laboratory setup consists of a shallow
two-layer fluid in a stably stratified situation: a denser dielec-
tric lower fluid layer and a lighter conducting upper layer of
thickness H,;. In all the experiments the bottom fluid layer
depth H,,; is kept constant at 3 mm, while the upper layer
depth H,; was varied between 3.5 mm and 9.0 mm. The
density of the lower fluid (3M™ Novec™ Engineered Fluid
HFE-7100) is 1.52 X 10° kg/m? (about 1.5 times the density
of the electrolyte), and it is immiscible with top layer
(thereby excluding vertical mixing between the two layers).
The upper layer is a sodium chloride solution (NaCl, 10%
Brix), which serves as the conducting fluid enabling the elec-
tromagnetic forcing. A disk-shaped magnet is placed under-
neath the bottom of the tank and an approximately uniform
electrical current is led through the top fluid layer, between
two electrode plates mounted along opposite side walls. The
interaction of the current density and the magnetic field in-
duces a Lorentz force that sets the fluid in motion. Note that
the forcing is only active in the top layer. In all the two-layer
experiments reported here, the forcing protocol consisted of
a 1 s pulse of approximately constant current density (j,
~0.13 A/cm?). The duration of the 1 s current pulse is simi-
lar to the duration taken in Paret et al. [14]. Furthermore, the
Reynolds number at the end of the forcing phase is of similar
order as Rivera and Ecke [25].

A schematic of the setup is depicted in Fig. 1. The left-
hand side of this figure shows a top view of the 52
X 52 cm? square tank with one disk-shaped permanent mag-
net below the bottom. Two rectangular-shaped electrodes are
placed on opposite sides of the tank, leading to an approxi-
mately uniform current density in the x direction. The mag-
net is placed approximately in the middle of the tank to
minimize the influence of the lateral walls and nonuniformi-
ties in the current density. Note that the idea of electromag-
netic forcing to drive the fluid dates back a long time ago
[30]; it was applied in the shallow flow setup to drive the
fluid motion, not to two dimensionalize the flow.

We adopt a Cartesian coordinate frame, with the x and y
axes spanning a plane parallel to the bottom of the tank,
while the z axis is taken vertically upward. The origin of the
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coordinate system lies above the center of the magnet on the
bottom of the tank. The three velocity components in the x,
v, and z direction are denoted by u, v, and w, respectively.
The cylindrical magnet, with a diameter of 25 mm and thick-
ness of 5 mm, is assumed to be uniformly magnetized in its
axial direction and produces a magnetic field with a magni-
tude of the order of 1 T.

The right-hand side of Fig. 1 shows a cross-section of the
experimental set-up. Two cameras, placed at an angle, enable
the use of SPIV [31] to measure the full three-component
velocity field in a horizontal plane inside the fluid layer. This
horizontal measurement plane is inside the top fluid layer,
always at mid-depth of this top layer. The SPIV method con-
sists of a calibration procedure using polynomial mapping
functions and a light sheet misalignment correction proce-
dure. The latter utilizes the disparity field to compute the true
light sheet position compared to the calibration plane. The
measurement images from both cameras are evaluated with a
cross-correlation algorithm, and subsequently recombined
with the aid of the calibration information (utilizing triangu-
lation) to obtain the three-component velocity field.

The fluid is seeded with polystyrene particles having a
mean diameter d, of 20 um and a density p, of 1.03
X 10% kg/m?. Settling of the seeding particles is negligible
as the density difference between seeding particles and fluid
is small (2%). The volume fraction of the particles is of the
order 107, so that the seeding particles have a negligible
influence on the flow properties. How well these particles
follow the flow is characterized by the Stokes number St
=1,/ 74, where Tp=d,2,pp/ 184 is the particle response time to
acceleration (u, denotes the dynamic viscosity of the fluid).
The flow time scale 7, is estimated as the inverse of the
maximum vertical vorticity =~0.07 s, yielding St=3 X 1074,
indicating that the particles follow the flow passively.

The seeding particles are illuminated with a dual pulse
Nd:Yag laser (Spectron Laser SL454, 200 mJ/pulse), which
produces a horizontal light sheet of 1 mm thickness. In order
to limit the in-plane particle loss [31] and for correct tempo-
ral sampling of the signal, a delay time between laser pulses
of 10 ms is chosen.

The illuminated particles are recorded with two cameras
(Kodak ES2020 with sensor resolution 1200 X 1600 pixels,
f#=2.8), which are mounted on Scheimpflug adaptors to en-
able in-focus imaging of the entire field of view, as the ste-
reoscopic angle is approximately 85 degrees. The cameras
and the light source are synchronized with a delay generator.
With this setup, image pairs are acquired at a rate of 15 Hz.
The typical field of view is approximately 5.5X7 cm? in x
and y direction, respectively. The field of view is indicated
schematically in Fig. 1 by the dashed rectangle. After post-
processing, velocity fields were resolved on a 60 X 79 spatial
grid, corresponding to a grid spacing of approximately 1 mm
in both x and y direction.

The goal of these experiments is to analyze and quantify
the 3D structures that develop in a shallow two-layer fluid,
and to make a comparison between the single and two-layer
fluid experiment. In order to study the influence of different
fluid-layer depths on the flow behavior, the top-layer thick-
ness H,; has been decreased in steps down to almost 3 mm,
ie., 9, 7, 5, and 3.5 mm. The latter fluid-layer thickness

PHYSICAL REVIEW E 82, 026314 (2010)

TABLE I. Experimental parameter values for the SPIV measure-
ments in the two-layer flow: upper fluid-layer depth H,;, measure-
ment level Ay, current density j,, Reynolds number Re, and densi-
metric Froude number Fr. Note that the bottom layer thickness H,;
is kept constant at 3 mm for all experiments.

H, hyg i
(mm) (mm) (A/cm?) Re (-) Fr (-)
9.0 7.5 0.13 1200 0.23
7.0 6.5 0.12 1250 0.28
5.0 5.5 0.13 1700 0.43
3.5 4.5 0.14 2000 0.64

“Due to an unfortunate typing error the reported values of j, in [10]
are a factor 10 too high (fortunately, this typing error has no con-
sequences for the experimental and numerical results in [10]). The
here presented values are comparable to the corrected values of
[10].

mimics the traditional fluid-layer configuration for 2D turbu-
lence experiments (see, e.g., [14,23,25,29]). Table I provides
an overview of the performed experiments. Note that the
Reynolds number Re is based on the maximum horizontal
velocity U at the end of the forcing, while the magnet diam-
eter D is taken as a measure of £. The densimetric Froude
number Fr is defined as U/ \g'H,,. The reduced gravity g’ is
computed as gAp/p;, with Ap=p,—p, (subscripts 1 and 2
refer to the top and bottom layer, respectively) and g denotes
the gravitational acceleration.

All measurements have been performed in a horizontal
cross-sectional plane at mid-depth of the top fluid layer. In
Sec. IV results are presented mainly for the experiments with
H,;=7.0 mm, as the flow evolution observed in these experi-
ments is indicative for the experiments with different fluid-
layer depths. The geometrical aspect ratio 7y is defined as
‘H/L, where the magnet diameter D is a measure of the
horizontal length scale. The case H,;=7.0 mm (y=0.28) is
in agreement with the classical experiments by Tabeling and
co-workers [23,27,28] and by Rivera and Ecke [25].

III. NUMERICAL METHOD

The experiments, as described in the previous Section,
will be compared with numerical simulations obtained with
the commercial software code COMSOL Multiphysics. These
simulations are aimed at mimicking the experimental flow
situations.

The motion in the two individual fluid layers of the two-
layer simulation is governed by the Navier-Stokes equation,
ie.,

av; 1 1
_+(Vi.V)Vi:__Vpi+ ViV2Vi+_fi in Di’ = 1,2

ot
(1

complemented by V-v,;=0, where v, is the 3D velocity vec-
tor, p; the pressure, v; the viscosity, p; the mass density, and
f; the external body force in layer i. The subscript i=1 in Eq.
(1) refers to the top layer, while i=2 indicates the bottom
layer.

1 i
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For the upper layer, the external body force f; constitutes
of the Lorentz force, which is given by

Here the current density j is a uniform and constant pulse of
1 s duration in the x direction (j=jye, for 0<r=1 s and j
=0 for t>1 s), similar to the forcing applied in the experi-
ments. The reader is referred to [10] and references herein
for a more detailed description of the modeling of the mag-
netic field associated with the disk-shaped magnet.

As the magnet’s strength is not exactly known, it is ad-
justed in such a way that the numerical simulation matches
the corresponding laboratory experiment at some arbitrary
moment in time. For this matching one can use different
criteria, such as the maximum of the vertical vorticity com-
ponent or the “horizontal” kinetic energy, both at the end of
the forcing period. The former matching criterion is used for
the numerical results presented in the remainder of this pa-
per, as the local magnitude of the vertical vorticity deter-
mines the strength (and thus the speed) of the dipole at a
certain height inside the fluid.

For the lower layer Eq. (1) is used, with i=2. However, as
in the two-layer fluid experiments, the fluid is only forced in
the upper layer, so that the external body force in this layer is
f2=0.

The no-slip condition is used at the bottom and a rigid,
stress-free condition at the free surface. At the internal inter-
face, where the two sets of equations are coupled, kinematic
boundary conditions are applied, dictating that the velocity
components should be continuous over this interface (u;
=u,, v;=U,, and w;=w,), and besides it is assumed that the
interface does not deform (w;=w,=0). Furthermore, a dy-
namic boundary condition at this interface is applied, stating
that the shear and normal stresses should be continuous over
the internal interface [1], i.e.,

0’)U1 0"1)2 d O’)l/l] &Mz
VT =Py~  an VT =,
01107Z Pzzé,Z P110.’Z 1022(9Z
and
an 6W2
20 vi—— —p1=2pva — P2
7 0z
respectively.

Note that the assumption of a nondeformable free surface
and internal interface represents a qualitative difference be-
tween the numerical simulations and the experiments, since
in the latter case these surfaces are deformable. Free-surface
deformations were shown to be of minor importance in gen-
erating vertical motions for the single-layer dipole [10].
However, the possible effect of the rigid internal interface
will be discussed in the results section. Implementation of a
deformable internal interface is currently not feasible in the
simulations. However, as this rigid internal interface is the
only qualitative difference with the laboratory experiments,
these simulations help to elucidate the effect of a movable
fluid interface.
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FIG. 2. Schematic top and side views of the computational do-
main used for the two-layer simulations. D and D, refer to the top
(having fluid height H,;) and bottom layer (H,;), respectively. The
internal interface is indicated with the dotted line in the side view.
Note that the vertical dimension of the computational domain is
exaggerated for clarity of presentation.

The computational domain is identical to the experimental
one with the exception of the lateral (outer) domain bound-
ary (see Fig. 2). This is taken circular (for computational
efficiency) with a diameter of 7 times the magnet diameter,
whereas the experimental setup has a square outer boundary.
It has been checked by simulations with a larger circular
domain that its size did not affect the result. The small, solid
gray circle in Fig. 2 (top view) represents the domain above
the magnet. The outer domain is shifted in the positive y
direction as the dipole will be propagating in this direction.
The dashed circle represents the border between a fine
meshed domain (closer to the magnet) and a domain with a
coarser mesh (outer region). Furthermore, use was made of
the symmetry in the domain, indicated with the dashed
straight line in Fig. 2, i.e., only the right part of the domain
was used. For some cases it was checked with a simulation
of the full domain that this imposition of symmetry did not
affect the result.

To acquire the desired accuracy in a typical run, the com-
putational domain is discretized with approximately 150 000
mesh elements, with finer elements being used near the bot-
tom, near the free surface, and close to the internal interface
(where the forcing is strongest) in order to resolve the gra-
dients in the local flow field. With Lagrange elements of
degree 2, the resulting number of degrees of freedom solved
for is then approximately one million.

As a comparison, the 3D numerical simulation as de-
scribed above is confronted with a numerical simulation of
the 2D Navier-Stokes equation for the evolving dipolar vor-
tex. In this 2D simulation the horizontal component of the
Lorentz force present at mid-depth of the top-fluid layer was
used to drive the fluid, which produces a dipole having ap-
proximately the same Reynolds number at the end of the
forcing as in the 3D simulation. The 2D computational do-
main (having zero thickness) is identical to the top view of
Fig. 2. A comparison of tracer transport in these 2D compu-
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FIG. 3. (Color online) Instantaneous velocity fields of a dipolar vortex in a two-layer system observed in a horizontal plane at mid-depth
of the top fluid layer (H,;=7.0 mm). Vectors represent horizontal velocity components and color/gray levels indicate the magnitude of the
vertical velocity. In these figures, ‘A’ indicates a region of downward motion (w<0) and ‘B’ an upward motion (w>>0). Experimental results
obtained with SPIV at (a) r=1.00 s, (b) r=1.50 s, (c) r=1.80 s, and (d) t=2.10 s. Numerical snapshots obtained with a rigid internal
interface at (e) r=1.00 s, (f) 1=1.50 s, (g) r=1.80 s, and (h) t=2.10 s. The dashed circles in (d) indicate the region of downwelling inside
the vortex cores (i.e., second sign-change of vertical motion w) and the elongated dashed contour points toward the region of down welling

associated with the frontal circulation.

tations with transport in full 3D simulations is intended to
illustrate the important effect of 3D recirculating flows on
the dispersion of passive tracers (at the free surface).

To investigate the transport behavior of passive particles,
the numerically obtained velocity field is integrated in time.
The position of a particle at time * is given by

X(*) = xo + f ", 3)

0

where X is the initial particle position. Integration of Eq. (3)
is performed numerically using a fourth-order Runge-Kutta
method.

For the 2D simulations, the numerically obtained 2D ve-
locity field is integrated in time with Eq. (3). When releasing
particles on the free surface for the 3D simulations, basically
a 2D tracking of these particles is performed as the vertical
velocity component w is identically zero at the free surface.
The difference, however, is that the velocity field of the 2D
simulation is divergence free as opposed to the horizontal
velocity field at the free surface obtained with the 3D simu-
lation.

For the two-layer dipole simulation (as well as the corre-
sponding 2D simulation), several thousands of particles were
released at =0 on a spatially uniform grid at the free sur-
face, where w=0.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

In this section the experimental and numerical results are
presented. First, the experimental results for the case H,
=7.0 mm are discussed, together with the corresponding nu-
merical results (although obtained for the case of a rigid
internal interface). Next, the effect of a decreasing upper
fluid layer depth is considered. Finally, the transport of pas-
sive tracers at the free surface is illustrated.

A. 3D flow evolution of a dipole in a two-layer fluid

Figure 3 shows plots of the instantaneous velocity fields
in a horizontal plane at mid-depth of the upper layer. The
horizontal velocity components are represented by the vec-
tors. For clarity of presentation the vectors are under
sampled: only every fourth vector is shown in the x and in

026314-5



AKKERMANS et al.

the y direction, so that (approximately) only 6% of the total
set is shown. Since the total forcing time Ar=1 s and the
forcing is started at r=0, Fig. 3(a) corresponds to the end
stage of the forcing, while Figs. 3(b)-3(d) show the flow
field after the forcing has stopped.

During the entire forcing phase, a buildup of downward
motion is seen inside the two vortex cores, as is illustrated in
Fig. 3(a), as well as strong upwelling in the tail of the dipole.
After the forcing has stopped, see Fig. 3(b), the dipole starts
to propagate and soon upward motion is seen inside the vor-
tex cores, surrounded by an area with downward motion. At
a later stage of the flow evolution, the vertical motion inside
the vortices is seen to change in a downward one [delineated
by the dashed circles in Fig. 3(d)]. Furthermore, bands of
upward and in front of that downward motion are observed
at the frontal side of the moving dipole [where the latter is
indicated by the dashed contour in Fig. 3(d)], representing
the frontal circulation roll. The observed vertical motions are
localized in space, and become of comparable order as the
horizontal motion. Surprisingly, the 3D structures and evolu-
tion as depicted in Figs. 3(a)-3(d) show a remarkable resem-
blance with the ones already seen in the single-layer dipole
(see [10]).

For the dipole in a single-layer fluid, the development of
vertical motion was related to vertical gradients in the hori-
zontal flow field [10]. Apparently, the horizontal flow field in
the top layer has a z dependence that is similar to the one
present in the single-layer case, which explains the close
similarity of the 3D structures and evolution in the two-layer
fluid. This z dependence is introduced by the magnetic field
whose strength varies with height and also by the shear stress
exerted by the bottom layer.

Comparison of the numerical simulation results shown in
Figs. 3(e)-3(h) with the corresponding experimental obser-
vations [Figs. 3(a)-3(d)] reveals a striking resemblance with
respect to the flow structures and their evolution. However,
there is a slight phase shift present, e.g., the second sign
change of the vertical velocity inside the individual vortex
cores in the experiment [see Fig. 3(d), indicated by the
dashed circles] is not yet seen in the numerical snapshot
shown in Fig. 3(h); this occurs after approximately 1=2.5 s
in the simulation. Furthermore, the frontal circulation is not
seen in the top layer of the numerical simulation [compare
Fig. 3(h) with Fig. 3(d)], the region of rather weak down-
ward motion associated with the frontal circulation [as delin-
eated by the dashed contour in Fig. 3(d)] is not present in the
numerical simulation [frontal band of upward motion, see
“B” in Fig. 3(h)]. This absence is attributed to the rigid in-
ternal interface used in this simulation, as will be explained
next.

B. Development of the frontal circulation

The absence of the frontal circulation is illustrated in
more detail in the vertical slice presented in Fig. 4(a). The
negative vorticity w, in the lower fluid layer is associated
with the viscous boundary layer at the no-slip bottom. At
later stages in the evolution this negative vorticity patch de-
taches from the bottom and forms the frontal circulation, in a
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FIG. 4. (Color online) Numerically obtained snapshots of verti-
cal slices through the symmetry plane of the dipole (x=0) at time
t=2.60 s showing the w, vorticity distribution, with vectors repre-
senting the flow in the yz-plane. Snapshot of (a) two-layer setup,
illustrating the absence of the frontal circulation in the top layer (the
white dashed line indicates the internal interface between the fluid
layers) and (b) single-layer setup with frontal circulation present.
The solid and dashed circles indicate the positive and negative w,
vorticity patches, respectively.

way similar to what is observed in the single-layer situation
[see Fig. 4(b)]. However, in the two-layer case this negative
vorticity w, does not penetrate through the internal interface
[indicated with the dashed white line in Fig. 4(a)], and is
therefore absent in the top layer. The positive vorticity w, is
associated with the down welling initiated during the forcing
phase (the magnetic field decays with height, which results
in a pressure gradient that drives a downward motion). This
downward and subsequently horizontal motion is deflected
upward at the instantaneous separatrix, the latter is delin-
eated by the band of upward motion in front of the dipole
[see, e.g., Fig. 3(f)]. This results in the positive w, vorticity
patch seen in both the single- and two-layer simulations as
indicated by the solid circles in Fig. 4. However, in the two-
layer simulation only the upper fluid layer is forced, there-
fore the positive vorticity patch is only present in the upper
layer. Note that the magnitude of the (positive) vorticity
component , in the vertical slice of Fig. 4(a) turns out to
evolve to significantly larger values than that of the “pri-
mary” vorticity component w_, like in [10].

In the numerical simulation the interface is taken flat,
whereas in the experiment the interface will most likely de-
form, as the density of the two fluids is comparable (Ap/p,
=~(.5). In the present two-layer experiments the formation of
the frontal circulation has presumably a different origin than
in the one-layer experiments discussed by Akkermans et al.
[10], as it is to be directly linked with the interface deforma-
tion. Interface deformation implies baroclinic vorticity pro-
duction, which is described by a source term of the form
1v pX Vp in the vorticity equation. The sharp internal inter-

ace implies locally a strong density gradient. As soon as the
interface deforms, the pressure gradient and density gradient
are no longer aligned (Vp X Vp # 0), which leads to vorticity

026314-6



THREE-DIMENSIONAL FLOW IN ELECTROMAGNETICALLY...

FIG. 5. Schematic illustration of the baroclinic vorticity produc-
tion resulting from interfacial deformation in a stably stratified two-
layer system. The position of the dipole is schematically illustrated
in gray.

production. This is schematically depicted in Fig. 5, showing
the interface deformation at the front side of the dipole (in
the symmetry plane of the dipole, i.e., x=0). Based on the
simulation, the interface will be displaced upwards at the
front and downward closer to the dipole [cf. Figure 3(h)],
resulting in the interfacial shape as depicted in Fig. 5. Lo-
cally, the density gradient Vp is directed downwards, perpen-
dicular to the interface. Together with a vertical pressure gra-
dient as shown in the schematic, this leads to a production of
negative vorticity w, in the top layer. This negative vorticity
patch is then advected upward in a way similar to what is
seen in the single-layer case [cf. Fig. 4(b)].

Gravity waves at the frontal side of quasi-2D dipoles have
been reported in literature related to atmospheric science
(see, e.g., [32]). As the interface Froude number in the ex-
periments is fairly high, similar effects may be present in the
current two-layer experiment.

C. 3D structure of the dipole with decreasing
upper fluid layer depth

Figure 6 shows snapshots of the dipolar flow structure for
different upper fluid-layer depths: the panels show the struc-
ture of the horizontal and vertical fluid motion in a horizontal
cross-section at mid-depth of the top layer for the case of an
upper layer thickness (a) H,;=9.0 mm, (b) H,,=7.0 mm, (c)

w ') SRR L

-6-5-3-2-102345

y (mm)

(b)H, =7.0 mm
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H,=5.0 mm, and (d) H,;=3.5 mm. For all cases one ob-
serves a similar pattern of vertical motion, as was also seen
for the case H,;=7.0 mm [see Fig. 6(b)] that was discussed
in Sec. IV A; strong upward motion in the tail of the dipole,
together with the frontal circulation. In contrast to the quali-
tative observation by Sous et al. [18,19], the quantitative
flow measurements in the two-layer experiments reported
here give clear evidence of the frontal circulation. Also, in all
four snapshots the second sign change of the vertical velocity
inside the individual vortices can be seen. These features are
also present for the case H,;=5.0 mm, although less pro-
nounced. Clearly, the observed 3D structures in the H,
=7.0 mm case are indeed representative for the other upper
fluid depths. The same applies for the evolution in time. The
magnitude of the vertical velocity component remains ap-
proximately constant with decreasing H,;, whereas the hori-
zontal velocity magnitude increases with decreasing upper
fluid-layer thickness. This increase is expected as the mea-
surement plane becomes more close to the magnet for de-
creasing H,;,, where the Lorentz force effectively drives a
stronger horizontal velocity field. In the next section, nu-
merical simulations are discussed where this effect is stud-
ied.

The shallowness of the fluid layers in our experimental
setup is often used as a justification for quasi-2D flow be-
havior. Although the snapshots of the velocity field indicate
that the magnitude is almost independent of the fluid depth
H,,, it is useful to introduce dimensionless numbers to quan-
tify the shallowness of the flow and to compare these with
data from the literature. When the flow is electromagneti-
cally generated, the magnet dimension is a measure of the
horizontal length scale £. The geometrical aspect ratio vy is
then defined as H /L, where H is a measure of the vertical
length scale. In Table II the vy range for the performed ex-
periments is presented, as well as some typical literature val-
ues. Clearly, the aspect ratio of cases H,=9.0 mm(y
=0.36) and 7.0 mm (y=0.28) are consistent with the
v-values of Tabeling and co-workers [23,27,28] and Rivera
and Ecke [25]. Furthermore, the case H,=3.5 mm(y

w(mms) IO

-6-5-4-3-20 1234

(s T

5-4-32-10123 4

y(mm)

(¢)H,;=5.0mm

(d)H,=3.5mm

FIG. 6. (Color online) Experimentally obtained velocity fields of a dipolar vortex in a horizontal plane at mid-depth of the top fluid layer
having a thickness of (a) H,;=9.0 mm, (b) H,,=7.0 mm, (¢) H,=5.0 mm, and (d) H,;=3.50 mm. The time instants have been chosen such
that the second sign reversal of vertical velocity inside the vortex cores can be seen as well as the frontal circulation. The solid gray rectangle
in (b) indicates the co-moving area over which the “local” ratio ¢ is computed. See caption of Fig. 3 for meaning of dashed circles and

contours.
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TABLE II. Geometrical aspect ratio y(=H /L) for the performed
two-layer experiments together with literature values. Unless stated
otherwise, the cited references employ a stable two-layer fluid
setup, with a heavy (dielectric) bottom fluid layer and a lighter
conducting top layer.

References

H

Present study

Tabeling et al. [23,27,28T 3
Rivera and Ecke [25]

Shats et al. [29]

(mm) (mm)  y(-) Re (-)
9.0-3.5 25 0.36-0.14 1150-2000
0375  200-400°

3 127 024 1200°
4 1004

*The Refs [23,28] utilize a two-layer setup of NaCl solutions with
different densities in a stable configuration, i.e., both fluid layers are
electromagnetically driven.

®Indirectly estimated from references in [23,28].

“The authors provide a Reynolds number of approximately 500
based on the rms velocity fluctuations and injection length scale.
Furthermore, they explicitly mention that this rms Reynolds number
is four to five times larger than that of Jullien ef al. [27]. We have
therefore conservatively estimated the Reynolds number based on
the velocity magnitude for the experiments by Rivera and Ecke to

be of the order of 1200.

4Obtained through personal communications with H. Punzmann

(ANU, Australia).

=0.14) corresponds to a shallower fluid-layer geometry than
those reported in the literature. The Reynolds numbers based
on a characteristic horizontal velocity scale are presented in
the last column of Table II. In the present study, the value of
the Reynolds number is approximately five times larger than
the cited literature values, therefore the dipole experiences
less viscous dissipation. The Reynolds numbers of the
present experiments are comparable or slightly higher than
that of Rivera and Ecke [25]. Note that Rivera and Ecke
explicitly mention that, although their Reynolds number (see
also footnote ¢ in Table II) is four to five times larger than
that of Jullien et al. [27], considerable finite Reynolds num-
ber effects remain, which result in deviations from the theo-
retical expectations. Similar concerns were also expressed by
Boffetta and Sokolov [33] and recently by Lindborg [34].

D. Degree of two-dimensionality of shallow dipoles

Qualitatively the 3D structure of the dipolar vortex in the
two-layer fluid shows a great resemblance with that seen in

0.25

0.2

0.15

q(-)

0.1

wHuI:3.5mm

---H =5.0mm
ul

—H =7.0mm
ul

—+-H =9.0mm
ul

t(s)

(a)

0.06
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the single-layer configuration. In order to make a more quan-
titative comparison of the importance of the 3D flow struc-
ture of the coherent vortices between the single and two-
layer fluids, we will now consider the ratio ¢ of the kinetic
energy contained in the vertical motion Ey to that in the
horizontal motion Ey, evaluated at a horizontal plane S at
mid-depth in the upper layer, defined as

ZJszdxdy
s
q= :
JJ (u® + v?)dxdy
s

Note that the horizontal velocity components u and v are
measured in the laboratory frame and that a factor two has
been introduced in this definition so that for fully developed
isotropic turbulence this ratio ¢ would have a value of 1.0.
TLle magnitude of the vertical velocity w is approximately
vg-100% of the horizontal velocity magnitude U.

Figures 7(a) and 7(b) display the evolution of the kinetic
energy ratio g as obtained numerically and experimentally,
respectively. It is observed that the ratio ¢ increases during
the forcing (i.e., for 0<r=1 s), attains a global maximum at
around t=2.0 s, long after the forcing has been switched off,
and then decays gradually. Clearly, the kinetic energy ratio
decreases with decreasing H ;. For the aspect ratios consis-
tent with Tabeling and co-workers [23,27,28] and Rivera and
Ecke [25], typical values of the vertical velocity w amount to
30 or 45% of the horizontal velocity magnitude /. Surpris-
ingly, the typical maximum value of g corresponds with that
for the single-layer fluid. Figure 12(b) in [10] shows a maxi-
mum ¢ value of approximately 0.25 for H=9.3 mm and j,
=0.11 A/cm? [recomputed with the current definition of ¢,
i.e.,, Eq. (4)]. Based on the comparison of this ratio g, the
degree of three-dimensionality of shallow flows in a two-
layer setup is comparable to that in a single-layer setup.

In Fig. 7(b) the experimentally obtained ratio ¢ is pre-
sented. Qualitatively, a decrease of kinetic energy ratio g
with decreasing H,; is seen and ¢ attains its maximum
around 7r=2.0 s. Apart from the initial time behavior (where
the noise in the vertical velocity distribution is corrupting the
ratio ¢), a fairly good qualitative agreement is seen with Fig.
7(a). Here, w~20% of U for the corresponding literature
values of the aspect ratio 7.

" H =35mm

--.H =5.0mm
ul

—H =7.0mm
ul

—-H =9.0mm
ul

ul

FIG. 7. (a) Numerically obtained evolution of
the kinetic energy ratio ¢ with varying upper fluid
depth H,;. This ratio is evaluated at a horizontal
plane at mid-depth of the upper layer. (b) As (a),

seveeT but now for the experiments.
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FIG. 8. (a) Numerically obtained evolution of
the “local” kinetic energy ratio g,,.,; With varying
upper fluid-layer depth H,;. This g;,., is evalu-
ated at two co-moving locations: the frontal side
(solid lines) of the dipole [see gray rectangle of
Fig. 6(b)], and a small region around the vortex
cores (dashed lines). (b) As (a), but now for the
experiments evaluated only for a small area near

04 = 02 :
.q‘ fHu/=3.5 mm; FR HU/= 3.5mm
0.35 , -~ H,=35mm; Core "'Hu/: 5.0 mm
03 _Hu/=7.0 mm; FR 0.15 _Hu/=7'0 mm
~ 025 ---H,=7.0mm; Core -~ ~+H,=9.0mm
§ 02 g 04
9 Q
S 0.15 <
01 0.05
0.05p N
12 3 4 5 6 7 % 1 2 3 4
t(s) t(s)
(a) (b)

Quantitatively, the difference between the experimentally
and numerically obtained kinetic energy ratio ¢ is substan-
tial, which is mainly attributed to the generation of interfa-
cial deformations as indicated in Fig. 5. These interface de-
formations are intimately linked with the local vertical
motion and they extract energy from the dipole, most effi-
ciently when the interface Froude number is of order unity,
which is the case in our experiments. The potential energy
per unit area contained in such an interfacial deformation is
of the order gApA?, where A is the amplitude of the defor-
mation [1]. With the area taken as the dipole area, i.e.,
m(2D)?, and a deformation amplitude estimated of the order
of 1 mm, this potential energy turns out to be of the same
order as the kinetic energy contained in the vertical motion
of the complete upper-fluid layer domain. Therefore, when
interface deformations are present, the Ey will most likely be
substantially lower than in a simulation without interface de-
formation, thereby reducing the ratio g in the experiment as
compared to the simulations.

The energy ratio g defined by Eq. (4) is a global quantity,
while the vertical motions are rather localized in space (see,
e.g., Fig. 6). Therefore, one could falsely conclude from the
relative low values of the ratio ¢ (as depicted in Fig. 7) that
the flow is close to planar, i.e., quasi-two-dimensional. To
illustrate the importance of vertical motions, we have addi-
tionally calculated the energy ratio according to (4), but now
based on a smaller area S, located at the frontal side of the
dipole [indicated by the gray rectangle in Fig. 6(b)] or lo-
cated near the vortex cores. Figure 8(a) presents the numeri-
cally obtained evolution for this local ratio ¢;,., for both
locations, i.e., near the front side of the dipole (solid lines)
and near the vortex cores (dashed lines). Furthermore, black
indicates H,;,=7.0 mm and gray H,=3.5 mm. Noteworthy
is the general increase of this local ratio ¢g,.,; with a factor 3
to 4 with respect to the data displayed in Fig. 7. Locally, the
magnitude of the vertical velocity is approximately 70% that
of the horizontal velocity magnitude. In Fig. 8(b) the experi-
mentally obtained ¢;,.,-values are presented (evaluated near
the front of the dipole) for decreasing H,;. Besides the gen-
eral larger value for ¢,,., as compared to the ratio g in Fig.
7(b), a general increase of the ratio g,,.,; with a factor 4 to 5
with respect to Fig. 7(b) is observed. For the considered
range of the aspect ratio y the vertical velocity component w
is 25%—-40% that of the horizontal velocity magnitude U.
Clearly, the vertical motions are localized in space and global

the frontal side of the dipole.

quantities tend to underestimate the importance of 3D mo-
tions in the shallow fluid layer.

As discussed in Sec. IV C, the magnitude of the vertical
velocity remains approximately constant while the magni-
tude of the horizontal velocity components increase with
decreasing H,; (see Fig. 6), thereby reducing the ratio
q(=Ey/Ep) as defined in Eq. (4). Additional simulations have
been performed for decreasing upper fluid-layer depths while
keeping the magnitude of the horizontal velocity field ap-
proximately constant (the Re-value at the end of the forcing
phase was kept constant at 1250). It turns out that the ratio ¢
obtained from these simulations shows approximately the
same magnitude and evolution as depicted in Fig. 7(a).
Therefore, the kinetic energy ratio ¢ depicted in Fig. 7(a)
was not biased by the stronger electromagnetic forcing closer
to the magnets for decreasing H,;.

In Fig. 9, the numerically obtained normalized horizontal
divergence A is displayed for three different evaluation lev-
els z=h inside the upper layer (with depth H,,=7.0 mm).
This quantity A is computed as

0.5

T he35mm
---h=6.5mm
0.4 —h=9.5mmj

FIG. 9. Numerically calculated evolution of the normalized
horizontal divergence A at three different evaluation levels (z=h
=3.5, 6.5, and 9.5 mm) inside the upper fluid layer (with depth
H,,=7.0 mm). Note that H,;=3 mm, thus the evaluation levels 3.5,
6.5, and 9.5 mm correspond to positions 0.5 mm above the internal
interface, 3.5 mm above the internal interface (mid-depth of the top
layer), and 0.5 mm below the free surface, respectively.

026314-9



AKKERMANS et al.

PHYSICAL REVIEW E 82, 026314 (2010)

FIG. 10. (Color online) (a) Distribution of tracer particles (black dots) on the free surface of the H,;=7.0 mm simulation at t=3.75 s.
Colors/gray scales indicate the magnitude of the vertical velocity w just below the free surface at z=9.5 mm. In these figures, ‘A’ indicates
a region of negative vertical motion (i.e., w<<0) and ‘B’ a positive vertical motion (w>0). (b) Distribution of tracer particles at ¢
=3.75 s obtained with a 2D simulation, where colors/gray scale values indicate the magnitude of the vorticity w,. In this subfigure, the left
patch contains positive vorticity w, and the right one negative vorticity w,.

Hulff |VHV|d.xdy
A= > ,
fo|wz|dxdy
s

where V denotes the divergence with respect to the horizon-
tal components and D the magnet diameter. The normaliza-
tion factor D[ [¢|w.|dxdy is a measure of the characteristic
horizontal velocity. The normalized horizontal divergence A
depicted in Fig. 9 is nonzero at all three measurement levels,
whereas in purely 2D (incompressible) flow it is exactly zero
(by definition). The highest A values are observed at the
level closest to the free surface (h=9.5 mm) and the internal
interface (h=3.5 mm) as |w/Jz] attains its maximum there.
At approximately mid-depth of the upper fluid layer dw/ dz is
approximately zero, leading to low values of the normalized
horizontal divergence. After the forcing phase, the magnitude
of A for the two-layer configuration is smaller than that of
the single-layer case [10].

(5)

E. Tracer transport at the free surface

To illustrate the effect of the 3D structures inside the shal-
low fluid layer on motion at the free surface, the transport of
massless passive particles is numerically studied. These par-
ticles are released at t=0 on a uniformly distributed spatial
grid (consisting of 9800 particles in total) at the free surface.
Although the vertical velocity is identically zero at the free
surface, vertical motions inside the flow do influence tracer
transport on this surface, since in general Vy-v#0 at the
free surface.

In Fig. 10(a) the numerically obtained tracer distribution
is shown at r=3.75 s for the 3D simulation (with H,
=7.0 mm), where colors indicate the magnitude of the ver-

tical velocity just below the surface (at z=9.5 mm) and par-
ticle positions by the black dots. As w=0 at the free surface,
the tracer particles are bound to the surface and therefore
may accumulate locally. It is clearly seen that the particles
become concentrated in narrow bands coinciding with the
presence of downward vertical motion below the surface,
both at the front and tail side of the dipole. Higher particle
concentrations are thus observed in regions where the hori-
zontal flow field is convergent, whereas lower concentration
corresponds to locally Vy-v<<0. Note that the normalized
horizontal divergence A [see Fig. 9] attains its maximum
close to the free surface.

The horizontal velocity field of an incompressible 2D
flow is by definition divergence-free and narrow bands of
accumulated particles will therefore not form in this case.
This is illustrated by the 2D simulation in Fig. 10(b), where
a fairly uniform particle distribution is observed. Clearly,
caution is needed when interpreting passive tracer transport
and dispersion at the free surface of these shallow two-layer
setups.

V. CONCLUSION

The canonical laboratory setup to study nonrotating 2D
turbulence is the electromagnetically driven flow in shallow
fluid layers. In the last years, this standard laboratory setup
utilized a stable two-fluid layer configuration, with the flow
measurements performed at the free surface of the upper
layer. This top layer is shielded from the no-slip bottom by a
denser fluid layer, thus, attempting to minimize the influence
of the no-slip bottom on the development of the flow. The
question whether this two-layer setup is a significant im-
provement over the single-layer setup has hardly received
any attention.
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In this paper, the 3D structures developing in the top layer
of a two-fluid layer setup have been examined, both experi-
mentally and with numerical simulations for the generic case
of a dipolar flow in a two-layer fluid. Remarkably, these 3D
structures and their evolution show a close resemblance with
those observed in a single fluid layer. Even for the smallest
upper fluid layer thickness (whose geometrical aspect ratio is
significantly lower than values of previously reported experi-
mental studies on 2D turbulence utilizing a two-layer fluid)
the same 3D structures emerge as in the single-layer fluid.

With the aid of the numerical simulations it is shown in-
directly that the development of the frontal circulation is
related to deformations of the internal interface. In contrast
to more qualitative studies reported in the literature, the fron-
tal circulation has been observed in all the performed two-
fluid layer experiments.

Quantities used as indicators for quasi-2D flow behavior,
i.e., the ratio (g) of kinetic energy contained in the vertical
motion to horizontal motion and the normalized horizontal
divergence (A), show a similar evolution and quantitative
behavior as that was previously seen for the same dipolar

PHYSICAL REVIEW E 82, 026314 (2010)

flow in a shallow single fluid-layer. Based on our observa-
tions of the kinetic energy ratio ¢, the two-layer configura-
tion does not provide a significant improvement over the
single-layer setup. Furthermore, passive tracer transport at
the free surface shows the emergence of distinct narrow
bands of particles, which are related to the nonzero horizon-
tal divergence. As 2D flow is by definition horizontally
divergence-free, such narrow bands do not develop in the
purely 2D case. Since the vortex dipole can be considered as
a generic flow structure in 2D turbulence, the conclusions of
the present study may apply more generally to experimental
realizations of 2D turbulence, both for the decaying and the
forced case.
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