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The onset of transient instability driven by a coupling of thermal and magnetic effects in an initially
quiescent ferrofluid layer is investigated using the energy method. Following the work of Kim et al. �Phys.
Lett. A 372, 4709 �2008��, an energy stability criterion is derived for the underlying dynamical system by
taking into account the different boundary conditions and the Prandtl number effects. The critical onset time of
the instability is determined as a function of the Rayleigh number, the Prandtl number, and the thermomagnetic
parameter. For larger times, our analysis predicts that the energy stability theory and the linear theory yield
essentially the same results irrespective of whether the fluid under consideration is a magnetically polarizable
or a nonmagnetic fluid and subcritical instabilities are not possible. For the global nonlinear stability boundary
in the impulsively heated ferrofluid layer, the minimum critical onset time is found to occur when the values
of the Rayleigh number and the thermomagnetic parameter are same.
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I. INTRODUCTION

The thermal convection in an initially quiescent, horizon-
tal fluid-layer heated from below, is a typical model of natu-
ral convection occurring in atmosphere, oceans, and interior
of stars and planets etc. The onset of instability in the layer is
more popularly known as the Rayleigh-Bénard convection.
The instability is known to manifest itself as a partitioning of
the fluid layer into a steady polygonal pattern of convection
cells. The fluid motion is identical within the convection
cells. These results are well established theoretically and
confirmed experimentally. For a quick introduction, inter-
ested reader may refer to the work of Chandrasekhar �1�,
Koschmieder �2�, Drazin and Reid �3�, Bodenschatz et al.
�4�, and references therein.

If the fluid layer is impulsively heated from below and
cooled from the above, the basic state is a smooth function of
time and it significantly affects the onset of instability. In
such a transient system, the critical condition for the onset of
the Rayleigh-Bénard convection is determined by the mini-
mum time before which the basic transient state prevails.
Thus, the critical stability boundary becomes time depen-
dent.

To investigate the critical onset of instability in a hydro-
dynamical system, mainly two theories are employed: �i� lin-
ear theory which predicts the critical boundary above which
the instability with respect to infinitesimal disturbances in
the system is guaranteed �1,3� and �ii� the nonlinear energy
stability theory �energy method�, which predicts a critical
boundary below which the stability of the system is guaran-
teed against arbitrary disturbances. A concise account of the
energy stability theory and its results for the standard
Rayleigh-Bénard convection in an initially quiescent fluid
layer heated from below under different flow media, is given
in Straughan �5�.

Using energy method, Homsy �6� investigated the tran-
sient Rayleigh-Bénard convection and obtained the strong

stability estimates for the permissible growth-rates of the dis-
turbances. However his analysis was limited because of in-
tense computational effort required to mark the marginal sta-
bility boundary.

Recently, Kim et al. �7� have extended the conventional
energy method and proposed the relative energy stability
concept. One merit of this approach is that it incorporates the
effect of Prandtl number on the onset of instability which
remained redundant in the previously existing conventional
energy method.

An interesting feature of the Rayleigh-Bénard convection
is this that at the onset of instability, the control parameter
varies as the fourth power of the wave number of disturbance
when the wave number is significantly high. However for the
onset of instability in a magnetized ferrofluid layer heated
from above, the control parameter varies as the sixth power
of the wave number �see Russel et al. �8,9��. Such a fluid is
controlled by a combined effect of the application of mag-
netic field and the temperature gradient �10–12�. This way
applied magnetic field can also act as to control the ferro-
magnetic convection which is an important aspect owing to
the technological applications of ferrofluids.

A linear instability analysis of the Bénard convection in
ferromagnetic fluids exposed to a vertical constant magnetic
field, was first considered by Finlayson �13� who theoreti-
cally predicted a tight coupling between the buoyancy and
the magnetic forces for the onset of instability. Blennerhas-
sett et al. �14� investigated linear and weakly nonlinear ther-
momagnetic instabilities in a strongly magnetized horizontal
ferrofluid layer between rigid planes, subjected to a strong-
vertical uniform magnetic field and inferred a 10% rise in the
Nusselt number when the lower boundary is hotter from its
value in the absence of magnetic field.

It is well known that in the presence of applied magnetic
field, the critical Rayleigh numbers for the energy stability
boundary and the linear instability boundary coincide. The
energy stability of the onset of steady ferrofluid convection
has been carried out by Straughan �5�. However the onset of
transient convection in ferrofluids subjected to impulsive
heating, has not been investigated yet. Therefore, it is impor-
tant to investigate the energy stability of such a problem and*sonumaths@gmail.com
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the objective of present study is to obtain the global nonlin-
ear critical stability boundary for the onset of the transient
ferrofluid convection by employing the relative-stability con-
cept.

Rest of the paper is organized as follows. The problem is
described in the Sec. II and the appropriate stability equa-
tions are obtained in this section. The nonlinear energy sta-
bility of the basic state is discussed in the Sec. III. The nu-
merical methods used for solving the underlying system of
ODE’s are described in Sec. IV. The numerical results so
obtained are discussed in the same section. The possible con-
clusions from the results are made in the Sec. V.

II. MATHEMATICAL FORMULATION

Consider a viscous, boussinesq ferrofluid layer of thick-
ness d units, initially resting between two horizontal parallel
upper and lower planes z=d, and z=0, held at different tem-
peratures T2 and T1, respectively, where T2, T1�R, T1�T2,
and t�0 denotes the time variable. A constant vertical mag-
netic field H0

ext= �0,0 ,H0
ext� is applied to the ferrofluid layer.

The system is governed by the following equations,

�0
du

dt
= − �p + ��2u + �g + �0m · �h , �1�

� · u = 0, �2�

��CV,h − �0h · � �m

�T
�

V,h
�dT

dt
+ �0T� �m

�T
�

V,h
·

dh

dt
= kT�2T

�3�

� · �m + h� = 0, �4�

� � h = 0 , �5�

where u, p, T, h, and m are the fluid velocity, the fluid
pressure, the fluid temperature, the magnetic field inside the
fluid, and the fluid magnetization, respectively, at any time t;
g= �0,0 ,−g� is the acceleration due to gravity; �0 is the fluid
density at a reference temperature Ta; � and � are the density
and the dynamic viscosity of the fluid, respectively, at a tem-
perature T; �0 is the permeability constant; kT is the thermal
diffusivity. CV,h is the specific heat capacity at constant vol-
ume �V� and magnetic field �h�. The fluid density � is a
function of T in general and is given by the linear relation

� = �0	1 − ��T − Ta�
 , �6�

where � is the coefficient of volume expansion. The magne-
tization m and the magnetic field h within the ferrofluid layer
are related by

m = 	m0 + 	�h − h0� − K�T − Ta�

h

h
, �7�

where m0 is the fluid magnetization at a uniform magnetic
field h0 of the ferrofluid layer when it is placed in an external
magnetic field H0

ext such that H0
ext=m0+h0, h= �h�, m0= �m0�,

and h0= �h0�. The magnetic susceptibilities are 	0=
m0

h0
and 	

= � �m
�h �h0,Ta

where m= �m�. The variation of the magnetization
of ferrofluid with its temperature is expressed in terms of the
pyromagnetic coefficient K=−� �m

�T �h0,Ta
.

It is well known that for a very slow heating of the lower
boundary of the fluid layer, and in the absence of applied
magnetic field, the basic temperature profile is linear and
time independent and the critical condition is independent of
the Prandtl number �7�. But if the fluid layer is rapidly heated
from the below and cooled from the above with a large Ray-
leigh number, the resulting transient stability problem be-
comes more complex.

To proceed further, we make the system of Eqs. �1�–�5�
dimensionless, using the thickness of the ferrofluid layer d as
the characteristic distance scale, the characteristic momen-
tum diffusion time d2

kT
as the characteristic time scale, the

vertical steady temperature difference T1−T2 as the charac-
teristic temperature scale, and

K�T1−T2�
�1+	� as the scale for mea-

suring magnetic field strength.
The system of Eqs. �1�–�7� admits a basic transient state

approaching a steady state for t→
 in which the basic di-
mensionless temperature profiles are given by the following
equations:

Te =
Ta

T1 − T2
− z − 2�

n=1



sin�n�z�

n�
exp	− n2�2t
 , �8�

Te = �
n=0


 �erfc� n

t

+
z

2
t
� − erfc� n


t
−

z

2
t
�� +

Ta

T1 − T2
,

�9�

where the latter solution behaves well for small t and
erfc�z�=1− 2


�
�0

zexp	−t2
dt. In fact Te→
Ta

T1−T2
+erfc� z

2
t
� for

t→0. The other physical quantities in the basic state are
given by,

ue = 0; Ta = T1, �10a�

pe = d�0g� 	1 − ��Te�T1 − T2� − Ta�
dz , �10b�

me =
1 + 	

K�T1 − T2�
	0h0k̂ + � Ta

T1 − T2
− Te�k̂ , �10c�

he =
1 + 	

K�T1 − T2�
h0k̂ − � Ta

T1 − T2
− Te�k̂ , �10d�

where 0�z�d and the subscript e denotes the equilibrium
state. Note that the transient decay of the basic temperature
field induces the same transient character in the ferrofluid
magnetic field and the ferrofluid magnetization across the
ferrofluid layer. We discuss the stability of the basic transient
state defined by the Eqs. �8� and �10d� via investigating for
the minimum critical time parameter t= tc below which the
transient state prevails and above which the transient state
decays.
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Stability equations

To discuss stability of the basic state given by Eqs. �8�
and �10d�, we superimpose arbitrary perturbations on it in
the form,

u = �u,v,w�; p = pe + P,T = Te + 
; h = he + �� ,

�11�

where each of the perturbations, u, v, w, P, 
, and � are
sufficiently smooth functions of the coordinates x, y, z, and t.
In order that the system in Eq. �11� satisfies the governing
equations identically, the perturbations satisfy the following
nonlinear system of partial differential equations:

�u

�t
+ u · �u = − �pef f + Pr�2u + Pr Ra
k̂

+ Pr MDT�D� − 
�k̂ + Pr M���
 + DTek̂� ,

�12�

where the expression �= �h�− �he�−D� contains second and
higher order nonlinear terms in �h�, the other equations sat-
isfied by the disturbances are given by,

�


�t
+ u · �
 = − DTew + �2
 , �13�

A�2� + �1 − A�D2� − D
 = 0, �14�

� · u = 0, �15�

where D� �
�z , 0�z�1, t�0, and z being the vertical coor-

dinate, and pef f denotes the dimensionless form of the effec-
tive fluid pressure due to hydrodynamic and thermomagnetic
interactions. The dimensionless quantities which appear in
Eqs. �12�–�15� are defined by,

Pr ª
�

kT
; Ra ª

�T1 − T2��d3g

kT�
,

M ª

�0K2�T1 − T2�2d2

�kT�1 + 	�
; A ª

1 + 	0

1 + 	
.

The dimensionless parameters Pr, Ra, and M are the Prandtl
number, the Rayleigh number, and the thermomagnetic pa-
rameter, for the ferrofluid, respectively. The dimensionless
parameter A�1 measures an extent of departure of the mag-
netic equation of state from its linearity. The stability of the
basic state is controlled by the parameters Ra and M, each of
which is a measure of the temperature difference across the
ferrofluid layer. As Ra� �T1−T2� and M � �T1−T2�2, it fol-
lows that Ra can take either positive or negative real values
but M is always nonnegative.

The boundary conditions for the velocity field, the tem-
perature field, and the magnetic field are given by,

Rigid-boundaries: u = 0; Dw = 0; 
 = 0;

�� = 0 for z = 0,1, �16a�

Free-boundaries: u = 0; D2w = 0; 
 = 0;

�� = 0 for z = 0,1. �16b�

III. ENERGY STABILITY

Multiplying Eq. �12� by ū �where bar in ū denotes the

complex conjugate of u� and the Eqs. �13� and �14� by 
̄ and
�̄, respectively, integrating the resulting equations over the
system volume � with the utilization of the boundary con-
ditions, divergence-free condition for u �Eq. �15�� and the
divergence theorem, we obtain the following time dependent
system of equations:

�
�

1

2 Pr

d

dt
�u�2d� = − �

�

��u�2d� + Ra�
�


w̄d�

+ M�
�

DTe�D� − 
�w̄d�

+ M�
�

���
 · ū + DTew̄�d� , �17�

�
�

d

dt
�
�2d� = − �

�

��
�2d� − �
�

DTew
̄d� , �18�

A�
�

����2d� + �1 − A��
�

�D��2d� = − �
�

�̄D
d� .

�19�

To discuss nonlinear stability of the system, we need to in-
vestigate the time evolution of an appropriate nonnegative
energy functional E which is defined as follows:

E =
1

2 Pr
�u�2 + �1

1

2
�
�2 + �2

1

2
�A����2 + �1 − A��D��2� ,

�20�

where �1�0, �2�0 are optimally chosen coupling param-
eters such that

�1 + �2 � 0 for all t � 0,

� · � denotes the L2-norm over the Hilbert space of square
Lebesgue integrable functions over the domain ��R2

� �0,1�, with the inner product �f ,g�ª��f ḡd�.
Note that the parameter A appearing in the Eq. �19� satis-

fies A�1 and that �D��� ����, using these and the Cauchy-
Schwarz inequality in the Eq. �19� we obtain

����2 � A����2 + �1 − A��D��2 = ��
,D��� � �
��D��

from which it follows that

���� � �
� . �21�

The Eq. �21� along with the condition �1+�2�0 justifies the
non-negativity of the energy functional i.e., E�0.

Considering the Eqs. �17�–�19� the time rate of change of
the energy functional E is given by:
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dE

dt
= − 	��u�2 + �1��
�2 + �2�A�2� + �1 − A�D2��2


+ Ra�
,w� + M�DTe�D� − 
�,w� − �1�DTew,
�

− �2�DTew,D�� + �2
�1 − A�

A
�D
,D2��

− �2�u · �
,D�� + M�� � 
,u� + M��DTe,w� .

�22�

Making transformations 
→
 /
Ra�1, �→� /
Ra�2, the
corresponding evolution of the transformed energy func-
tional E→ 1

2Pr�u�2+ 1
2 �
�2+ 1

2 �A����2+ �1−A��D��2� be-
comes

dE

dt
ª �E = − D + RI + N , �23�

where

R = 
Ra, �24�

D = ��u�2 + ��
�2 + �A�2� + �1 − A�D2��2, �25�

I =
1


�1

�
,w� +
M

Ra�DTe� D�


�2

−
1


�1


�,w�
− �DTew,
�1
 + 
�2D��

+
�2


Ra
�1

�1 − A�
A �D
,

1

�2

D2�� , �26�

N = −
�2


�1
�u · �
,

D�


�2
� +

M

Ra
�1
� �


�2

� 
,u�
+

M

Ra

� �


�2

DTe,w� , �27�

where we have made use of the easily derivable identity

1

2

d

dt
�A����2 + �1 − A��D��2�

= − �2�DTew,
D�


�2
� −

�2

A�1
�D
�2

+
�2


�1

�1 − A�
A �D
,

1

�2

D2�� , �28�

such that now

A�2� + �1 − A�D2� =

�2


�1

D
 .

The scalar �= 1
E

dE
dt determines the strong nonlinear stability

boundary which corresponds to

� = 0. �29�

The critical Rayleigh number at the strong energy stability
limit is determined by solving the maximum problem ob-
tained from Eq. �23� as the following

1

Rs
= max

H
� I
D� , �30�

where H is the underlying space of solutions. We define the
basic-temporal growth rate �0 of the energy functional by

�0 =
1

E0

dE0

dt
, E0 = �Te −

Ta

T1 − T2
�2

. �31�

The closed form expression for �0 is given by: �0= 1
2t for t

�0.01 and for t�0.01,

�0 =

24�
n=1




exp	− n2�2t
�1 − exp	− n2�2t
�

1 − 3�
n=1




exp	− n2�2t

�2 − exp	− n2�2t
�

n2�2

. �32�

The relaxed energy identity for the stability becomes �0E
=RI−D+N which leads to the relative stability limit ob-
tained by solving the following maximum problem given by,

1

Rr
= max

H
� I

D + �0E
� . �33�

Note that the strong-stability criterion corresponds to the
relative stability criterion for �0=0.

By decomposing the solution into the standard normal
modes �w ,
 ,D��= �w�z , t� ,
�z , t� ,D��f�x ,y�, ��2−D2�f =
−k2f , k�R, k being the root mean square value of the hori-
zontal wave number, the maximum problem given by Eq.
�33� after performing the calculus of variation, reduces to an
equivalent system of Euler-Lagrange equations given by:

�D2 − k2�2w =
�0

2 Pr
�D2 − k2�w +

Rk2

2

�� 1

�1

− �
�1 +
M

R2
�1
�DTe�


+
Rk2

2 � M

R2
�2

− 
�2�DTeD� , �34�

�D2 − k2�
 = −
R

2� 1

�1

− �
�1 +
M

R2
�1
�DTe�w +

�0

2

 ,

�35�

�D2 − k2��D2 − Ak2�� = −
R

2 � M

R2
�2

− 
�2�
� �D2Tew + DTeDw� + �0


�2

2
�1

D
 ,

�36�

along with the equation

�D2 − Ak2�� =

�2


�1

D
 , �37�

and the critical stability limit is now given by the relation
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Rr = sup
�1,�2

inf
k

R . �38�

Observe that if we apply the operator D to the equation Eq.
�35� and using the Eq. �37� in it, we obtain the differential
equation similar to the one defined by the Eq. �36� which
differ only in the coefficients independent of z. This is pos-
sible for arbitrary w if and only if the parameter �2 corre-
sponds only to the extremum values of DTe. Consequently,
we obtain �2 in terms of �1 as the following expression,

�2 =
MDTe�z0�

− MDTe�z0� + R2�1, D2Te�z0� = 0 for z0 � �0,1� .

�39�

Note that �2�0 but �1+�2= �1+
MDTe

−MDTe+R2 ��1= � R2

−MDTe+R2 ��1

�0 since −DTe�0 for all t �see also the Fig. 1 which dem-
onstrates −DTe�0�.

IV. NUMERICAL RESULTS AND DISCUSSION

We write the Eqs. �34� and �35� in the following equiva-
lent matrix differential equation

DY�z,t� = B�z,t�Y�z,t� , �40�

along with the boundary conditions

Rigid-boundaries: y1�z,t� = y2�z,t� = y5�z,t� = y8�z,t�

= 0 for z = 0,1, �41a�

Free-boundaries: y1�z,t� = y3�z,t� = y5�z,t� = y8�z,t�

= 0 for z = 0,1, �41b�

where

Y�z,t� = �y1�z,t�y2�z,t� . . . y8�z,t���,

w = y1; 
 = y5; � = y7,

Dw = y2; �D2 − k2�w = y3; D�D2 − k2�w = y4,

D
 = y6; D� = y8,

and B�z , t� is the underlying 8�8 coefficient matrix for the
system of Eqs. �34�–�39�.

A. Numerical integration

Several popular numerical schemes are available in the
literature, however it appears that the stability problems are
conveniently handled by the usual linear shooting method
�15,16� or a more efficient compound matrix method
�3,17–19�. If the usual linear shooting method is used, the
function Y�z , t� is computed as a linear combination of the
four linearly independent solutions Y1�z , t� , Y2�z , t� ,
Y3�z , t� , Y4�z , t� of the system of Eqs. �40� and �41� ob-
tained with the following appropriate initial conditions,

Rigid-boundaries Free-boundaries

Y1�0,t�= �0,0,1,0,0,0,0,0�� �0,1,0,0,0,0,0,0��
Y2�0,t�= �0,0,0,1,0,0,0,0�� �0,0,0,1,0,0,0,0��
Y3�0,t�= �0,0,0,0,0,1,0,0�� �0,0,0,0,0,1,0,0��
Y4�0,t�= �0,0,0,0,0,0,1,0�� �0,0,0,0,0,0,1,0��

.

�42�

The fact that resulting solution Y�z , t� should satisfy the re-
maining four boundary conditions at z=1, leads to a secular
equation of the form,

det����z=1 = 0, �43�

where we calculate for a fixed t

�i,j = �Y1,Y2,Y3,Y4���i�,j for i, j = 1,2,3,4,

for

Rigid boundaries: ���1�,��2�,��3�,��4�� = �1,2,5,8� .

TABLE I. Variation of the critical Rayleigh number, the wave number, and the time parameter for M
=0, Pr=10, corresponding to the strong stability ��0=0.�

lim
t→


krc lim
t→


Rrc
2

Boundaries tc krc Rrc
2

Rigid-Rigid 0.139 3.12 1699.32 3.12 1707.76

Free-Rigid 0.083 2.69 1009.95 2.68 1100.65

Free-Free 0.137 2.23 654.550 2.22 657.551

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

z

−
D

T
e

t = 0.04

t = 0.06

t = 0.1

t = 0.01

t = 0.02

FIG. 1. Variation of the derivative-DTe with z for different val-
ues of t.
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Free boundaries: ���1�,��2�,��3�,��4�� = �1,3,5,8� .

If the compound matrix method is used, we define in the
lexicographic order i1= �1,2 ,3 ,4� , i2= �1,2 ,3 ,5� , . . . , i69
= �4,6 ,7 ,8� , i70= �5,6 ,7 ,8�, and the corresponding 4�4
minors xim

�m=1,2 , . . .70� of the 8�4 matrix

�Y1 ,Y2 ,Y3 ,Y4� such that the vector Z= �x1 ,x2 , . . . ,x70�� sat-
isfies the differential equation given by,

DZ�z,t� = F�z,t�Z�z,t� , �44�

where F�z , t� is a 70�70 matrix whose entries are related to
the entries of the matrix B. Elements of the matrix F are
given by

Fm,n = �
0 if im and in have at most two indices in common

�− 1��p+q�Bim�p�,in�q� if im and in differ in exactly one index

�
p=1

4

Bim�p�,in�p� if m = n . � �45�

Here im�p� and in�q� stand for pth and qth indices in im and
in, respectively.

It follows from the Eq. �42� that the initial conditions for
Z at z=0 are

Z�z=0 = �e59, for rigid boundaries

e49, for free boundaries
� , �46�

where e59 stands for the 70�1 column vector whose 59th
entry is 1 and rest all the entries are 0. The corresponding
eigenvalue relation in the Eq. �43� becomes

x12�z=1 = 0 for rigid boundaries

x22�z=1 = 0 for free boundaries. �47�

The Eq. �44� with the initial condition Eq. �46� has been
integrated in the interval 0�z�1 using the Runge-Kutta
Fehlberg method, to obtain Z and hence x12 and x22 at z=1
approximately satisfying x12�10−3 and x22�10−3.

We have solved the system of Eqs. �34�–�39� numerically,
using the shooting method as well as the compound matrix
method. The calculations involving a high Rayleigh number
�R2 of the order of 104� are performed using the compound
matrix method while rest of the numerical calculations have
been done using the shooting method.

B. Results for the steady convection

As a check for the correctness of the numerical code, we
have computed numerically, the nonlinear critical Rayleigh
number for the onset of the standard Rayleigh-Bénard con-
vection in the magnetized ferrofluid layer between two hori-
zontal rigid planes. For this we solve the set of ODE’s given
by Eqs. �34�–�39� using the compound matrix method. The
following typical values of the critical Rayleigh number and
critical thermomagnetic parameter for the nonlinear stability
boundary ��0=0� have been obtained:

Rsc
2 �M = 0� = 1707.76, ksc = 3.12,

Msc�Rr = 0� = 3049.29, ksc = 3.98, A = 1,

which match with the corresponding exact values of the criti-
cal Rayleigh numbers obtained for the underlying linearized
problem �see Singh and Bajaj �20��. This clearly shows that
for the steady ferrofluid convection problem, the critical non-
linear stability boundary coincides with the critical linear
instability boundary. This rules out any possibility of sub-
critical instabilities in the magnetized ferrofluid layer.

C. Global stability results

For numerical purpose we have set appropriately n
=1000 in Eqs. �8� and �9�. When t→
, �0→0 and we have,

Rsc = lim
t→


Rrc. �48�

For M =0, we recover the global stability results for the case
of ordinary fluids with consideration of different boundary
conditions as shown in the Table I.

These results match with those obtained by Kim et al. �7�
for ordinary fluids. The global stability boundary of the basic
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FIG. 2. Comparison of the global stability results for the ferrof-
luid convection �Rigid-boundaries� with the existing instability re-
sults of the Strong Stability/Linear theory for Pr=10.
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transient state for the ferrofluid layer with respect to the ther-
momagnetic parameter, is shown in the Fig. 2 �see Table II
for more values� for the fixed parametric values Pr=10, and
�0=0.

The first plot in the figure gives a comparison of the criti-
cal global stability boundary with the steady strong stability
boundary. The variation of the critical time tc, as defined
above with the thermomagnetic parameter, is dramatic. Ini-
tially, tc decreases monotonically with the thermomagnetic
parameter M and attains a minimum for the following val-
ues:

tc = 0.11663, krc = 3.51, Rrc
2 = 1107.009,

M = 1107.009.

It is interesting to note that the global minimum of tc over M
occurs for M =Rrc

2 . For Rrc
2 �M, the critical time tc increases

monotonically with M, and this increase becomes sharp for
M �2000 approximately. For the gravity-free limit, the fol-
lowing global result has been obtained for critical value of
the thermomagnetic parameter M,

Rr = 0, tc = 0.1583; krc = 4.05, Mrc�global� = 3036.73.

For large times the corresponding values in the gravity free
limit case are found to be,

lim
t→


�krc,Mrc� = �3.98,3049.29� ,

which match exactly with the corresponding values obtained
by Finlayson �13� and Singh and Bajaj �20� using the linear
instability theory. The corresponding results for the problem
with free-rigid and free-free boundaries are given in the
Table III. The critical parameter tc for the global minimum

incase of free-free boundaries was not observed to occur.
From Table III, it is worthwhile to note that under the gravity
free limit, the global minimum for free-rigid case is signifi-
cantly lower than the one corresponding to linear instability
boundary. This indicates that the transient effects are more
pronounced for the case of free-rigid boundaries.

A variation of the critical onset time with the Rayleigh
number for the transient convection in the ferrofluid layer is
shown in the Fig. 3�a� for two typical values of the thermo-
magnetic parameter M =0 and 103. The solid lines in the
figure correspond to the relative stability limit while the dot-
ted lines are drawn for the strong stability limit. It is clear
from the figure that the relative stability criterion predicts a
wider stability boundary than the one predicted by the strong
stability criterion for 0� t�0.3 approximately. Both the sta-
bility boundaries are significantly contracted with the appli-
cation of magnetic field which clearly demonstrate the desta-
bilizing action of the applied magnetic field on the base flow.
A similar variation of tc with the thermomagnetic parameter
M is observed for the case of gravity free limit �Fig. 3�b��.

Unlike the conventional energy stability theory, the rela-
tive stability boundary depends upon the Prandtl number, the
dependence being heavier for Pr�1 and comparatively
slighter but significant for Pr�10. For a typical ferrofluid,
the Prandtl number is always larger than unity so the Prandtl
number effects cannot be better demonstrated graphically.
These effects are shown in the Table IV for three different
values of t and for the case of rigid boundaries.

It is evident from a correlation of the data in the Table IV
that the relative stability boundary shifts toward the strong
stability boundary as the Prandtl number is incremented from
10 to 100. The difference in the critical Rayleigh numbers as
predicted by the two theories, is more than 100% for tc

TABLE II. Variation of the critical Rayleigh number �Rigid-boundaries�, the wave number, and the time
parameter, with the thermomagnetic parameter M for Pr=10, corresponding to the strong stability ��0=0.�

M tc krc Rrc
2 �tc� �Global� kc Rrc

2 �t→
� �Strong stability�

0 0.139 3.12 1699.3 3.12 1707.7

100 0.134 3.16 1647.9 3.15 1658.1

500 0.123 3.30 1437.2 3.27 1454.4

1000 0.117 3.47 1165.9 3.43 1189.2

1500 0.118 3.64 888.87 3.58 913.20

2000 0.125 3.80 606.76 3.71 627.32

2500 0.139 3.92 318.32 3.84 332.68

3000 0.156 4.04 22.089 3.97 30.213

TABLE III. Variation of the critical thermomagnetic number, the wave number, and the time parameter
for Rr=0 and Pr=10, corresponding to the strong stability ��0=0.�

lim
t→


krc lim
t→


Mrc

Boundaries tc krc Mrc

Free-Rigid 0.105 3.76 2025.002 3.57 2221.68

Free-Free 3.14 1558.54
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=0.01 and the difference is significant for all the three con-
sidered values of tc in presence as well as absence of mag-
netic field. The tendency of applied magnetic field to ad-
vance the onset of instability is also clear from the tabulated
values. Also it may be inferred from the Table IV that for
very small tc the magnetic effects cease for the onset of tran-
sient convection. In obtaining these numerical values we
have observed �not shown in the Table IV� numerically that
for the onset of transient convection in the ferrofluid layer,
the wave number of disturbance is not much affected under a
change of Prandtl number for all t.

V. CONCLUDING REMARKS

The onset of instability in the transient Rayleigh-Bénard
convection in a horizontal ferrofluid layer subjected to a ver-
tical magnetic field, is analyzed using the energy method. A
stability criterion is derived which approaches the conven-
tional energy stability criterion for large times. The global
stability results are obtained for the underlying problem with
the different boundary conditions along with incorporating
the effect of the Prandtl number on the critical onset of in-
stability. The relative stability theory reduces to the strong

stability theory for the long time behavior i.e., when t→
.
This way one is able to recover the results of the conven-
tional energy method. However, for the time zone in the
neighborhood of t=0, the present theory predicts a more cor-
rect description of the stability boundary in a sense that now
the stability limit depends upon the Prandtl number which is
in accordance with the expectation of the underlying physics
of the fluid to account for the inertial effects.

It is interesting to note that with the present formulation,
the steady nonlinear energy stability boundary is found to
coincide with the corresponding linear instability boundary
for the magnetized ferrofluid layer. Consequently, no possi-
bility for any subcritical instabilities can arise.

The Prandtl number effects are prominent for small time
scales. For the time of the order of 10−2−100, the critical
nonlinear stability boundary widens if compared with the
conventional strong energy stability boundary. The wave
number of disturbance for the onset of instability remains
invariant with respect to the Prandtl number for all the times.

The stress-free and the rigid-free boundaries are found to
be insensitive toward the time dependent stability conditions.
The present global nonlinear stability results for the onset of
convection in a ferrofluid layer, impulsively heated from be-
low, will favor the related theoretical and experimental stud-
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FIG. 3. The relative stability vs Strong stability for the critical onset time tc with respect to �a� R2 for M =0, 103 and �b� M for R=0. The
fixed parametric values are Pr=10 and A=1.

TABLE IV. Variation of the critical time parameter �Rigid-boundaries�, with the Prandtl number.

Pr M tc Rr
2 Rs

2 M Rr
2 Rs

2

1 0 0.04 3146.45 2031.10 103 2530.54 1483.82

0.02 5041.98 2273.98 4420.13 2250.75

0.01 23651.7 6831.06 23651.7 6831.06

10 0 0.04 2732.08 2031.10 103 2129.51 1483.82

0.02 3554.76 2273.98 4146.67 2250.75

0.01 15573.5 6831.06 15573.5 6831.06

20 0 0.04 2708.85 2031.10 103 2107.12 1483.82

0.02 4095.83 2273.98 3505.80 2250.75

0.01 15118.8 6831.06 15118.8 6831.06

102 0 0.04 2690.27 2031.10 103 2089.20 1483.82

0.02 4055.09 2273.98 3466.55 2250.75

0.01 14754.4 6831.06 14754.4 6831.06
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ies in future regarding this important stability problem. Fur-
ther, it would be interesting to obtain the stability equations
for analyzing other time dependent basic states such as the
one with temperature modulation or gravity modulation
where the basic state now oscillates harmonically with re-
spect to time with finite amplitude. The work in this direction
is in progress.
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