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We present a numerical study of the statistical behavior of a two-phase flow in a two-dimensional porous
medium subjected to an oscillatory acceleration transverse to the overall direction of flow. A viscous nonwet-
ting fluid is injected into a porous medium filled with a more viscous wetting fluid. During the whole process
sinusoidal oscillations of constant amplitude and frequency accelerates the porous medium sideways, perpen-
dicular to the overall direction of flow. The invasion process displays a transient behavior where the saturation
of the defending fluid decreases, before it enters a state of irreducible wetting fluid saturation, where there is
no net transport of defending fluid toward the outlet of the system. In this state the distribution of sizes of the
remaining clusters are observed to obey a power law with an exponential cutoff. The cutoff cluster size is found
to be determined by the flow and oscillatory stimulation parameters. This cutoff size is also shown to be
directly related to the extracted amount of defending fluid. Specifically, the results show that the oscillatory
acceleration of the system leads to potentially a large increase in extracted wetting fluid.
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I. INTRODUCTION

In the petroleum industry the search for ways to recover a
larger volume fraction of the oil trapped in the reservoir rock
is of great interest. In a reservoir where production is found
uneconomical, residual oil patches may typically amount to a
volume fraction of about 30%–40% or more. The last 60
years it has been reported on several occasions that oil fields
experiencing earthquakes have observed a rise in the oil pro-
duction both during and after such seismic activity �1�. This
has provided a scientific interest in seismic stimulation of
reservoirs as a possible method for enhanced oil recovery. A
number of analytic as well as numerical descriptions of how
a single oil droplet, stuck in a pore cavity may be mobilized
by vibrations of the pore walls, have been produced over the
last decade �2–7�. In these studies, vibrational frequencies
both higher and lower than the characteristic Biot frequency
�8–10� of the examined systems were investigated. In the
high-frequency regime inertia effects dominate the dynam-
ics, and effects such as resonance of the fluid-fluid interfaces
of the stuck droplet were observed to occur �7�. In the low-
frequency regime, on the other hand, viscous forces balance
the applied forces and give an overdamped flow regime.

On a larger scale, Pride et al. numerically studied the
influence of seismic stimulation on a set of oil droplets stuck
in 10�10 pores flow cells and compared the results to an
analytical set of criteria for successful mobilization of stuck
droplets �11�. Some laboratory experiments with vibrational
stimulation have also been produced �12–16�. Mainly these
studies show how vibrations of a porous medium affect the
saturation levels and production rates of the fluids therein.
Among these, both experiments where the porous medium
containing trapped residual fluid ganglia underwent stimula-
tion �12–14� and experiments where the vibrational stimula-
tion was applied during the whole invasion process �15,16�
were conducted.

In the following we present a numerical study of the ef-
fect of applying an oscillatory force to a two-dimensional
drainage process in a rigid porous flow cell. We have here
kept the investigation to the overdamped flow regime, by
keeping the frequency of the oscillatory stimulation lower
than the characteristic Biot frequency of the system. In the
simulations we used a two-dimensional �2D� lattice Boltz-
mann �LB� method �17–20�. By specifically investigating a
two-dimensional system we have been able to simulate a
larger system than computationally possible in a three-
dimensional case. Contrary to previous LB studies, the rela-
tively large system size allows us to study the statistical be-
havior of the pattern formation of the defending fluid rather
than just local effects.

Displacement pattern formations in immiscible multi-
phase flow processes have been the focus of a vast number of
studies, see �21–27� for references. Lately some studies have
been done on the description of patterns and flow properties
in steady-state two-phase flow �28–32�. But to a large extent,
the experimental and theoretical work done on complex fluid
patterns in porous media concern invasion processes deter-
mined by the dynamics of the invasion front alone. In drain-
age processes, it has been shown the existence of typically
three such displacement structures �33�; capillary fingering
�27,34� modeled by invasion percolation �IP� �35–37�, fractal
viscous fingering �25,38–42� modeled by diffusion limited
aggregation �DLA� �38,40�, and stable front displacement
�43,44� modeled by anti-DLA �38�. The structures, however,
in the transitional regimes between these three displacement
regimes are not necessarily solely controlled by the behavior
of the front. The final pattern formation may here also be
strongly dependent on the cluster dynamics behind the front
�45–47�.

The invasion processes we have studied, are mainly in a
regime where cluster dynamics behind the front is present.
We have here therefore focused our investigation to the final
irreducible displacement patterns, produced by the oscilla-
tory stimulation of the system. These patterns consist of the*olav.aursjo@fys.uio.no
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defending fluid clusters/droplets left in the porous medium
when there is no net transport of this fluid toward the outlet
of the system. During the examination of the system, a large
variety of the parameter combinations that control the fluid
flow was probed. However, the principal purpose of the in-
vestigation was to explore the effects of the amplitude and
the frequency of the oscillatory body force in such a system.
In the state of irreducible wetting fluid saturation, the cluster
size distribution of the remaining clusters are found to obey
a power law with an exponential cutoff. The cutoff cluster
size is directly determined by the flow and oscillatory stimu-
lation parameters. A resulting collapse of the cluster size dis-
tributions for the parameter configurations probed reveals a
scaling relation spanning over almost 4 orders of magnitude
in cluster size. It is also found that the end saturation of the
defending fluid is a function of the cutoff cluster size.

To impose a constant fluid flux in our otherwise well es-
tablished LB method, a control loop feedback algorithm was
developed. This algorithm is presented in Sec. III. The rest of
the present article is organized as follows. First the numerical
method is introduced in Sec. II. A description of our specific
system is then given in Sec. III. This is followed by the
numerical results in Sec. IV. This section is divided into a
qualitative description of the transient invasion process and a
statistical analysis of the final displacement patterns pro-
duced. A theoretical argument for having the cutoff cluster
size observed is given in Sec. V. Section VI contains the
concluding remarks.

II. NUMERICAL METHOD

The model we use in the LB simulations is a D2Q6 two-
component lattice Bhatnagar-Gross-Krook �LBGK� algo-
rithm, where we introduce surface tension in accordance
with the method of Gunstensen et al. �18�. In this method
particle density, particle flux density and concentrations are
conserved on each lattice site. The component distributions
Ni

R�x , t� and Ni
B�x , t� give the particle number and number

flux densities of the two fluids �red and blue�, i.e.,

�R,B�x,t� = �
i

Ni
R,B�x,t� , �1�

�R,B�x,t�uR,B�x,t� = �
i

Ni
R,B�x,t�ci. �2�

Here uR�x , t� and uB�x , t� are the velocities of the red and the
blue component, respectively, in the position x at the time t.
The set of vectors �ci ; i=1, . . . ,6� is the displacement vectors
to the six nearest-neighboring sites. The distance between
lattice sites, �ci�, is equal unity on an hexagonal lattice. The
time step and lattice unit are set to unity. The two distribution
functions contribute to a total population distribution
Ni�x , t�=Ni

R�x , t�+Ni
B�x , t� and a total density �N�x , t�

=�R�x , t�+�B�x , t� that are used in the interaction equation

Ni��x,t� = Ni�x,t� + ��x,t��Ni�x,t� − Ni
eq��N,u��

+
1

3
F�x,t� · ci + �i�x,t� . �3�

Here, −��x , t� is the inverse of the effective relaxation time
and is given by

��x,t� =
�R�R�x,t� + �B�B�x,t�

�R�x,t� + �B�x,t�
,

where the inverse relaxation times of the individual compo-
nents, −�R and −�B, are related to the kinematic viscosities
of the respective fluids by

�R,B = −
1

4
	1

2
+

1

�R,B

 . �4�

The F�x , t� represents all external body forces in the system
of interest.

We have chosen the equilibrium distribution in Eq. �3� to
be

Ni
eq��N,u� =

�N

6
�1 + 2u · ci + 4�u · ci�2 − 2�u�2� , �5�

where u= ��RuR+�BuB� /�N is the velocity, in the position x
at the time t, of the two components combined. With this
choice the incompressible Navier-Stokes equations,

� · u = 0, �6�

�u

�t
+ �u · ��u = −

1

�N
� p + ��2u +

1

�N
F , �7�

are recovered in the long-wavelength, low-Mach-number
limit. The term �i�x , t� in Eq. �3� is a particle density and
particle flux density conserving perturbation term that creates
a macroscopic interface tension between the two fluids. This
term is given as

�i�x,t� = A�f�x,t��� �ci · f�2

f · f
−

1

2
� , �8�

where A is a parameter directly related to the interface ten-
sion, �=−9A�0 /� �20�. Here, �0 is the initial particle number
density of the system. The vector f is the local fluid compo-
nent gradient

f�x,t� = �
i

��R�x + ci,t� − �B�x + ci,t��ci. �9�

The component distributions Ni�
R�x , t� and Ni�

B�x , t� are
found by maximizing �i�Ni�

R�x , t�−Ni�
B�x , t��ci · f in such a

fashion that we have local conservation of the individual
particle densities of the two components, as well as local
conservation of the total population distributed in each direc-
tion. The component distributions for the next time step are

Ni
R,B�x + ci,t + 1� = Ni�

R,B�x,t� , �10�

where the time t is measured in number of time steps. Com-
bined with Eq. �3� this equation is just a discretized approxi-
mation to the Boltzmann transport equation. This method
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produces sharp interfaces between the two components.
Solid wall boundaries are implemented by a simple

bounce-back rule, Ni��x , t�=Ni+3�x , t�, that replaces the ordi-
nary interaction equation at the wall sites �20�. The wetting
properties of the walls are modeled by modifying f at sites
neighboring the wall sites �48�. At these sites the neighboring
density difference, �R�x+ci , t�−�B�x+ci , t�, is replaced by
	�wall=�0 cos 
w, if position x+ci is a wall site. This expres-
sion introduces a static contact angle 
w. A contact angle

w=0° gives a surface perfectly wet by the red fluid, while

w=180° makes the blue fluid perfectly wetting.

Injection of blue fluid into a system filled with a red fluid
is simulated by letting the boundaries perpendicular to the
flow be periodic to the total population distribution Ni, but
also impose a recoloring so that all incoming populations on
the injection side be blue while all incoming populations on
the opposite boundary be red. To avoid creation of interface
tension at the recoloration boundaries, the local fluid compo-
nent gradient f of Eq. �9� is at these sites set to zero.

In our LB algorithm we have in the separate phases par-
ticle densities �R,B that are the same for the two components.
If we let our frame of reference be defined by the porous
medium, an inertial mass density difference between the flu-
ids may, in a regime of low Reynolds numbers, be introduced
through a body force that differentiate between the two fluid
components. The chosen inertial density difference deter-
mines then the forcing level on each phase. This will give
any desired buoyancy effects. Note that our frame of refer-
ence is then an accelerated one.

III. SYSTEM

The process we have studied is an invasion process with
incompressible fluids, where a less viscous, nonwetting fluid
invades a porous medium occupied by a more viscous, wet-
ting fluid. However, while draining, the system is subjected
to a time dependent oscillatory acceleration.

At all times there is a background force that drives the
fluid through the model. We define our coordinate system
such that this background flow is along the x axis, while the
y axis is perpendicular to that flow, see Fig. 1. The inlet is
then defined to be at x=0 and the outlet at x=L, where L is
the length of the system. Properties of the porous medium
and the fluids are given in lattice units in Table I.

The invasion process may in the simulations be driven in
two alternative ways, either by a global body force, constant
in time, throughout the system, or a constant particle flux
boundary condition. In LB simulations it is convenient to let
a flow be driven by a body force. The constant flux is there-
fore maintained by a body force Fx�t� acting globally on the
whole system. This also minimizes the compressibility ef-
fects inherent in our LB algorithm. The flux controlling body
force varies with time as

�Fx�t�
�t

= KP�J0 − Jx�t�� − KD
�Jx�t�

�t
. �11�

Here, J0 is the desired particle flux density and Jx�t� is the
mean particle flux density measured in the system at a time t.
KP and KD are positive tuning parameters that determine the

response of the body force. This is basically a control loop
feedback mechanism that tries to correct the error between
the measured Jx�t� and the desired J0. The second term in the
expression is proportional to the rate of change in the mea-
sured particle flux density and is introduced to keep the fluc-
tuations in Jx�t� to a minimum. Without this derivative term
the measured flux density will typically exhibit large oscilla-
tions around J0 and never stabilize.

In our simulations KP=1.0 and KD=0.5 gave the most
stable flux. When we used this flux controlling body force,
the maximal deviation from the desired flux density was ob-
served to be less than 1.5%. Figure 2 shows the time evolu-
tion of the flux density Jx�t� in two particular simulations.
The black line shows the variations in Jx�t� when the flux
controlling force is the only external forcing to the system,
while the light gray line indicates the behavior when the
system in addition is subjected to another external force. This
additional force is equal to the strongest external stimulation
of the system simulated in this study. This shows that when
the control loop feedback mechanism has to take into ac-
count other strong external forces, the measured flux deviates
more from the desired value.

FIG. 1. �Color online� Schematic representation of the flow sys-
tem. A blue �light gray� nonwetting fluid invades a red �dark gray�
wetting fluid through a black porous medium. The invasion is here
driven from left to right by a globally constant body force and is not
under the influence of any oscillatory acceleration.

TABLE I. Geometrical parameters and fluid properties in the
lattice Boltzmann system. All quantities are given in lattice units
and unit time.

Description Symbol Value

Model length L 800

Model width W 400

Obstacle diameter b 8

Porosity � 0.67

One-phase permeability � 1.0

Contact angle 
w 10°

Wetting fluid �red� viscosity �w 0.1

Nonwetting fluid �blue� viscosity �nw 0.02

Initial particle number density �0 3.0

Surface tension � 0.05–0.3
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A global body force Fx�t�, as we have, gives a flow
equivalent to an experimental setup where the flow is driven
by a constant external pressure gradient �xpexp=−Fx�t� across
the system. The only differences are in the pressure measure-
ments. At an arbitrary position �x ,y� in the system, the rela-
tion between the pressure pLB in the simulations and the
experimentally achieved pressure pexp is therefore given as

pexp�x,y,t� = pLB�x,y,t� + Fx�t��L − x� . �12�

When we refer to pressure in this paper we refer to the pres-
sure pLB measured in the simulations.

The porous medium itself is made up of circular disks,
with a diameter b=8 lattice units. These are distributed over
the system such that none of the disks overlap or touch. The
spacing between the disks constitutes the approximately 60
�30 pores in the system. Although this means the number of
lattice sites in a single pore throat is small, it is enough to
reproduce fluid behavior within each pore throat �49�. To
minimize boundary effects at the sides parallel to the back-
ground flow, the system is periodic in the direction perpen-
dicular to this flow.

While draining the pore space the porous medium is sub-
jected to an oscillatory acceleration with a sinusoidal time
dependence. In our system, where we have chosen the po-
rous medium as the frame of reference, this is, in accordance
with the equivalence principle, observed as an oppositely
directed body force proportional to the external acceleration
and the inertial mass density of the fluid. This body force
may be expressed as

Fa�x,t� = ��x,t�a sin�2
t/T� , �13�

where ��x , t� is the mass density of the fluid, a= �a� is the
absolute value of the acceleration amplitude and T is the
oscillation period. Consequently, the vector a points here in
the opposite direction of the external acceleration of the po-
rous medium. Numerically, the mass density of the defending

wetting fluid is always kept equal to �R�x , t� defined in Sec.
II, while the mass density of the invading nonwetting fluid is
given by ��nw /�w��B�x , t�. Here �nw /�w is the mass density
ratio between the fluids we want to simulate.

Since our fluids are accelerated relative to the surrounding
porous medium, by a body force proportional to the mass
densities of the fluids, the effects of the acceleration may be
divided into two separate effects. First, we may get a mean
flow relative to the porous medium and, additionally, we may
get a relative flow between the two fluid phases caused by
different mass densities, i.e., a buoyancy effect. Constant flux
boundary conditions �including solid walls� in the direction
of the oscillations, would only allow us to study the buoy-
ancy effects alone. The acceleration of the system would in
this case not contribute to the mean flow, since this would by
definition already be fixed. We have here instead chosen to
study the combined effect. This also minimizes potential
compressibility effects in our LB system. In order to study
the combined effect of the acceleration in both the constant
flux driven simulations and the simulations with a global
body force, constant in space and time, we apply the oscil-
latory body force perpendicular to the direction of the back-
ground flow, i.e., along the y axis �see Fig. 1�. Due to our
periodic boundary conditions in this direction, both a flow
relative to the porous medium and a relative flow between
the fluids will affect the dynamics of the process.

The invading fluid in the simulations is of finite viscosity,
therefore the flow around fluid clusters left behind the inva-
sion front, will give rise to a viscous pressure drop across
them. The structure of clusters behind the front is then not
left static immediately after they have been disconnected
from the front. Consequently, the simulations were run for
well beyond breakthrough, i.e., the drainage of the system
continued after the most advanced part of the nonwetting
fluid had penetrated through the whole length of the porous
medium. The simulations were kept running until no more
wetting fluid could be drained from the medium.

IV. RESULTS

In order to compare the results from the lattice Boltzmann
simulations to other results it is convenient to construct a set
of dimensionless numbers that characterize the physical be-
havior. Any two systems will have the same fluid behavior if
the values of the dimensionless numbers are the same. Along
with the viscosity ratio of the invading fluid to the defending
fluid, the mass density ratio, the capillary number, and the
Reynolds number, we introduce two additional numbers. The
first of these is the ratio of oscillatory body force to back-
ground body force and the other is the oscillation period T
relative to the one-phase invasion time of one pore given a
background body force Fx. These are thus given as

F̂a =
�wa

Fx
and Q̂ =

�Fx

�w�b
T , �14�

where we have used Darcy’s law to establish the latter ex-
pression. Here, � is the one-phase permeability of the porous
medium, � is the porosity, and b is the characteristic length
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FIG. 2. The time evolution of the particle flux density in a
system subjected to the flux controlling body force presented in Eq.
�11�. The black line shows the typical system behavior when the
flux controller is the only external force. The light gray line shows
the behavior when another additional strong external force is intro-
duced to the system. The particle flux density and the time are
measured in lattice units.
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scale of the pore. The dimensionless Q̂ may also be viewed
as the average number of pores, in the x direction a wetting
fluid element in a one-phase flow propagates through, in one
period of oscillation, having a background body force Fx.

The use of Darcy’s law is valid only in a state where the
viscous forces have had time to balance the applied forcing
of the flow. To ensure that our system is in this overdamped
flow regime, it is sufficient to check that the fluid velocity is
close to being in phase with the applied oscillatory body
force. For all the frequencies used in this study there are no
observable phase shift between the applied body force and
the measured fluid velocity. We therefore conclude that the
frequencies are all in the low frequency regime and well
below the characteristic Biot frequency of the system �10�. If
flow velocity is not an observable/measurable quantity, a
rough estimate for the time scale giving fully developed vis-
cous flow during oscillations can be found by considering the
oscillating fluid flow between two horizontal plates �9,50�.
The analytical solution for the fluid motion implies that the
velocity field, oscillating in time, will be in phase with the
applied body force if T�
h2 /�, where T is the period of the
oscillations, h is the plate separation, and � is the kinematic
fluid viscosity.

We have chosen to define a capillary number of the back-
ground flow on pore scale �44�, using Darcy’s law, as

Cax =
�	p�viscous

�	p�capillary
=

b2Fx

�
. �15�

Since the processes driven by constant mass flux boundary
conditions experience a changing background body force
during the invasion we have, in our definitions of the dimen-
sionless numbers, chosen to use the body force Fx obtained
when no more wetting fluid is drained from the system.

The simulations have an estimated background flow cap-
illary number Cax
10−2–10−1. Since this number does not
take into account the effect of the transversal acceleration of
the system, it does not necessarily describe what kind of flow

regime the system is in. To classify the flow regime �F̂a
2

+1�1/2Cax is a more suitable number, since this corresponds
to the total force imposed on the system. In the simulations
this number has a range of 10−2–10 approximately, showing
that the speed of the fluid front displacement differs by three
orders of magnitude through our set of simulations.

The defined set of dimensionless numbers and their re-
spective range of values in our simulations are presented in
Table II. In each simulation these numbers are fixed. During
this investigation the main objective was to study the effects
of the frequency and amplitude of the oscillatory body force.
To do this, the simulations were divided into sets where the
oscillatory body force amplitude were varied, while all other
parameters were kept constant. 17 such sets of simulations
were produced. The number of simulations in each set
ranged from 4 to 17. In all, 139 different parameter configu-
rations were probed.

A. Transient behavior

The initial transient behavior of the system demonstrates a
number of interesting features. Since this paper focuses on

the behavior of the system after it has reached a state of
irreducible wetting fluid saturation, their nature will only be
described briefly and qualitatively. Figure 3 shows a com-
parison of the transient regime in two systems with the same
background capillary number, with and without any oscilla-
tory acceleration. In the pure drainage process not subjected
to any oscillatory stimulation, where the nonwetting fluid
displaces the wetting defender, an invasion front is observed
to propagate through the system, see left column of Fig. 3.
The width of this front grows until a part of the defending
fluid detaches from the front and creates a separate cluster.
The front propagation continues until it reaches the outlet. At
the lowest capillary numbers, the flow shows a front behav-
ior and a displacement structure that closely resembles cap-
illary fingering. Faster invasion gives a more compact flow.
And the invaded structure is seen to become denser with
increasing displacement speeds �45–47�. Fractal viscous fin-
gering �39,40� is not observed, due to the finite viscosity
ratio M =0.2 in the simulations. Another characteristic fea-
ture of this flow regime is that clusters above a certain size,
already separated from the front during the invasion, can
continue to move after detachment. Since the invading fluid
is of finite viscosity, a viscous pressure drop across the de-
tached clusters, will allow clusters that are large enough to
overcome the capillary forces and continue toward the outlet.

The behavior described above is also observed in the
simulations when the system is subjected to a transverse os-
cillatory acceleration, see right column of Fig. 3. In addition
to these features, the oscillatory stimulation will, if the ac-
celeration amplitude and oscillation period are large enough,
cause individual fingers in the front to snap off and create
nonwetting clusters in front of the connected displacement
front. This results in a smaller front width and therefore also
smaller defending fluid clusters left behind, detached from
the advancing front. This means that the initial invasion pro-
cess is prolonged and the invasion front uses more time to
reach the outlet. It is also observed that the shaking could
move a cluster of defending fluid through pores otherwise
inaccessible. Depending on the cluster configuration this
could lead to coalescence with other clusters, or the cluster
could just fragment. If the clusters coalesce, they become
more mobile and may more easily be transported toward the
outlet. If they instead are fragmented into smaller pieces
these become more immobile and harder to move. We ob-

TABLE II. The set of dimensionless numbers that characterize
the physical behavior of our process.

Description Symbol Expression Value

Porosity � 0.67

Contact angle 
w 10°

Viscosity ratio M �nw /�w 0.2

Mass density ratio �nw /�w 10−3–1

Cap. no, bg flow Cax b2Fx /� 10−2–10−1

Reynolds number Re bū /�nw 10−2–1

# pores invaded in T Q̂ �FxT / ��w�b� 10−1–20

Body force ratio F̂a �wa /Fx 10−1–102
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serve that for some time after the initial invasion process
there are more clusters coalescing than fragmenting, leading
to a net transport of defending fluid out of the system. But as
the concentration of these clusters decreases the fragmenta-
tion after a while balances the coalescence of clusters and it
reaches a state of irreducible wetting fluid saturation with
just as much coalescence as fragmentation, and no more net
transport of defending fluid out of the system is measured.

B. State of irreducible wetting fluid saturation

After the initial transient behavior the system reaches a
state where no more wetting fluid moves in the direction of
the outlet, and a state of irreducible wetting fluid saturation
has been established. Even though the defending wetting
fluid has no net flux toward the outlet, the clusters may still
be mobile in the transverse direction. The average of this flux
of the defending fluid in the y direction, however, taken over

FIG. 3. �Color online� For background capillary number Cax=1.9�10−1, two invasion processes with and without transverse oscillatory
stimulation are compared at different times in the transient regime. In both processes the invasion is driven from left to right by a body force
constant in time and space, and the inertial mass density ratio is �nw /�w=10−3. The right column shows a system subjected to an additional

oscillatory acceleration, transverse to the background flow, with stimulation numbers F̂a=20 and Q̂=1.89. See Fig. 1 for color explanations.
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one period, is also vanishing. In this state we analyzed the
size/area distribution of the remaining wetting clusters. The
porous system is undeniably relatively small, but proves big
enough to give adequate statistics.

Figure 4 shows five configurations of wetting fluid clus-
ters in a state of irreducible saturation, established under the
influence of different flow and stimulation parameters. The
dimensionless numbers for these simulations are given in
Table III. These simulations specifically, are chosen to illus-
trate the span of cluster configurations we observe. The nor-
malized cluster size distributions, i.e., the probability distri-
butions, P�s� as functions of the cluster size/area s divided
by the pore length squared, extracted from each of these five
simulations, are shown in the inset of Fig. 5. From the cluster
configurations in Fig. 4 we observe that, due to boundary

effects, there are larger clusters located in a region close to
the outlet. A region, of approximately 1/6 of the system size,
adjacent to the outlet was therefore omitted when extracting
the cluster size distributions. The full set of cluster size dis-
tributions from our simulations is presented in Fig. 6.

If we, as in percolation theory �51�, assume that the nor-
malized cluster size distribution behaves as

P�s� � s−� exp�− s/s�� , �16�

we may define a statistical cutoff cluster size s� for each of
the individual distributions. This cutoff size determines the
point where an exponential tail becomes dominant over the
power law behavior in the distribution of cluster sizes. In
addition, our system introduces a lower cutoff in the size
distributions, where the cluster sizes are smaller than the size
of a pore throat. At this point the distributions have been
truncated. In a similar manner, the system size sets an abso-
lute upper limit for the sizes of clusters possible to observe,
i.e., an upper cutoff in the size distributions.

From the inset of Fig. 5 we observe that, starting with a
distribution indicating a pure power law dependency �sym-

FIG. 4. �Color online� The five cluster configurations of irreduc-
ible saturation achieved with the combinations of dimensionless
numbers presented in Table III resulting in the cluster distributions
in Fig. 5. The systems are presented as in the table, with decreasing
wetting saturation starting from the top. See Fig. 1 for color
explanations.

TABLE III. Values of the dimensionless numbers defining the
behavior of the cluster configurations displayed in Fig. 4.

Graph no. Cax F̂a Q̂ �nw /�w

� 1 1.4�10−1 0 10−3

� 2 8.0�10−2 24 0.79 10−3

� 3 1.5�10−1 19 0.76 1

� 4 2.3�10−1 32 2.3 10−3

� 5 1.0�10−1 126 2.0 10−3
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FIG. 5. Wetting cluster size distribution P�s� in a state of irre-
ducible saturation. The inset shows the cluster size distributions
P�s�, extracted from the cluster configurations in the five simula-
tions presented in Fig. 4, plotted against cluster size s divided by
the pore length squared. The graphs are numbered with decreasing
cutoff size s�. In the main graph the horizontal and vertical axis are
re-scaled with 1 /s� and s��, respectively, to give a data collapse.
The power law exponent �=1.6. The solid line through the col-
lapsed data sets is proportional to �s /s��−1.6 exp�s /s��.
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bolized ��, the distributions become, with ascending graph
number, more and more influenced by an exponential cutoff.
From the limited statistics of these five data sets, arguably it
may not be obvious that the leftmost graph �symbolized ��
is dominated by an exponential tail rather than a different
power law. However, examining the full set of distributions
we observe a similar trend, with a more gradual transition in
the distribution behavior. This examination also indicates
that the power law parameter � takes approximately the same
value in the distributions where a power law region is well
defined. It was found that �=1.60�0.10. This is close to the
value �1.70�0.10� observed by Frette et al. in drainage pro-
cesses with viscosity-matched fluids �43�.

Now, assuming that all our distributions obey Eq. �16�, we
may consequently relate an s� to each of them. The leftmost
graph in the inset of Fig. 5, then being completely dominated
by the exponential tail �symbolized ��, would have an s� of
the same order as the lower cutoff of the system. While simi-
larly, the distribution where no exponential tail occurs at all
�symbolized ��, is expected to have an s� larger than the
upper cutoff given by the system size. Let us also assume
that all our distributions would, had it not been for the lower
cutoff given by the system, exhibit the same power law be-
havior. Then, Eq. �16� also predicts that a rescaling of the
horizontal and vertical axis with 1 /s� and s�� respectively,
will give a data collapse. We are here ultimately interested in
how the flow and oscillatory stimulation parameters of the
system affect its s�. So instead of finding the cutoff cluster
size for the individual cluster size distribution by numeri-
cally fitting it to the proposed distribution form of Eq. �16�,
we attempt to directly relate it to the physical flow param-
eters. By observing how well the distributions would col-
lapse with different combinations of parameters we found

from the results that, for a given density ratio and F̂a�1, the
cutoff size

s� �
�2

a2TFx
. �17�

However, keeping all other parameters constant, varying the
period of oscillations and the background body force inde-

pendently, showed that, for the given parameter configura-
tion, there exists a minimal cutoff cluster size that, in this
high F̂a regime, was inversely proportional to the amplitude
of the oscillatory acceleration squared, and independent of
the oscillation period and the background body force. To test
for potential resolution effects, a limited set of simulations
was produced. Here the system resolution, i.e., the number of
lattice sites per solid disk in the porous medium, was qua-
drupled. These simulations confirmed the initially observed
cutoff size dependence. Physically, s� is related to the largest
cluster size left in the system, and should mainly result from
a balance of viscous, hydrostatic and capillary forces. In Sec.
V, we show that this force balance produces a somewhat
more complicated expression for s� than that presented in Eq.
�17�. There we also give an interpretation of the observed
TFx dependency in the cutoff cluster size. Based on the full
expression for s� found in Sec. V, we have in the main graph
of Fig. 5 obtained the data collapse of the five cluster size
distributions, where we have used �=1.6.

In Fig. 6 the cluster size distributions of the full set of
parameter variations are collapsed by the same proposed res-
caling of the axes used in Fig. 5. This is observed to produce
an excellent data collapse. The individual data sets are in the
figure indicated by black dots. The gray filled circles show
the average extracted from all of these sets. A power law
behavior in a region over slightly more than three decades in
s /s� is observed in the collapsed data sets.

In a limited number of simulations we investigated the
effect of applying the oscillatory stimulation of the system
after an invasion stage of pure drainage had left the system
saturated with invading fluid. In this set of simulations we
varied the amplitude of the oscillatory body force only, leav-
ing all other parameters constant. The fluids had a mass den-

sity ratio of 10−3, Cax�10−1 and Q̂�2, while F̂a was varied
from approximately 7 to 25. After introducing the oscillatory
body force, stuck clusters in the predrained system were mo-
bilized and propagated toward the outlet. The result was a
decrease in the cutoff cluster size of the system. What we
also saw was that this cutoff size was very close to, or equal
to, that obtained by initiating the oscillatory stimulation at
the beginning of the invasion process. The main graph of
Fig. 7 shows exactly this. Here, the distributions represented
by gray filled squares with black edges are extracted from
simulations where an oscillatory body force was applied con-
tinuously from the start of the invasion process. The open
black circles represent those where the system already had
been drained before applying the same set of oscillatory
stimulation. And the light gray squares represent the cluster
distribution in the predrained system before oscillatory
stimulation. From the figure the distributions that have the
same stimulation parameters may easily be divided into
pairs, since they to a large extent overlap. Thus, our results
indicate that the effects of the oscillations are history inde-
pendent. By that we mean that these effects are not strongly
linked to the dynamical evolution of the system leading up to
the final state of irreducible wetting fluid saturation. Assum-
ing that any clusters larger than the cutoff cluster size s�,
given by the physical flow parameters, will be transported
out of the porous cell during a transient state, it seems rea-
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FIG. 6. Data collapse of the wetting cluster size distributions
P�s� extracted from the 139 simulations. The black dots show the
individual data sets from all of the simulations, while the gray filled
circles show the average extracted from them. The black solid line
shows a function 
�s /s��−1.6 exp�s /s��, fitted to the full set of nu-
merical data.
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sonable that an applied stimulation which should reduce the
s� of the system, results in a statistically specific cluster con-
figuration, independent of the initial cluster configuration.

Thus far, we have discussed the effect the oscillatory body
force has on the cutoff size in the cluster distribution in the
system. But in the saturated state, and in a fluid extraction
context, an obvious quantity of interest is the end saturation
levels. How does the oscillatory acceleration of a porous
medium affect the saturation levels? Figure 8 shows the end
saturation in the simulations. Each simulation gives one data
point on the graph. The inset displays the saturation of wet-

ting clusters Sw plotted against the ratio F̂a=�wa /Fx. In each
data set all physical parameters except the acceleration am-
plitude a are kept constant. It is observed that the effect of
the oscillatory body force amplitude on the system varies
substantially depending on the rest of the physical param-
eters. If the saturation is, like in the main graph of Fig. 8,
plotted against b /�s� instead, a well-defined function depen-
dency is observed. This indicates that the end saturation is a
function of the cutoff cluster size s� alone. Given the total
number of wetting clusters nw left in the porous medium, the
cluster size distribution, and the total pore space area A, the
wetting fluid saturation is

Sw =
nw

A
�s� =

nw

A
�

smin

smax

sP�s�ds . �18�

The limits of integration smin and smax may here be taken to
be 0 and �, respectively, since the integrand converges fast
enough at these limits. Specifically, the integrand converges

as approximately s−0.6 in the lower limit and exponentially in
the upper limit. If we assume that the number of wetting
clusters nw is a function of s� only, and that we are in a
regime where the exponent � is constant, it is apparent from
combining Eqs. �16� and �18� that the saturation should be
dependent on one variable alone, the cutoff cluster size s�.
Since the number of wetting clusters is in the simulations
observed to be a nontrivial function of s�, and ��1.6, these
assumptions are found to be satisfied. From Fig. 8, we see
immediately that the end saturation Sw of the defending fluid
decreases with decreasing s�. It is also observed that the
largest rate of change in saturation is for the largest cutoff
cluster sizes. This obviously means that in this region a small
change in s� leads to a relatively large change in Sw. It should
here be noted that in the limit where s� is much larger than
the system size, the wetting saturation Sw is expected to de-
pend on the system size itself. In the flow regime investi-
gated here, however, the largest s� encountered is of the same
order as system size. Finite size effects are therefore not
expected to be very pronounced in the scaling shown in Fig.
8.

From oil recovery point of view, a potentially substantial
improvement in total recovery from an oil reservoir may be
obtainable. Having in mind the results, shown in Fig. 7, from
initiating stimulation late in the process, reservoirs showing
signs of lowered oil production may also be revitalized by
subjecting it to an oscillatory acceleration. The result of any
oscillatory stimulation would then depend on how large a
fraction of the initial oil has already been extracted from the
reservoir.

V. THEORETICAL FOUNDATION FOR THE CUTOFF
CLUSTER SIZE

To determine the effect the oscillatory stimulation has on
the statistical cutoff cluster size s�, it is useful to determine
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the criterion for a fluid bubble/cluster to be mobilized in the
porous medium. Let us now, as in the simulations, look at a
wetting bubble, stuck in the pore space, surrounded by a
nonwetting fluid. The pressure differences, 	p�x ,y�
= pnw�x ,y�− pw�x ,y�, across all the fluid interfaces of the wet-
ting cluster are then balanced by the interface tension. Typi-
cally, to mobilize such a bubble the pressure differences
across a pair of menisci must overcome the maximum cap-
illary forces given by the local geometry of the pores in
question. In a random, nearly homogeneous porous medium
this pair of menisci would normally consist of the menisci in
the furthest upstream and downstream pores �52� �see Fig.
9�. The pressure balance across the menisci in a marginally
stuck cluster, i.e., a cluster that will be mobilized by any
additional forcing, would then be given by

	pup − 	pdown = �	 1

Rcr
up −

1

Rcr
down
 = �

C

b
, �19�

where C is a dimensionless parameter that relates the typical
critical radii of curvature Rcr

up and Rcr
down, for the upstream and

downstream menisci respectively, to the diameter b of the
disks constituting the porous medium. This parameter C con-
tains the information of the typical local pore geometry, as
well as the wetting properties of the fluids. Since we have
investigated one porous medium only, and kept the wetting
properties constant, C is taken to be a constant in this con-
sideration. Rewriting the left hand side of Eq. �19� in terms
of the pressure differences, 	pw= pw

down− pw
up and 	pnw

= pnw
down− pnw

up , between the downstream and upstream menisci
positions in the two respective fluids �see Fig. 9�, we get

	pw − 	pnw = �
C

b
. �20�

In a system influenced by the body forces Fxex and a time
independent �aey, we have a hydrostatic pressure gradient
Fxex+�waey inside the stuck wetting bubble. This gives, in-
side the bubble, a pressure increase

	pw = �Fxex + �waey� · lmax, �21�

from the upstream meniscus to the downstream one. Here,
lmax is the length vector from the upstream meniscus to the

downstream meniscus. In the surrounding nonwetting fluid
the global average pressure gradient is from Darcy’s law
given as

��pnw�global = Fxex + �nwaey −
�nw

�nw
uD, �22�

where the last term on the right hand side is the average
viscous contribution to the global average pressure gradient
in the nonwetting fluid. Here, uD is the Darcy velocity of the
nonwetting fluid, �nw is its dynamical viscosity and �nw is,
with respect to the nonwetting fluid, the effective permeabil-
ity of the porous medium including stuck wetting bubbles. If
the system is, as in our simulations, periodic in the y direc-
tion, the nonwetting fluid is allowed to flow under the influ-
ence of the described body forces. The viscous term in the
global average pressure gradient then balances the other two
terms perfectly. This leaves a vanishing global average pres-
sure gradient. Locally, around the stuck wetting bubble under
consideration, the situation is somewhat different. Here, the
flow is typically different from the global average and this
gives a local pressure increase upstream of the bubble and a
decrease downstream. This is a result of the viscous drag
from the stuck bubble. The pressure drop across the bubble
may be estimated to be proportional to the bubble’s length
and the velocity far away from that bubble. The velocity far
away from the bubble is again proportional to the Darcy
velocity of the flowing nonwetting fluid. From Eq. �22� we
observe that, when the global pressure gradient is vanishing,
the Darcy velocity is proportional to the body forces influ-
encing the flow of the nonwetting fluid. This gives

	pnw = − B�Fxex + �nwaey� · lmax. �23�

The dimensionless B is the proportionality parameter that
contains all the information about the viscous drag induced
by the bubble. This is of course typically dependent of the
size and shape of the bubble, as well as the configuration of
the surrounding bubbles, since this influences the average
flow far from the investigated bubble. This argument for the
local pressure field around a stuck fluid cluster is similar to
that presented by Amili and Yortsos �53�. Now, combining
Eqs. �21� and �23� with Eq. �20� we have that

��1 + B�Fxex + ��w + B�nw�aey� · lmax = �
C

b
. �24�

Assuming that the two menisci in focus are situated such that
the length vector lmax aligns perfectly parallel to the vector
�1+B�Fxex+ ��w+B�nw�aey, we may simplify the above
equation, which gives us

lmax =
C�

��1 + B�2Fx
2 + ��w + B�nw�2a2�1/2b

. �25�

This expression for the length lmax across a marginally stuck
bubble can be directly linked to the statistical cutoff size s�

of the system, introduced in Eq. �16�, as long as clusters that
exceed this maximal length are fragmented or transported
out of the system. For this to hold in our system, Fx cannot
be equal zero, since this is the only body force that contrib-
utes to any transport in the direction of the outlet. In agree-

FIG. 9. Schematic representation of the pressure configuration
in a stuck wetting cluster. Here only the two pores furthest upstream
and downstream, separated by a length vector lmax, are considered.
The pressure differences across the menisci of these two pores are
then from the sketch given as 	pup= pnw

up − pw
up and 	pdown= pnw

down

− pw
down.
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ment with the simulations, a good assumption would be that
s�� lmax

2 . It was in these found that the clusters had a rather
constant aspect ratio. They were, on average, twice as long
as they were wide.

If we now look at a system where we have replaced the
constant acceleration aey, with one that oscillates with time
in the same manner as in the simulations, the maximal size
of a bubble that is trapped in the system changes. Exactly
how this critical cluster length changes may not be obvious.
However, there are some physical limits that may be to some
help. For one, when the period of one transverse oscillation
goes to zero the effect of the shaking should also go to zero.
In the limit T=0 we then expect to have that 	pw−	pnw
= �1+B�Fxlmax. This should obviously also be the case when
the amplitude of the oscillatory acceleration a=0. Likewise,
it is expected that as the period T becomes larger, the oscil-
latory body force affects the system more, and the cutoff
cluster size becomes smaller. However, a reasonable assump-
tion would be that, in our overdamped flow regime, the effect
of the oscillatory acceleration, no matter how large a period,
cannot be greater than the effect of a time independent ac-
celeration of the same amplitude. There should therefore ex-
ist a lower limit for the obtainable cutoff cluster size. And
this minimal cutoff size should be proportional to the expres-
sion in Eq. �25� squared. For larger T, but still small com-
pared to the time to reach the state of irreducible saturation,
it is expected that the cutoff cluster size approaches this
minimal cutoff size.

To determine more specifically how the cutoff size is de-
pendent on T, and any other physical parameters, we have to
examine the results from the simulations. As described in Eq.
�17�, from the simulations we found that, for a given fluid

density ratio and F̂a�1, the statistical cutoff cluster size was
inversely proportional to a2TFx, as long as the product TFx
was smaller than some threshold value. If this product, on
the other hand, was larger than the threshold value, the cutoff

cluster size s� was, in this high F̂a regime, independent of the
period T and the background body force Fx. This observed
cutoff cluster size was identical, or close to identical, to the
cutoff size produced in a system subjected to a constant time
independent acceleration in the y direction, but otherwise
given by the same parameter configuration.

This implies that the general expression for the statistical
cutoff cluster size should be given as

s� �
�2b−2

�1 + B�2Fx
2 + ��w + B�nw�2a2f�T,Fx�

, �26�

where a function f�T ,Fx� has been introduced. Since this
function has to be dimensionless, the construction

f�T,Fx� = min��Q̂,1� , �27�

where Q̂ was defined in Eq. �14�, gives the desired function
form. This function satisfies all the criteria given by theory

and the simulation results. The �Q̂ could then be interpreted
as the average number of pores a mobile cluster can propa-
gate through in the direction of the outlet, in half a period of
oscillations. Here, � is a dimensionless proportionality factor

that presumably is related to the effects of the two-phase
flow. Further investigation showed that if clusters could
propagate a distance of more than one pore on average, in the
direction of the outlet, in half a period, the result was a cutoff
cluster size where f�T ,Fx�=1. This would essentially mean
that if a cluster meniscus can propagate a distance of at least
one whole pore, toward the outlet, in half a period, the effect
is equal to that of a constant time independent acceleration.
In this case, a cluster’s propagation toward the outlet may be
regarded as irreversible. The cluster is then never in the same
set of pores for more than half a period, and is allowed to
probe new sets of pores each time the acceleration direction
changes. This access to only new pores is similar to the
situation having a time independent acceleration. Thus, it
seems reasonable that these two processes have the same
cluster size behavior. If the cluster, on the other hand, is
unable to move a whole pore length toward the outlet, the
effect of the oscillatory acceleration amplitude is reduced.
This is realized in Eq. �26� where the second term of the
denominator is reduced by a factor equal the average length
the cluster is able to propagate toward the outlet, relative to
one pore length. In this regime, the menisci probe on average
a set of pores more than once. But even though a meniscus
may on average not be able to propagate through a whole
pore toward the outlet, the movement could still initiate coa-
lescence of neighboring clusters and therefore give a statis-
tical cutoff cluster size different from that observed in sys-
tems subjected to a background body force Fx alone. The

factor �Q̂ may therefore perhaps also indicate the statistical
range of coalescence in the direction of the outlet. Clusters
that move a shorter distance than this in half a cycle are
effectively stuck in the porous medium because they are not
able to coalesce with other clusters. And therefore the statis-
tical cutoff cluster size s� is modified by this factor.

By expressing the cutoff cluster size in the dimensionless
numbers presented in Sec. IV, we get

s� �
b2Cax

−2

�1 + B�2 + min��Q̂,1�	1 + B
�nw

�w

2

F̂a
2

. �28�

The two parameters B and � introduced in this argument are
taken to be free tuning constants, since a more focused in-
vestigation of their behavior would otherwise be necessary.
These parameters were in our simulations approximated to
be B=0.7 and �=0.15, based on how good a data collapse
they produced. With these given values of B and � all the
data collapses in Sec. IV B were produced.

VI. CONCLUSION

Motivated by seismic stimulation as a possible method for
enhanced oil recovery, we have in this paper numerically
studied the statistical effects of transverse oscillatory accel-
eration of a porous medium during a drainage process. In the
investigation we used a 2D lattice Boltzmann algorithm to
simulate a system consisting of approximately 60�30 pores.
This system was large enough to obtain cluster statistics for
the defending fluid. The viscosity difference between the two
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fluids was small, having a viscosity ratio M =0.2. The study
mainly focused on how flow and oscillatory stimulation pa-
rameters affected the resulting cluster configurations in a
state of irreducible saturation. It was observed that in this
state, the cluster size distributions followed a power law with
an exponential tail. The power law exponent was approxi-
mated to be ��1.6. Based on theoretical arguments, an ana-
lytical expression for the cutoff cluster size s� of the distri-
bution was found. Specifically, it was found that this cutoff
size is strongly coupled to the amplitude of the oscillatory
acceleration of the system. A larger acceleration amplitude
led to a smaller cutoff size in the system. The oscillation
period, on the other hand, only influenced the cutoff size up
to some threshold. Below this threshold, a larger oscillation
period gave a smaller cutoff size. The cutoff cluster size was
also shown to control the end saturation Sw of the defending
fluid. A smaller s� gave a lower Sw. Because of these rela-
tions it is possible to predict changes in saturation, given
changes in the physical parameters.

A limited set of simulations, where the stimulation was
applied only after a stage of pure drainage had left the sys-
tem in a stationary state, also showed that the resulting clus-
ter configurations were statistically the same as when apply-
ing stimulation during the whole invasion process. This
indicated that the resulting cluster structures are not strongly
history dependent. However, here a more thorough investi-
gation is needed. In the flow regime investigated in this
study, the oscillatory stimulations always proved to give an
increase in the total amount of defending fluid extracted from
the porous medium.
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