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The electromagnetic two-body problem has neutral differential delay equations of motion that, for generic
boundary data, can have solutions with discontinuous derivatives. If one wants to use these neutral differential
delay equations with arbitrary boundary data, solutions with discontinuous derivatives must be expected and
allowed. Surprisingly, Wheeler-Feynman electrodynamics has a boundary value variational method for which
minimizer trajectories with discontinuous derivatives are also expected, as we show here. The variational
method defines continuous trajectories with piecewise defined velocities and accelerations, and electromagnetic
fields defined by the Euler-Lagrange equations on trajectory points. Here we use the piecewise defined mini-
mizers with the Liénard-Wierchert formulas to define generalized electromagnetic fields almost everywhere
�but on sets of points of zero measure where the advanced/retarded velocities and/or accelerations are discon-
tinuous�. Along with this generalization we formulate the generalized absorber hypothesis that the far fields
vanish asymptotically almost everywhere and show that localized orbits with far fields vanishing almost
everywhere must have discontinuous velocities on sewing chains of breaking points. We give the general
solution for localized orbits with vanishing far fields by solving a �linear� neutral differential delay equation for
these far fields. We discuss the physics of orbits with discontinuous derivatives stressing the differences to the
variational methods of classical mechanics and the existence of a spinorial four-current associated with the
generalized variational electrodynamics.

DOI: 10.1103/PhysRevE.82.026212 PACS number�s�: 05.45.�a, 02.30.Ks, 03.50.De, 41.60.�m

I. INTRODUCTION

Non-radiating motion of extended charge distributions in
classical electrodynamics has been known to exist for some
time �c.f �1–4� and references therein, and �5–7��. On the
other hand, for systems with a few point charges, Larmor’s
radiation of energy at a rate proportional to the squared
modulus of the acceleration plagues classical electrodynam-
ics. To construct orbits that do not radiate, and hence are
without acceleration, a simple option are constant velocity
motions, which imply unbounded motion.

Along bounded two body motions supported by mutual
action at a distance, we expect acceleration to be needed to
change velocities, unless velocities are allowed to change
discontinuously. For example, periodic polygonal orbits with
piecewise constant velocity segments have vanishing radia-
tion fields.

Here, we extend Wheeler-Feynman electrodynamics �8�
to include motion with discontinuous velocities. This is a
natural extension provided by the variational boundary value
problem �9�. The resulting extended electrodynamics has
several appealing physical features: �i� There exists a scalar
function �the finite action �9��, and the condition for a mini-
mizer demands that the partial derivatives of the action, with
respect to each particle’s four velocity, be continuous along
minimal orbits. These continuous four-component linear cur-
rents are analogous to the Dirac-equation of quantum me-
chanics, thus endowing the extended Wheeler-Feynman elec-
trodynamics with spin. This is a feature not present in any
other classical electrodynamics of point charges; �ii� Besides

naturally including nonradiating orbits, the extended electro-
dynamics can be shown to lead simply to a de Broglie length
for double-slit scattering upon detailed modeling �10�; �iii�
The absorber hypothesis, first idealized to hold as an average
over an infinite universe �8�, has no known solutions �11� for
many-body motion in Wheeler-Feynman theory �11–15� with
which it is consistent. Here we show that the variational
electrodynamics allows a concrete realization of the absorber
hypothesis for a two-particle universe, i.e., there exists a
non-empty class of two-body motions with vanishing far
fields, so that we do not need either large universes or ran-
domization �16,17�; and �iv� two-body orbits with vanishing
far-fields were used in Ref. �18� to predict spectroscopic
lines for hydrogen with a few percent precision.

Since the speed of light is constant in inertial frames, the
equations of motion for point-charges are state dependent
differential delay equations. More specifically, Wheeler-
Feynman electrodynamics �8,10,19� has mixed-type state-
dependent neutral differential delay equations of motion for
the two-body problem.

The theory of delay equations is still incomplete �20,21�
but it is known that purely-retarded differential delay equa-
tions with generic C1 initial histories have continuous solu-
tions with a discontinuous derivative at the initial time. The
derivative becomes continuous at the next breaking point
�20� and progresses from Ck to Ck+1 at successive breaking
points. On the other hand, a purely retarded neutral differen-
tial delay equation with a generic C1 initial history �20� can
have continuous solutions with discontinuous derivatives at
all breaking points.

If one wants to use the electromagnetic neutral differential
delay equations with arbitrary boundary data, solutions with
discontinuous derivatives must be expected and accommo-
dated. Surprisingly, this same neutrality is compatible with*deluca@df.ufscar.br
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the recently developed boundary-value-variational method
for Wheeler-Feynman electrodynamics �9�. For orbits where
the acceleration is not defined at a few points, the variational
method offers a well-posed alternative to define trajectories
beyond those satisfying a Newtonian-like neutral differential
delay equation everywhere. The variational method involves
an integral that requires only piecewise-defined velocities,
generalizing naturally to continuous orbits with discontinu-
ous derivatives at breaking points.

Our generalized electrodynamics contains the C2 orbits of
the Wheeler-Feynman theory. As shown in Ref. �9�, if
boundary data are such that the extremum orbit is piecewise
C2 with continuous velocities, the Wheeler-Feynman equa-
tions hold everywhere with the exception of a countable set
of points where accelerations are discontinuous �which is a
set of measure zero for the action integral�. We henceforth
define a breaking point as a point where velocity or accel-
eration are discontinuous. Here we show that continuous or-
bits with discontinuous velocities are possible minimizers if
these satisfy further continuity conditions. These continuity
conditions are non-local, unlike the conditions for an extre-
mum of the variational methods of classical mechanics,
which do not allow discontinuous velocities. Finally, if the
extremum is not piecewise C2, the variational method defines
minimizers that are not described by piecewise-defined-
Wheeler-Feynman neutral differential delay equations
�which are not studied here�.

To discuss the relationship to Maxwell’s electrodynamics
it is important to keep in mind that: �i� Wheeler-Feynman
electrodynamics is a theory of trajectories, where fields are
only derived quantities; and �ii� the boundary-value-
variational-method defines only a finite segment of a trajec-
tory, rather than a global trajectory �9�. The variational equa-
tions along piecewise C2 orbits include the electromagnetic
fields in the Euler-Lagrange equations �9�, which are used
here to give a derived operational meaning to the electro-
magnetic fields �22�. The electromagnetic fields appear as
coupling terms of the variational equations and are defined
on trajectory segments by the usual electromagnetic formulas
�9�.

In our generalization we use the Liénard-Wierchert elec-
tromagnetic formulas to define fields by extension at all
space-time points for which future and past lightcones fall in
the finite segment of the minimizer trajectory. For continuous
trajectories with discontinuous velocities, and/or accelera-
tions on sets of measure zero, we construct the electromag-
netic fields only for points having a future and past lightcone,
leaving the fields undefined where the past or future light-
cones have a discontinuous velocity/acceleration �usually an-
other set of measure zero�. We further introduce the concept
of short-range orbits as localized orbits with far-fields van-
ishing almost everywhere. This bears a close relation to the
electromagnetic notion of radiation �22�.

In their original articles, Wheeler and Feynman �8� at-
tempted to derive an electrodynamics with retarded-only
fields from the hypothesis that the universal far-fields vanish
at all times �the absorber hypothesis� �8�. Here, we general-
ize the absorber hypothesis �8� to include fields that can be
undefined on sets of measure zero, thus arriving at the gen-
eralized absorber hypothesis �GAH� that the far-fields vanish

almost everywhere. We show that short-range-two-body-
orbits must involve discontinuous derivatives on a countable
set of points.

One advantage of our generalization is to include spatially
bounded globally defined continuous orbits with far fields
vanishing almost everywhere, which we call short-range or-
bits. This generalization presents itself naturally as the next
option after one shows that there are no C2 localized orbits
with far fields vanishing everywhere. The short-range piece-
wise C2 continuous orbits are naturally described by the
variational method in the same way as the globally C2 con-
tinuous orbits. However, the former are minimizers inside a
larger family of boundary data, which is the second advan-
tage of our generalization. This extended class of orbits in-
cludes orbits that are limits of Cauchy sequences of orbits
with far fields disturbing the universe less and less, i.e., the
vanishing far-field limit of the GAH.

In this paper we use the word “minimizer” meaning a
generalized critical point of the variational method, that
could be either a minimum or a saddle point. The paper is
divided as follows: In Sec. II, we discuss the variational
method for piecewise-defined continuous orbits with discon-
tinuous derivatives. We show that the variational method pre-
scribes a continuous momentum current at each breaking
point in addition to Euler-Lagrange equations from each side
of the breaking point. We discuss how the non-local-
momentum currents can be conserved even in the presence
of velocity discontinuities along “sewing chains.” In Sec. III,
we prove that globally-defined short-range bounded orbits
must have discontinuous velocities on a sewing chain of
breaking points by giving the general solution to a neutral
differential delay equation for the far-fields. In Sec. IV, we
discuss the physics of generalized minimizers along with
some open questions and differences from bounded orbits to
unbounded scattering orbits.

II. BOUNDARY VALUE VARIATIONAL METHOD

The variational method �9� is well defined for continuous
trajectories x1�t1� and x2�t2��R3 that are piecewise C1. The
boundary conditions for the variational method �9� are illus-
trated in Fig. 1, i.e., the initial point OA for trajectory 1 plus
the segment of trajectory 2 inside the lightcone of OA, and
the end point LB for the trajectory 2 plus the segment of
trajectory of particle 1 inside the lightcone of LB. For varia-
tions of trajectory 1 the action functional �9� reduces to

S � K2 + �
0

TL−

L�x1,v1,x2,v2�dt1

= − �
0

TL−

m1
�1 − v1

2dt1 + �
0

TL− �1 − v1 · v2+�
2r12+�1 + n12+ · v2+�

dt1

+ �
0

TL− �1 − v1 · v2−�
2r12−�1 − n12− · v2−�

dt1 + K2, �1�

where K2 depends only on trajectory 2 and quantities of par-
ticle 2 are defined at times t2� according to the implicit con-
dition for the advanced/retarded light cones of t1, i.e.,
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t2� = t1 � �x1�t1� − x2�t2��� . �2�

In Eq. �1� the r12+��x1�t1�−x2�t2��� are the distances from
x1�t1� to the respective advanced/retarded position x2�t2��
along trajectory 2, unit vector n12� points from x1�t1� to the
respective advanced/retarded position x2�t2��, i.e., n12�

��x1�t1�−x2�t2��� /r12� and last v2��dx2 /dt2 �t2�
. Notice

that Eq. �1� is an integral over the velocities, and is a well-
defined operation even for trajectories with discontinuous ve-
locities �and even more general types of continuous trajecto-
ries with square-integrable velocities that are not studied
here�.

Here, we extend Wheeler-Feynman electrodynamics to
trajectories with discontinuous velocities on a countable set
of points using the boundary-value-variational method. For
piecewise C1 trajectories �and piecewise C1 histories� it is
possible to define disjoint intervals t� �l�−1

+ , l�
−�, with l�

− = l�
+,

for �=1, . . . ,N, where the continuous trajectory x1�t1� and
delayed arguments t2��t1� are piecewise C1. The upper plus
in l�

+ indicates the right-limit of the �th breaking point while
the upper minus in l�

− indicates the left-limit of the �th break-
ing point. These are not to be confused with the lower plus or
the lower minus used to denote quantities evaluated on the
future or past lightcones.

The variations of trajectory 1 for the action Eq. �1� are
defined piecewise C1 with fixed end points, i.e.,

u1�t1� = x1�t1� + b1�t1� ,

u̇1�t1� = ẋ�t1� + ḃ1�t1� , �3�

where and overdot denotes a time derivative and the bound-
ary conditions are

b1�lo
+ = 0� = 0,

b1�lN
− = TL−� = 0. �4�

If the continuous and piecewise C1 perturbation b1�t1� has a
discontinuous derivative in another set of intervals t
� �h�−1

+ ,h�
−�, then the perturbed trajectory u1�t1� is continu-

ous and piecewise C1 in the extended set of intervals defined
by all intersections of the sets �h�−1

+ ,h�
−� and �l�−1

+ , l�
−�. This

simply increases the number of piecewise intervals �l�−1
+ , l�

−�
up to �=M �N and the boundary condition for b1�TL−� of
Eq. �4� reads

b1�lM
− = TL−� = 0. �5�

Substituting the perturbed trajectory Eq. �3� into the action
Eq. �1� and making a linear expansion about the orbit defines
the Frechét derivative, i.e.,

�S = �
0

TL− 	
 �L
�x1

· b1� + 
 �L
�v1

· ḃ1��dt1 + O��b1�2� , �6�

where a “·” indicates the scalar product in R3 and �b1� is the
sup norm for the Banach space of piecewise C1 variations
�9�. In particular if the orbit x1�t1�: �0,TL−�→R3 is piecewise
C2 then u1�t1� is continuous and piecewise C1 on the same
extended set of intervals.

If the orbit is piecewise C2, then we can integrate Eq. �6�
by parts in each interval, yielding

�S = �
0

TL− 
b1 · 	 �L
�x1

−
d

dt

 �L

�v1
���dt1

+ 
�=1

�=M �
l�−1
+

l�
− d

dt1

b1�t1� ·

�L
�v1

�dt1. �7�

Since b1�t1� is continuous we can rearrange the second term
of the right-hand-side of Eq. �7� to give

�S = �
0

TL− 
b1 · 	 �L
�x1

−
d

dt
 �L
�v1

���dt1

− 
�=1

�=M−1 
b1�l�
−� ·� �L

�v1
�

l
�
−

l�
+� , �8�

where

�J1 �� �L
�v1
�

l
�
−

l�
+

=
�L
�v1

�l�
+� −

�L
�v1

�l�
−� . �9�

Equation �9� defines the momentum jump at t= l�
−, i.e., the

first �second� term on the right-hand side of Eq. �9� is the
momentum evaluated from the right �left� of t= l�

−.
The conditions for a critical point in the class of continu-

ous piecewise C1 orbital variations of the piecewise C2 con-
tinuous orbit are: �i� satisfy the Euler-Lagrange equations
piecewise, to make the first term on the right-hand side of
Eq. �8� vanish; and �ii� have a continuous momentum
�L /�v1 at the breaking points so each term of the sum of the
right-hand side of Eq. �8� vanishes for arbitrary b1�l�

−�, i.e.,

LB

L+L-

O- O+

OA f1

f2

f3

b1

b2

b3

FIG. 1. �Color online� Illustrated in red is the initial point OA of
trajectory 1 plus the segment of trajectory 2 inside the lightcone of
OA, i.e., from point O− to point O+ and the end point LB of trajec-
tory 2 plus the segment of trajectory of particle 1 inside the light-
cone of LB, i.e., from point L− to point L+. The trajectory of particle
1 of the variational method goes from OA to L− �blue line� while the
trajectory of particle 2 goes from O+ to LB �green line�. The first
breaking point is point O+ which generates a forward sewing chain
of breaking points f1 , f2 , f3 while end point L− is a breaking point
generating a backward sewing chain of breaking points b1 ,b2 ,b3.
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�L
�v1

�l�
−� =

�L
�v1

�l�
+� . �10�

As is usual in the neighborhood of breaking points one de-
fines derivatives from the left-hand side and from the right-
hand side �20�. For the local Lagrangians of classical me-
chanics one usually has �L /�v1=G1�x1 ,v1�, which combined
with Eq. �10� along a continuous trajectory would imply that
each velocity is continuous. Continuity of velocity along a
piecewise C2 continuous orbit combined with the Euler-
Lagrange equations from each side of the breaking point fur-
ther determine a continuous acceleration, so that the orbit is
actually C2 at the breaking point. Therefore, in classical me-
chanics the restriction to piecewise C2 orbits implies globally
C2 orbits.

However, for Eq. �1�, or the Lagrangian given in Eq. �14�
of Ref. �9�, the continuous momentum term is

�L
�v1

=
m1v1

�1 − v1
2

−
v2−

2r12−�1 − n12− · v2−�
−

v2+

2r12+�1 + n12+ · v2+�
,

�11�

which displays a surprising difference compared with the
result obtained from variational methods in classical me-
chanics.

As illustrated in Fig. 1, a simple piecewise-defined orbit
has the “sewing chain” of breaking points �f1 , f2 , . . . and
b1 ,b2 , . . .�, where one velocity can jump if the other velocity
has jumped at either the past or future breaking point. The
two-body-Noether-momentum �formula �A23� of Ref. �9��,
involves an integral that is insensitive to velocity jumps plus
two non-local momentum terms given by Eq. �11� �see Eqs.
�A25� and �A26� of Ref. �9��, that are sensitive to jumps.
Therefore, the two-body-Noether momentum is conserved as
long as Eq. �11� is continuous across the jumps. The first
term on the right-hand side of Eq. �8� is the Wheeler-
Feynman equation of motion for particle 1 �9� �i.e., the usual
Euler-Lagrange equation restricted here to piecewise seg-
ments�. Minimization respect to variations of trajectory 2
yields the neutral differential delay equation of motion for
particle 2, and an analogous continuity with indices 1 and 2
exchanged. Notice that this surprising difference compared
with the results from variational principles in classical me-
chanics requires a minimum of two bodies and a non-local
Lagrangian.

We note that the electromagnetic variational method has a
parametrization-invariance-symmetry that allows the action
Eq. �1� to be expressed in Minkowski-four-space using four-
velocities respect to an arbitrary evolution parameter �9�. The
derivative of the parametrization-invariant Lagrangian with
respect to the first component of the four-velocity is,

�L
�v1

o =
m1

�1 − v1
2

−
1

2r12−�1 − n12− · v2−�
−

1

2r12+�1 + n12+ · v2+�
.

�12�

Equation �12� represents the time-component of the four-
momentum which must be continuous at the breaking points
of a minimizing trajectory. This is a generalization of the

argument leading to Eq. �11�. There is a four current associ-
ated with the minimization respect to each particle’s trajec-
tory.

Last, after solving for velocity discontinuities along sew-
ing chains of breaking points, the second condition for a
minimizer are the piecewise-restricted Wheeler-Feynman
equations of motion. These hold at each side of a breaking
point and involve the limiting accelerations from the two
sides of that breaking point. The discontinuous velocities sat-
isfying Eqs. �11� and �12�, when substituted into the
Wheeler-Feynman equations at each side of a breaking point,
then define a condition to be satisfied by the acceleration
discontinuities. Since this condition involves a singular ma-
trix �30�, acceleration discontinuities are not fully deter-
mined by velocity discontinuities. In general, velocity dis-
continuities cause acceleration discontinuities, even though
there can be special orbits with continuous velocities and
discontinuous accelerations along the null direction of the
singular matrix �30�. Only in that case our generalization is
equivalent to piecewise restricted Wheeler-Feynman equa-
tions, otherwise completion by a finite action �9� includes
other types of trajectories. In either case, along a piecewise
defined orbit, continuity of the spinor currents Eqs. �11� and
�12� ensure the well-posed continuation of the minimizer
across each breaking point �31�. For example, solutions with
continuous velocities yield trivially continuous momenta
Eqs. �11� and �12�, so that any finite portion of a global
solution of the piecewise-restricted Wheeler-Feynman equa-
tions with continuous velocities is a minimizer of the finite
variational method with suitable boundaries. For solutions
with discontinuous velocities, continuation to a global trajec-
tory is possible using the �discontinuous� velocity deter-
mined by solving conditions Eqs. �11� and �12� for the most
advanced velocity �to be shown elsewhere�.

III. SHORT-RANGE ORBITS

Wheeler-Feynman electrodynamics is a theory of direct
interaction between charges �8,22�. The boundary-value-
variational method �previous section and Fig. 1� defines
minimizers with a vanishing Frechét derivative Eq. �6� be-
tween the time spans of Fig. 1, rather than globally defined
trajectories. As shown in Ref. �9�, the two-body-Euler-
Lagrange equations can be cast in the form of Newtonian
equations of motion with each acceleration multiplied by the
mass on the left-hand side, while the right-hand side has the
form of a Lorentz-force law. It is precisely these Euler-
Lagrange equations that define the electromagnetic fields of
Wheeler-Feynman theory as derived quantities evaluated on
trajectories.

Extending these fields defined by the Lorentz-sector-of-
Euler-Lagrange equations to fields on positions outside tra-
jectories is tricky, because in a theory of trajectories one
should: �i� add a third particle to the variational problem; and
�ii� arrange things such that the third trajectory passes by the
desired point. Obviously, a third charge changes the minimi-
zation problem and perturbs the original two-body-orbit, un-
less it can be placed so far that its couplings to the original
two-body-orbit are small. A bounded GAH two-body-orbit is
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special because its far-fields vanish almost everywhere and a
third trajectory can be placed reasonably near without dis-
turbing the two-body-orbit. Keeping in mind that the far
fields are the strongest couplings to a third charge, we inves-
tigate the existence of such �localized� short-range-two-
body-orbits �GAH�.

We now adopt a unit system in which the speed of light is
c=1 and apply the usual formulas of electrodynamics to
piecewise-defined trajectories with the exception of points
where past/future velocities/accelerations are undefined, i.e.,
the fields are undefined on a set of measure zero. We con-
sider continuous piecewise C2 trajectories xk�tk� enclosed by
a sphere of radius R in an inertial frame. We specify space-
time points �t ,Rn� on the sphere by a time t and unit vector
n normal to the surface of the sphere, and introduce an index
k=1,2 to label the charges.

The far-electric field of a point charge in the Wheeler-
Feynman electrodynamics is the sum of the half-advanced/
half-retarded fields �8�,

E�t,Rn� =
1

2
Eadv +

1

2
Eret, �13�

while the far-magnetic field is given by

B�t,Rn� =
1

2
n+ � Eadv −

1

2
n− � Eret. �14�

The unit vectors n� point respectively from the charge’s
advanced/retarded position to the position Rn on the sphere
�23�. Trajectories are assumed to be bounded such that
�xk�tk���R, so that for each charge we have n+�n−�n.

The retarded far-electric and far-magnetic fields of a
charge qk at the space-time point �t ,Rn� are piecewise de-
fined by the Liénard-Wiechert formulas �23�

Ek
ret�t,n� =

qk

R

n � ��n − vk� � ak�
�1 − n · vk�3 , �15�

and

Bk
ret�t,n� = n � Ek

ret�t,n� . �16�

In Eq. �15� we have used the far-field limit in which the light
cone distance

rk�tk� � �xk�tk� − Rn� , �17�

is equal to R since �xk�tk���R. In Eq. �15� vk�dxk /dtk �tk and
ak�d2xk /dtk

2 �tk are respectively the charge’s velocity and
charge’s acceleration at the retarded time tk defined implicitly
and piecewise by the retardation condition

tk = t − �xk�tk� − Rn� , �18�

where � · � denotes Cartesian distance. Equation �25� defines tk
as an implicit function of time t with a piecewise defined
derivative

dtk

dt
=

1

�1 − n · vk�
. �19�

Using Eq. �15� to evaluate the far-magnetic field Eq. �16�
yields

Bk
ret�t,n� = −

qkn

R
� 	 ak

�1 − n · vk�2 +
�n · ak�vk

�1 − n · vk�3� .

�20�

The trajectory xk�tk� is a function of t from Eq. �18� so using
the chain rule and Eq. �19� twice we can re-write the far-
magnetic field Eq. �20� as

Bk
ret�t,n� = −

qkn

R
�

d2

dt2 �xk�tk�� . �21�

The far-electric field is a linear function of the far-magnetic
field obtained using Eq. �16� and the transversality property
n ·Ek

ret�t ,n�=0 of the far-electric field Eq. �15�, i.e.,

Ek
ret�t,n� = − n � Bk

ret�t,n� . �22�

In view of Eq. �22�, it suffices to study the vanishing of the
retarded-far-magnetic fields. We further assume a symmetry
that the time-reversed orbit yields the same orbit rotated
about an axis. For these reverse-rotate-symmetric orbits the
vanishing of the retarded far fields implies the vanishing of
the advanced far fields.

From now on charge 1 is taken to be positive and equal to
q while charge 2 is negative and equal to −q. The GAH
along a bounded piecewise C2 orbit is then expressed almost
everywhere by

Bret = B1
ret + B2

ret = −
qn

R
�

d2

dt2 �x1�t1� − x2�t2�� = 0. �23�

In the family of orbits with discontinuous velocities one can
readily construct bounded orbits with vanishing far fields;
e.g., piecewise-constant-velocity orbits with trajectories con-
sisting of polygonal lines. These are bounded orbits with
each acceleration vanishing piecewise, so that the radiation
fields vanish. The question that needs to be answered is “do
we need these velocity discontinuities?”

Equation �23� is a �linear� neutral differential delay equa-
tion with piecewise-linear continuous solutions defined on
the intervals t� �t�−1

+ , t�
−�, with ��Z by

x1�t1� − x2�t2� = D��n� + nf��t,n� + �t − t�
−�V��n� , �24�

where the D��n� and V��n� are arbitrary bounded functions
and the f��t ,n� are bounded and piecewise C2. It is possible
to choose n ·D��n�=0 and adjust D��n� in each interval to
make the left-hand side of Eq. �24� continuous.

Along a spatially bounded orbit, Eq. �18� is approximated
for large values of R by

tk = t − R + n · xk�tk� . �25�

Notice that Eqs. �25� yield an implicit relation between t1
and t2,

t1 − t2 = n · �x1�t1� − x2�t2�� . �26�

Given the trajectories x1�t1� and x2�t2�, Eq. �26� and the im-
plicit function theorem yield t1 as a function of t2 and n.
Define the influence interval of point �t2 ,x2�t2�� by the inter-
val containing t1 when n varies arbitrarily in Eq. �26�, i.e.,
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t2 − �x1�t1� − x2�t2�� 	 t1 	 t2 + �x1�t1� − x2�t2�� . �27�

The time span Eq. �27� is from the retarded lightcone time of
�t2 ,x2�t2�� to the advanced lightcone time of �t2 ,x2�t2��, as
along the sewing chain illustrated in Fig. 1. Notice that the
future lightcone appeared naturally in the two-particle prob-
lem, even though we were dealing only with the retardation
conditions Eq. �25�. It follows from Eqs. �26� and �24� that

f��t,n� = �t1 − t2� − �t − t�
−�n · V��n� . �28�

and we can therefore re-write Eq. �24� as

x1�t1� − x2�t2� = D��n� + �t1 − t2�n − �t − t�
−�n � L��n� .

�29�

where L��n��n�V��n�. Since linear growth in a constant
direction is unbounded, the only globally C2 orbit must have
L��n�=0 ∀�, and it follows from Eq. �29� with L��n�=0
that

x1�t1� − x2�t2� = D��n� + �t1 − t2�n . �30�

The derivative of Eq. �30� respect to time yields

v1

�1 − n · v1�
−

v2

�1 − n · v2�
= K12n , �31�

where

K12 =
1

�1 − n · v1�
−

1

�1 − n · v2�
. �32�

Equation �26� allow us to move n in a cone with axis along
x1�t1�−x2�t2��0 in a way that fixes t1 and t2 while changing
t with Eq. �25�. On the other hand, for fixed t1 and t2 the
left-hand-side of Eq. �31� spans a plane of the fixed vectors
v1�t1� and v2�t2�, so that Eq. �31� can hold only if K12=0,
which combined with Eqs. �31� and �32� yields

v1�t1� = v2�t2� . �33�

Equation �33� defines globally constant velocities along a
fixed direction, which in turn implies unbounded motion un-
less v1=v2=0, as discussed in Ref. �12�. This impossibility
follows if velocities are to be continuous.

Nontrivial alternatives to this unsatisfactory conclusion
necessitate the introduction of discontinuities by varying the
direction of the piecewise-velocity-like term L��n��0 of
Eq. �29� in each interval. The piecewise derivative of Eq.
�29� respect to time yields

v1

�1 − n · v1�
−

v2

�1 − n · v2�
= K12n − n � L��n� . �34�

Notice that K12 is still given by Eq. �32� and with nonzero
L��n� the right-hand-side of Eq. �34� forms a complete three-
dimensional basis to express any vector �inside or outside the
plane of v1�t1� and v2�t2��. Equation �26� still allows one to
move n in a cone with axis along x1�t1�−x2�t2��0 in a way
that fixes t1 and t2 while t changes with Eq. �25�. By choos-
ing K12 and a nonzero L��n� for each t� �t�−1

+ , t�
−� we can

describe any vector on the left-hand side of Eq. �34�, so that
there is no inconsistency.

As an example, time-reversible orbits satisfying Eq. �34�
are piecewise-constant-velocity orbits generated by having
one velocity jump at a given time while the other velocity
jumps either in the backward or forward lightcone-times
symmetrically, as well as at every time in the forward and
backward light-cones of a discontinuity time �the sewing
chain illustrated in Fig. 1�. These piecewise-linear polygonal
orbits can be shown to satisfy Eq. �23� by direct substitution
and use of Eq. �19�. In the following we show that Eq. �29�
and the implicit function theorem yield a consistent
piecewise-defined trajectory x1�t1� from a given piecewise-
defined trajectory x2�t2�.

Notice that for given continuous and piecewise C1 x2�t2�,
D��n� and L��n�, in general Eq. �29� determines only a func-
tion x1�t1 ,n� of the two variables �t1 ,n� through

x1�t1,n� = x2�t2� + D��n� + �t1 − t2�n − �t − t�
−�n � L��n� .

�35�

The implicit function theorem further determines t2 and t as
functions of t1 and n from Eqs. �25�, �26�, and �35�. For the
implicit function theorem to yield a consistent trajectory, we
must satisfy the consistency requirement that x1�t1 ,n� deter-
mined by Eq. �35� is a function of t1 only, i.e.,

�x1�t1,n�
�n

= 0. �36�

Condition Eq. �36� applied to the right-hand side of Eq. �35�
is the extra condition determining a consistent trajectory.
Since condition Eq. �36� must hold for all values of t1 in each
piecewise interval of the orbit, we must also have inside each
piecewise interval that

�2x1�t1,n�
�t1 � n

=
�

�n

 �x1�t1,n�

�t1
� = 0, �37�

which can be expressed as

�

�n
	�v2 − n�

�t2�t1,n�
�t1

+ n −
�t�t1,n�

�t1
n � L��n�� = 0.

�38�

The general solution to Eq. �38� involves an arbitrary
piecewise-defined function A��t1�, i.e.,

n +
�t2�t1,n�

�t1
�v2 − n� −

�t�t1,n�
�t1

n � L��n� = A��t1� .

�39�

A symmetric condition follows by exchanging indices 1 and
2 in Eq. �38�, introducing an arbitrary B��t2� and changing
the sign of L��n�, yielding

n +
�t1�t2,n�

�t2
�v1 − n� +

�t�t2,n�
�t2

n � L��n� = B��t2� .

�40�

The partial derivatives in Eqs. �39� and �40� can be evaluated
using Eqs. �25�, yielding
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A��t1�
�1 − n · v1�

−
v2�t2�

�1 − n · v2�
= K12n − n � L��n� , �41�

v1�t1�
�1 − n · v1�

−
B��t2�

�1 − n · v2�
= K12n − n � L��n� , �42�

where again K12 is defined by Eq. �32�.
Notice that Eqs. �41� and �42� with A��t1�=v1�t1� and

B��t2�=v2�t2� bring back Eq. �34� as the single necessary
condition to construct a consistent piecewise C1 continuous
trajectory x1�t1� from a given piecewise C1 continuous tra-
jectory x2�t2� by the implicit function theorem. We stress that
velocity discontinuities are absolutely necessary. The discon-
tinuities introduced by the nonzero L��n� in each piecewise
interval play an essential role in the solution as discussed
below Eq. �34�. Trying to solve either Eq. �41� or Eq. �42�
with L��n�=0 stumbles with the former obstruction that ro-
tation of n with fixed t1 and t2 places n either outside the
plane of A��t1� and v2�t2� or outside the plane of B��t2� and
v1�t1�. The nonzero L��n� provides the third linearly inde-
pendent direction forming a complete basis to express n in
Eqs. �41� and �42�.

It can be seen that piecewise-constant-velocity polygonal
orbits can be constructed using the suitable L��n� defined by
Eq. �34�, after which the implicit function theorem constructs
consistent continuous piecewise C1 trajectories. It would be
desirable to find bounded minimizer orbits of the variational
method �9� satisfying the vanishing far-field conditions Eqs.
�41� and �42�, as first conjectured for the orbits studied in
Ref. �18�. The justification to generalize to trajectories with
discontinuous derivatives is to include short-range bounded
GAH orbits in the family of physically possible orbits. This
was used in Ref. �18� to predict spectroscopic lines of hydro-
gen within a few percent agreement with the predictions of
quantum mechanics.

IV. DISCUSSION AND CONCLUSION

The fact that accelerations are discontinuous is expected
because the Wheeler-Feynman equations of motion are ex-
plicitly neutral for the accelerations. Consequently, it could
seem that a theory of piecewise-restricted Wheeler-Feynman
equations of motion should have only acceleration disconti-
nuities, a fact that already introduces discontinuous fields
and demands a generalization of electrodynamics. We have
seen that generalizing to trajectories with discontinuous ac-
celerations is not sufficient to include bounded two-body or-
bits with vanishing far-fields. Our analysis starting from the
variational method as the fundamental principle has shown
that, in general, the velocities are also expected to be discon-
tinuous at the same “generalized breaking points” along the
minimizer orbits. Our analysis, using the variational method
as a boundary-value problem, shows that the most general
solution of the Wheeler-Feynman neutral differential delay
equations has discontinuous accelerations and velocities.

The form of Eq. �12� is reminiscent of the energy operator
used formally in quantum mechanics. Since the evolution
parameter is arbitrary, the same parameter can be used in a
Lorentz-transformed frame, such that the momentum cur-

rents transform by like a four-vector. The existence of four
components that must be continuous and given by the partial
derivatives of a scalar invariant is again analogous to the
quantum Dirac equation and suggests a property analogous
to spin for the point charges. It is remarkable that Wheeler-
Feynman electrodynamics completed with a finite action en-
dows the point charges with a spinlike property. The exis-
tence of a spinorial four-component momentum current �Eqs.
�11� and �12�� is due to the parametrization-invariance sym-
metry of the electromagnetic variational method �9�. Other-
wise a generic action with delayed interaction has only three
momentum currents continuous at breaking points of mini-
mizer orbits.

In Ref. �29� only globally C2 solutions were sought for
the seemingly non-neutral one dimensional motion, so that
piecewise-defined solutions with discontinuous velocities
awaited study. In considering this, it is important that the
electromagnetic-action-functional Eq. �1� of Ref. �9� yields a
neutral-boundary-value-variational-method, as opposed to
the non-neutral variational methods of classical mechanics.

The variational principles of classical mechanics are two-
point boundary value problems that are equivalent to an
initial-value problem with initial velocity chosen to hit the
final trajectory point. Moreover, in the classical problem
there is no issue of velocity continuity, because the “history”
for a finite-dimensional ODE is a point. On the contrary, for
the electromagnetic variational method, choosing the “initial
velocity” to shoot the final point either requires a velocity
discontinuous with the past boundary history or the trajec-
tory arrives at the final point with the wrong velocity. The
generalization to discontinuous velocities extends the solv-
ability of the electromagnetic-boundary-value problem to a
larger class of boundary value data, which is the second ad-
vantage of our extension of Wheeler-Feynman electrody-
namics.

Electromagnetism was originally formulated with the in-
tegral laws of Ampere, Gauss and Faraday, and only much
later differential equations holding everywhere were intro-
duced by Maxwell. The requirement of a second derivative
existing everywhere is actually not needed for particle dy-
namics, where one is concerned only with the integral of the
force along the trajectory. The variational method is a step
back from Maxwell’s equations in the sense of weak solu-
tions. Replacing Maxwell’s equations by the vanishing of the
Frechét derivative Eq. �6� along a continuous trajectory with
boundaries in future and past yields solutions defined only on
bounded time-intervals. From these segments of orbits one
can construct the fields as derived quantities �8,22�. Since
fields constructed in this fashion involve a retarded and a
advanced position, before defining fields everywhere in
space we need to extend to a global trajectory. Extension is
possible using conditions Eqs. �11� and �12� and in general
involves velocity and acceleration discontinuities.

After extending to a global trajectory, it is then tempting
to translate our generalized electrodynamic quantities into
the concepts of Maxwell’s electrodynamics, but it must be
done carefully; The derivation of the differential form of
Maxwell’s equations given in �8� holds only in regions where
the extended fields are C1. Fields of continuous trajectories
with a countable number of breaking points should satisfy
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Gauss’s and Ampere’s law on most Gaussian surfaces and
Ampere’s circuits, apart from surfaces and circuits having a
portion of nonzero measure equidistant from a breaking
point, on which fields are undefined. Consequently, Poynt-
ing’s theorem in integral form holds in regions where the
fields are C1. Nevertheless, quantities like energy flux and
field energy in a volume have a meaning even for discontinu-
ous fields, so that a statistical interpretation could be sought
in the case of discontinuous fields; For example, the gener-
alized flux of the Poynting vector is an integral that can be
evaluated even when fields are undefined on sets of measure
zero. The Poynting vector P=E�B evaluated with Eqs. �13�
and �14� at �t ,Rn� becomes

P =
1

4
��Eadv�2 − �Eret�2�n �43�

where single bars denote the Euclidean modulus.
We stress that a condition of nonradiation is weaker than

our GAH, as follows; The GAH implies the vanishing of the
flux Eq. �43� because �Eret�2= �Eadv�2=0 almost everywhere,
while the converse is not true, i.e., the vanishing of the flux
integral alone does not imply the GAH. For example, the
circular orbits of Refs. �13,14� do not satisfy the GAH, and
even though these orbits do not radiate on average, circular
orbits have non-vanishing far-fields to disturb a “third charge
of the variational method” �i.e., are not short-range�. In Ref.
�14� a model for the neutron was attempted, and even if it
had not failed for other reasons, it would yield a neutron with
far-fields. As regards non-vanishing far-fields, a first attempt
to overcame the GAH-deficiency of circular orbits �14� was
the perturbation theory of Ref. �18� that added high-
frequency modes of the tangent dynamics to enforce Eq. �23�
at the frequency of the circular orbit.

We have shown that our variational method yields a dy-
namical system even for limiting orbits with discontinuous
velocities. For example, along piecewise-constant-velocity
polygonal orbits the variational equations of motion would
be applied as follows; On discontinuity corner points with no
acceleration defined, one enforces continuity of momentum
only, Eq. �11�. At other points, wherever accelerations are
defined, one uses the usual Wheeler-Feynman equations of
motion. �Notice that piecewise-constant-velocity polygonal
orbits have vanishing far-fields but obviously do not satisfy
the equations of motion, unless charges are far apart�.

We have demonstrated five different and important rea-
sons to study orbits with discontinuous derivatives: �i� inclu-
sion of bounded GAH orbits as short-range orbits; �ii� com-
patibility with the conservation of Noethers momentum; �iii�
compatibility with the neutrality of the equations of motion
of the Wheeler-Feynman electrodynamics; �iv� the fact that
the variational method is natural in a space completed to
contain orbits with discontinuous velocities; and �v� inclu-
sion of limits of sequences of nonradiating orbits.

The physical need for trajectories with discontinuous ve-
locities is justified as limiting orbits defined by Cauchy se-
quences of bounded orbits which must develop kinks in the
short-range limit �i.e., the GAH�. In Ref. �18� the GAH de-
ficiency of circular orbits was removed with a perturbative
Fourier series that solved Eq. �23� at the first harmonic fre-
quency only. As we have shown here, the perturbative series
of Ref. �18� should converge to an orbit with discontinuous
velocities. The short-range condition of Ref. �18� predicted
orbits and spectral lines in the atomic magnitude with a sur-
prising precision, so that we can claim agreement with ex-
periment and quantum mechanics. Piecewise-defined mini-
mizers have also been used successfully to explain double-
slit diffraction in Ref. �10�.

From our generalized electrodynamics with discontinuous
derivatives it should be possible to derive a generalized elec-
trodynamics with delayed-only interactions and self-
interaction, using the GAH in close analogy with the deriva-
tion of Wheeler and Feynman �8�. Since we expect solutions
with velocity discontinuities, Taylor expansions of deviating
arguments should be avoided or piecewise restricted. It is
known that many-component delay differential equations be-
have like neutral differential delay equations when some so-
lution components are discontinuous at breaking points, in
the sense that the discontinuous derivatives never smooth out
�31�. Therefore, the third derivative should be generalized by
restricting it to a left derivative and a right derivative at
breaking points. Also, the generalized absorber hypothesis
with discontinuous fields no longer implies the vanishing of
the difference of retarded and advanced universal fields ev-
erywhere, as used by Wheeler and Feynman �8,32�. Our Eq.
�34� and its advanced version give the corresponding weaker
generalization to this former stronger condition of a vanish-
ing difference of retarded and advanced fields everywhere.
We speculate that Eq. �34� should be the starting point for a
generalized theory of self-interaction free of the pervasive
runaways of the two-body problem with the usual self-
interaction �Refs. �24–28��.

Last, we speculate that unbounded scattering orbits are
different from the bounded orbits studied here. Along un-
bounded orbits Eq. �24� contains the extra secular term with
a constant V��n��0. The dependence on boundary segments
and time separation must be investigated for scattering tra-
jectories with discontinuous velocities and accelerations at
the boundaries; For example, even if the history segment
�O− ,O+� of Fig. 1 is assumed C
, the forward sewing chain
of O+ places a breaking point f3 in the history segment
�L− ,L+� of particle 1. Unless histories are very special so that
derivatives are continuous at O+, in general the history
�L− ,L+� should involve a discontinuous derivative at point f3.
Scattering trajectories are likely to have future continuations
involving stiffer jumps at later times, so that particles collide
with laboratory boundaries, which can be regarded as a gen-
eralized type of radiative loss.
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