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A great number of physical processes are described within the context of Hamiltonian scattering. Previous
studies have rather been focused on trajectories starting outside invariant structures, since the ones starting
inside are expected to stay trapped there forever. This is true though only for the deterministic case. We show
however that, under finitely small random fluctuations of the field, trajectories starting inside Kolmogorov-
Arnold-Moser �KAM� islands escape within finite time. The nonhyperbolic dynamics gains then hyperbolic
characteristics due to the effect of the random perturbed field. As a consequence, trajectories which are started
inside KAM curves escape with hyperboliclike time decay distribution, and the fractal dimension of a set of
particles that remain in the scattering region approaches that for hyperbolic systems. We show a universal
quadratic power law relating the exponential decay to the amplitude of noise. We present a random walk model
to relate this distribution to the amplitude of noise, and investigate these phenomena with a numerical study
applying random maps.
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Scattering is the general term used to describe systems
whose dynamics take place in an unbounded phase space,
and such that the dynamics is trivial outside of a localized
region called the interaction region. A classical example is a
thrown particle which collides or interacts with a fixed target,
then escapes from the neighborhood of the obstacle. If the
region where such particle interacts with the obstacle is
much smaller than the whole space we locally assume that
the particle comes from infinity and is scattered again toward
infinity. Alternatively, we may want to consider the dynamics
of initial conditions starting inside the scattering region, in
other words, the dynamics of an open system. We represent it
by the dynamics, xn+1= f�xn�, taking place in an unbounded
phase space M such that, the scattering region is W�M.
Accordingly, the orbits of initial conditions in W, the region
of interest, may eventually leave W permanently. When the
dynamics within a scattering region is chaotic, we say that
we have a chaotic scattering. A typical signature for chaotic
scattering is that characteristic quantities associated with the
particles, or trajectories, after being scattered are sensitive to
their initial conditions before entering the scattering region.

Chaotic scattering is a very active research topic in dy-
namical systems. It has been found to describe a very broad
class of dynamical processes. To mention a few cases, one
may consider the dynamics of active chaos, i.e., chemical
reagents or biological particles being advected by the flow
and at the same time undergoing intrinsic transformations,
such as biological reproduction or chemical reactions. A re-
markable example is found in the study of plankton popula-
tion in the oceans �1,2�. One may also consider the dynamics
of blood flow and investigate the role of the chaotic advec-
tion in the residence time of platelets and its consequence for
the deposit and blocking of blood vessels �3�. A further ex-
ample may be taken from the consideration of scattering par-

ticles in celestial dynamics �4�, among many other dynamical
phenomena.

Because scattering dynamics are so closely related to scat-
tering of particles in physical systems, we commonly refer to
the dynamics of initial conditions in a region of the phase
space as dynamical of particles whose dynamics started in
such region. From the dynamics point of view, chaotic scat-
tering is characterized by the presence of a chaotic nonat-
tracting set containing periodic orbits of arbitrarily large pe-
riods as well as aperiodic orbits distributed on a fractal
geometric structure in the phase space—the chaotic saddle
�5�. In analogy to more general dynamics, chaotic scattering
can be hyperbolic and nonhyperbolic. In the former case, all
orbits in the chaotic saddle are unstable, and a randomly
chosen initial condition has full probability of escaping
within finite time. Hyperbolic scattering is also associated
with an exponential decay of probability for particles to be
found in the scattering region after a given time t. That is, if
we have a number N0 of randomly chosen initial conditions
within the scattering region, the number of particles N�t� in
that region decays exponentially on time and consequently

P�t� � e−�t,

where P�t�=limN�0�→� N�t� /N�0� is the probability for par-
ticles to remain in the interaction region after time t �20�, and
� a constant �5�. Nonhyperbolic scattering, on the other
hand, is characterized by the presence of Kolmogorov-
Arnold-Moser �KAM� islands in phase space. These islands
surround marginally stable periodic orbits. Orbits from the
outside can spend a long time in the vicinity of the KAM
islands before escaping, and this “stickiness” effect causes a
slower escape dynamics than that found in hyperbolic sys-
tems: nonhyperbolic escape is characterized by a power law
distribution of probability,*christian.rodrigues@mis.mpg.de

PHYSICAL REVIEW E 82, 026211 �2010�

1539-3755/2010/82�2�/026211�6� ©2010 The American Physical Society026211-1

http://dx.doi.org/10.1103/PhysRevE.82.026211


P�t� � t−�,

for large enough t �6–8�. An important characteristic is that
due to the invariance of the islands and the area preserving
property of the dynamics, if initial conditions are chosen
inside an island, orbits are expected to be trapped there for-
ever �5�.

The above discussion refers to completely deterministic
dynamics. However, since most phenomena in nature are al-
ways subjected to small fluctuations from their surrounding
environment, a central question is: how does the dynamics of
scattering systems change in the presence of random pertur-
bations?

Here we focus on random perturbations of the parameters
defining the system. From the Dynamical Systems perspec-
tive, this situation can be formalized by the concept of ran-
dom maps, which we will apply throughout this paper,

xn+1 = fn�xn� ,

where we randomly choose slightly different maps fn for
each iteration n �see Eq. �2� below�. It is known that such
dynamics has well-defined �in the ensemble sense� values of
dynamical invariants such as fractal dimensions and
Lyapunov exponents �9,16,17�. Note that we associate the
choice of the map with the iteration. Therefore, all initial
conditions in a given iteration are mapped by the same se-
quence of random maps. On the other hand, if we implement
independent random noise added to each trajectory, what has
been previously considered for the random noisy dynamics
�10–14�, the situation is very different, as we shall discuss
later.

Let us recall that hyperbolicity is a structurally stable
characteristic of dynamical systems, i.e., hyperbolic systems
are robust under small smooth perturbations of the system.
But on general grounds, one expects the perturbation of a
nonhyperbolic dynamical system to result in a hyperbolic
dynamics. We remark that the notion of structural stability is
related to perturbations of the whole dynamical system and
not to noisy diffusionlike perturbations of individual trajec-
tories �15�. Although it is possible to define random invari-
ants in more general grounds �9�, for our context it makes no
sense to talk about dynamical invariants such as the
Lyapunov exponent and fractal dimensions in the noisy dy-
namics in this latter case, because trajectories will be
“smoothed-out” in small scales and all fine-structure dynami-
cal structures will disappear. In the case of perturbation of
parameters, on the other hand, we have “random maps” �16�,
which are known to have well-defined dynamical invariants
in a measure-theoretical sense �17�.

A further observation is that, since hyperbolic systems are
structurally stable, we expect that small perturbations would
not result in qualitative changes to the dynamics of hyper-
bolic maps. In particular, escape should continue to be expo-
nential. For nonhyperbolic systems, the same cannot be ex-
pected. Thus, we expect to see qualitative changes due to the
perturbations. As an example, we could heuristically see the
KAM tori no longer as confining, since now the perturba-
tions can always push orbits out of the region of an island,
and conversely orbits on the outside can be pushed inside a

torus by the perturbations. The destruction of this essential
feature of nonhyperbolic scattering leads us to hypothesize
that even arbitrarily small random perturbations to the dy-
namics will turn a nonhyperbolic scattering system into a
hyperboliclike dynamics. Hence, we expect the probability
distribution of escaping time for perturbed nonhyperbolic
systems to become exponential.

In this paper we explore and test this hypothesis using a
simple scattering map as a model system. We derive an ana-
lytical theory to predict the scaling of the escape rate of
nonhyperbolic scattering systems under weak perturbations.
The theory predicts that the �exponential� escape rate goes to
zero as the amplitude of the perturbation decreases following
a quadratic law, which we argue is universal for all perturbed
nonhyperbolic systems. We verify this prediction numeri-
cally, and find that it describes well the results of our simu-
lations.

In order to better understand the effects of random param-
eter perturbations on the dynamics of nonhyperbolic Hamil-
tonian systems, we develop now a simple statistical model of
the motion of a single trajectory in the presence of perturba-
tions.

In the absence of random perturbations, the islands act as
barriers in the phase space; due to the area-preserving prop-
erty of such dynamics, those invariant structures cannot be
transposed �5�, thus trajectories trapped inside islands never
escape. Now suppose a small noise is added to the system’s
parameter. The effect of noise is to vary randomly the pa-
rameter from iteration to iteration, but noise amplitude is
assumed to be small enough so that the parameter lies in the
range where the system is nonhyperbolic. The effect of one
iteration could be, say, to change the parameter � to a
slightly smaller value, but still keep it within the range such
that the dynamics is nonhyperbolic. The effect of the new
parameter is then to cause a small shift in the KAM struc-
tures compared to the value of � in the previous iteration.
For the next iteration another value of � is chosen, and the
KAM islands again move slightly in phase space. This hap-
pens at every iteration, and the global effect is a sort of
random walk of the KAM structures around their positions in
the absence of noise. Figure 1 is an idealized illustration of
the orbit of a particle on a torus. We represented three steps,
a simple torus—Fig. 1�a�, the effect of the new parameter—
Fig. 1�b�, and finally, what would be ideally expected for
four iterations—Fig. 1�c�.

In other words, the perturbations can be imagined to cause
orbits to gain motion in the direction transversal to the tori.
The magnitude of this transversal component of the motion
is proportional to the intensity of the perturbation �in the case
of small perturbations�. Since only the transversal compo-
nent can cause an orbit started within a KAM island to es-
cape, we focus on this component of the motion alone.

The transversal motion is due entirely to the random per-
turbations, and as a first approximation we model it as a
one-dimensional random walk. The size of the step � of the
random walk is proportional to the amplitude of the pertur-
bation. After n steps, the typical distance D from the starting
position reached by the walker is D��n� �18�. Let D0 be a
typical transversal distance a particle needs to traverse in
order to cross the last KAM surface and escape. Thus the
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average time �number of steps� � it takes for particles to
escape scale is given by D0

2���2. So � scales as ���−2. The
conclusion is that our simple model predicts an exponential
decay of particles, with a decay rate ���−1 scaling as

� � �2. �1�

Note that the dynamics described by random maps here is
very different from that where random noise is added to in-
dividual trajectories. In the latter case, an analysis in terms of
stochastic stability is more adequate because the behavior of,
for example, two distinct orbits evolved from different initial
conditions cannot be compared in terms of �Lyapunov� sta-
bility. In fact, even by following two distinct time evolutions
from the same initial condition we may observe completely
distinct behavior due to the two different noise realizations,
possibly not correlated. In particular, for scattering under the
presence of noise �12�, it has been shown that the exponen-
tial escape rate is preserved in weakly dissipative systems
and that also an exponential escape rate should be expected
for non dissipative ones, for noise intensity above a thresh-
old. Indeed, because trajectories under different noise real-
izations may not be correlated for a certain level of noise, we
expect a resultant random behavior to be dominant, and
therefore a distribution of random values of escaping time.
Hence, an exponential distribution naturally follows. This
scenario has already been pictured in �12� by considering
that above the critical level of noise, an effective random
redistribution of particles results in a blurring of the fine
structure of the KAM tori. In the dynamics given by random
maps considered here, on the other hand, all the trajectories
are evolved under the same realization and fine-scale struc-
tures are preserved for each map, allowing a well-defined
analysis of structural properties of limit sets �9�. In this case,
one can, for example, evaluate the Lyapunov stability of or-
bits by comparing the convergence toward one another or the
divergence of different random orbits generated by the evo-
lution of distinct initial conditions, since they are subject to
the same sequence of perturbations. It is also possible to
define consistently the fractal dimension of invariant sets un-
der the iteration of the random maps �17�, unlike in the case

of independent realizations of noise for different particles.
Intuitively, we can think of such a system as perturbations of
the dynamics itself, for example, a set of particles that evolve
subject to a field that undergoes random fluctuations. There-
fore, all particles are thought to evolve under the same se-
quence of dynamical laws, rather than each particle being
subject to random uncorrelated kicks. This key characteristic
is what allows us to consider our model based on the random
walk of the tori and develop our approach in order to derive
the power law described by Eq. �1�. As we shall see in what
follows, it also allows us to consider singular sets of initial
conditions, which we will use to compute the fractal dimen-
sion. Furthermore, we remark again that the initial conditions
used here are always chosen inside the original KAM struc-
tures. For this set of particles, if no random perturbation is
considered, there should not have any escape at all due to the
preserving property of our map. Simply the fact that such
escape indeed happens is already by itself a novelty charac-
teristic introduced by the perturbations of the dynamics and
explained by our theory.

In order to test our theory, we numerically obtained the
probability distribution P�t� that particles have not escaped at
time t from a given region W of the phase space under the
dynamics of an area-preserving nonhyperbolic map. We have
chosen the map

xn+1 = �n�xn − �xn + yn�2/4� ,

yn+1 =
1

�n
�yn + �xn + yn�2/4� , �2�

which is nonhyperbolic for ��6.5 �7�. We define W= ��x�
	5.0, �y�	5.0	. The initial conditions were randomly chosen
with uniform probability in the line x� �2.05,2.07� ,y
=0.465. For this interval, the particles start their trajectories
inside a KAM structure �see Fig. 2�. Because we are inter-
ested in perturbing the system, we chose ��=6.0. Then, for
each iteration n we randomly chose a perturbation �
n� in the
interval �
n�	�, where � is the amplitude of the perturbation.

O1

(a) (b)

O1
O2

noise

(c)

FIG. 1. �Color online� Simplified representation of the orbits on
the torus. In �a�, it is represented a single torus and its center. In �b�,
it is represented the effected of the perturbation. The difference
between the dashed and the continuous line is due to the effect of
the noise, that dislocate the center of the torus from O1 to O2. In �c�
we show what would be expected for four iterations. Each continu-
ous line represents the orbit of a particle on the torus for each
iteration, hence different values of perturbations at each iteration.
The center is expected to move around O1 at each interaction and
for long enough time, the distribution of centers would fill densely
the area within the dashed circle.

FIG. 2. Phase space for the map 2, for �=6.0. The inset shows
a blowup of the region �x ,y�� �2.05,2.20�� �0.44,0.47�.
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Indeed, for the simulations we observe, as expected, the sce-
nario pictured in Fig. 1. We show in Fig. 3 a portion of the
phase space containing KAM islands for different values of
perturbations.

We show in Fig. 4 the probability distribution P�t� for
different values of �. We clearly see that the escape follows
an exponential law in a broad range of times, for various
perturbation amplitudes. For each value of �, we show the
exponent  that best fits the exponential law P�t��e−t in the
range of times for which the probability distribution is expo-
nential.

We also observe that for small values of the perturbation
amplitude, the stickiness plays an important role on the es-
caping time distribution of particles that leave the nonattract-
ing chaotic set. This is because even after a particle escapes
from a KAM island, it may be trapped for long times by
Cantori. Under small amplitude of perturbations, this causes
a slower escape than that predicted by our model. This sig-
nature of the stickiness is observed in the tail of the distri-
bution shown in Fig. 4 as a cutoff for long times in the
exponential escape of particles. The exponential probability
distribution of escape time agrees with our hypothesis that
the dynamics of the perturbed system is hyperboliclike in the
presence of the random perturbations.

Using our random walk escaping model, from Eq. �1� and
Fig. 5, we identify �
, and �
�. In order to construct our
model, we have not taken into account the effect of sticki-

ness. Therefore, it is reasonable to expect that the obtained
exponent should actually be smaller than 2. We show in Fig.
5 the dependence of  on the amplitude of the perturbation �,
for the map given by Eq. �2�. First of all, we notice that 
indeed follows a power law, as our model predicts. We also
obtained a good agreement with the square law predicted by
Eq. �1�.

Another fundamental characteristic, differentiating nonhy-
perbolic chaotic scattering from the hyperbolic case, is the
fractal dimension of singular sets. One expects that choosing
initial conditions from a line in W, the set of particles that
remain in W after a given time T0 should form a Cantor set
with fractal dimension d	1 in the case of hyperbolic dy-
namics. It is due to the exponential decay of probability,
characteristic of hyperbolic systems. On the other hand, the
algebraic decay of nonhyperbolic scattering leads to the
maximal value of the fractal dimension, d=1 �7�. However, it
is well known that in practice one would need in most cases

FIG. 3. KAM structures under the perturbed dynamics for dif-
ferent values of �. Figure 3�a�, �=0, Fig. 3�b�, �=0.0004, and Fig.
3�c�, �=0.002.
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FIG. 4. �Color online� Probability distribution of escaping time t from the region W= ��x�	5.0, and �y�	5.0	 for different values of �.
Initial conditions were randomly chosen in the line x� �2.05,2.07� ,y=0.465 inside nest KAM structures. For each value of �, we present the
exponent  that best fits the exponential region of the probability distribution. Figure 4�a� shows all used values of �, Fig. 4�b�, shows small
values of t.
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to go down to unreasonably small scales to see the actual d
=1 prediction in a nonhyperbolic scattering system. For
scales that are physically meaningful, in most cases one finds
that the chaotic saddle and its associated sets �stable and
unstable manifolds, etc.� have a position-dependent effective
dimension �2,8�, which is lower than 1.

As an example of scattering function, we consider the
time-delay T�x�. The idea is to calculate the fraction f�
� of
pairs of initial conditions started in random positions of the
phase space with distance 
 of each other whose trajectories
diverge within the scattering region, and whose orbits end up
escaping through completely different routes. In order to
compute that, we chose initial conditions inside a KAM
structure. We chose y0=0.465, and different values of x0
were randomly chosen to belong to the interval �2.05, 2.15�.
For a fixed value of uncertainty 
 we chose x0 and compute
�T�x0�−T�x0+
��. If �T�x0�−T�x0+
���2 we say that x0 is

-uncertain. Dividing the number of 
-uncertain points by
the total number of initial conditions we obtain f�
�, the
uncertain fraction. It can be shown that for chaotic scattering
systems f�
� scales as a power law 
�, and that the box-
counting fractal dimension d is given by d=1−� �19�. We
expect that the smaller the amplitude of noise, the closer the
d is to 1, which would correspond to the nonhyperbolic limit.
We show in Fig. 6 the estimated fractal dimension of the
function T�x�, for different values of �. We notice that when
the amplitude of the perturbation is decreased, the dynamics
approach the nonhyperbolic limit, and so do the estimated

values of fractal dimension, which approach 1 as �→0. Fur-
thermore, we notice that � scales as a power law with the
amplitude of noise, i.e., ���0.37.

In conclusion, we have shown that random small pertur-
bation of nonhyperbolic maps leads to hyperbolic behavior.
We have presented a random walk model to explain the es-
cape of particles from inside invariant KAM islands. Such
particles are expected to be trapped there forever in the ab-
sence of perturbation. When the perturbation is present, we
show that, not only particles are able to escape, but also they
have hyperbolic behavior, with a universal quadratic power
law relating the exponential decay to the amplitude of the
perturbation. We further investigated the hyperbolic behavior
estimating the fractal dimension of the set of particles that
remain inside the islands for a given time. We show that
indeed the fractal dimension is in agreement to what is ex-
pected for a hyperbolic system.

We call the attention of the reader to an important issue on
scattering dynamics clarified by our results. Note that despite
the generality of scattering phenomena, mostly of the mod-
eling of real processes has assumed a simpler chaotic dynam-
ics, that is, given by hyperbolic structures. Nevertheless, it is
widely argued that most of the flows experimentally signifi-
cant are nonhyperbolic; see references therein �2�. In active
dynamics, or blood flow, for example, the modeling describe
systems where we have trapped vortices. Therefore, in the
absence of perturbations the particles would not leave the
trapping regions; this would correspond to plankton not be-
ing able to leave a given region in the sea, or blood particles
being trapped indefinitely in vortices, which is in contrast
with most observations. As a consequence, although the dy-
namics is described by nonhyperbolic scattering, the escape
is in many cases assumed to follow an exponential law, with-
out any further explanation �1,3�. Since it is reasonable to
assume that these flows naturally experience random pertur-
bations, our theory provides an important bridge to allow one
to encompass natural phenomena under the nonhyperbolic
scattering framework.

Apart from striking implications to the above mentioned
dynamics, our result may play a fundamental role on the
understanding of how sources, and escaping rates of particles
act on the dynamics of Saturn Rings �4�. The rings are
thought to be marginally stable periodic orbits, and the gaps
to be rational tori or made up by commensurable frequen-
cies. They are subjected to gravitational perturbation and per-
turbations of the electromagnetic field, due to solar storms,
solar winds, magnetic storms, etc. �4�, or due to the dynamic
of ring current around Saturn �4�. Such random perturbations
would be represented by our perturbation on the parameter �
in Eq. �2�. Hence, if measured, we would expect an
exponential-like escape of particles. Therefore our results
may shed some light onto the understanding of the escape of
small particles like in the Saturn’s E ring �4�.
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FIG. 6. �Color online� Estimated fractal dimension of the T, for
different values of �. We notice that, when the amplitude of the
perturbation is decreased, the dynamics approach the nonhyperbolic
limit, and so does the estimated values of fractal dimension. The
inset shows the value of � as a function of �.
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