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Wave propagation in a FitzHugh-Nagumo-type model with modified excitability

E. P. Zemskov'*™ and L. R. Epstein”
lDepartment of Chemistry, Brandeis University, MS 015, Waltham, Massachusetts 02454, USA
2Compm‘ing Centre of the Russian Academy of Sciences, Vavilova 40, 119333 Moscow, Russia
(Received 19 February 2010; revised manuscript received 23 July 2010; published 13 August 2010)

We examine a generalized FitzHugh-Nagumo (FHN) type model with modified excitability derived from the
diffusive Morris-Lecar equations for neuronal activity. We obtain exact analytic solutions in the form of
traveling waves using a piecewise linear approximation for the activator and inhibitor reaction terms. We study
the existence and stability of waves and find that the inhibitor species exhibits different types of wave forms
(fronts and pulses), while the activator wave maintains the usual kink (front) shape. The nonequilibrium
Ising-Bloch bifurcation for the wave speed that occurs in the FHN model, where the control parameter is the
ratio of inhibitor to activator time scales, persists when the strength of the inhibitor nonlinearity is taken as the

bifurcation parameter.
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I. INTRODUCTION

Wave propagation and pattern formation in a variety of
excitable media can be effectively described by reaction-
diffusion equations. One of the simplest two-component sys-
tems is the FitzHugh-Nagumo (FHN) [1] model,

9 s

S u(l-wu—a) -0+ D5, (1)
dv Fv
o =e(u-v) +Dv@’ (2)

where u and v are the activator and inhibitor variables, re-
spectively; and the excitation threshold, a, the ratio of time
scales, €, and the diffusion coefficients, D, and D,, are con-
stants. This model has been widely studied as a qualitative
prototype for excitable systems in many biological [2] and
chemical [3] contexts. Its piecewise linear caricature, the
Rinzel-Keller [4] model,

du FPu
E=—u—v+9(u—a)+Du£, (3)
dv Pv
— = -v)+D,—, 4
ot s(u-v) Y ox? @

allows for analytic solution by replacing the nonlinear term
in Eq. (1) with the Heaviside function, &(u—a).

To take into account the nonlinear dependence of the in-
hibitor reaction term that appears in more complicated mod-
els [5,6] (which are related to Morris-Lecar [7] type neuron
models), Tonnelier and Gerstner [8] generalized the Rinzel-
Keller equations and suggested a simple double piecewise
linear variant

du

Z=_u/7-_v+,u,6(1,t—a)+1, (5)
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dv

- blab(u—a)-v]. (6)
Here, the piecewise linear function in the first equation ap-
proximates the cubic nonlinearity in the activator kinetics,
while the terms in the second equation mimic the sigmoidal
function that describes [9] the behavior of the inhibitor vari-
able in the Morris-Lecar model.

We consider here a general reaction-diffusion model,

which includes both the Rinzel-Keller and the Tonnelier-
Gerstner models as particular cases, i.e.,

%:—au—v+9(u—a)+a—xb;, (7)
%=8[&u—v—,80(u—a)]+%. (8)

Equations (7) and (8) correspond to the Rinzel-Keller model
with piecewise linear inhibition. The null clines for this
model are shown in Fig. 1 for 8>0. This parameter charac-
terizes the difference between the linear inhibition kinetics in
classical FHN type systems, where 8=0, and the nonlinear
Tonnelier-Gerstner form, which is obtained when a=0 and
B<0. We can also obtain a system composed of two coupled
Nagumo-type equations [10] when a=a=8=1.

FIG. 1. Null clines for the model (7) and (8) with 8>0. Solid
line: activator null-cline —au—v+ 6(u—a)=0; dotted line: inhibitor
null cline au—v-B6(u—a)=0.
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In an earlier study of a Rinzel-Keller-type model with
equal diffusion coefficients [11], we developed techniques
for obtaining exact solutions for propagating fronts, the front
velocity and the growth rate of disturbances, i.e., the stability
of fronts. Recently [12], we examined a simple piecewise
linear reaction-diffusion model that possesses a front solu-
tion and used these methods to explore the effects of cross-
diffusion, which may be relevant in both neuronal and eco-
logical systems. Our goal here is to study the wave dynamics
associated with a more general nonlinearity of the inhibitor
reaction function than in the Tonnelier-Gerstner case. Thus,
we extend the values of B into the positive range. We find a
variety of propagation phenomena and explore in some detail
the nonequilibrium Ising-Bloch bifurcation from stationary
to propagating fronts.

In Sec. II, we outline our method for obtaining analytic
solutions for fronts in models of this type and present ex-
plicit solutions for several cases. In Sec. III, we obtain an
expression for the front speed and examine how that speed
varies with the inhibitor nonlinearity 8. In Sec. IV, we inves-
tigate the stability of the solutions obtained and apply these
results to consideration of the Ising-Bloch bifurcation. Sec-
tion V contains a brief summary and conclusion.

II. CONSTRUCTION OF TRAVELING WAVES

We look for traveling waves that approach constant con-
centrations at infinity. Introducing the traveling wave coordi-
nate é=x—ct, where c is the wave speed, we can replace the
original PDEs [Egs. (7) and (8)] by a set of ODEs

2
oot
2

Zgz+Cj_l;+s[&u—v—/30(u—a)]=0' (10)

We seek a general solution as a sum of four exponentials,
u(§)=3A, exp(\, &) +u*, v(§)=ZB, exp(\,,&)+v*, where
A,,B,(n=1,...,4) are integration constants and u”,v" are
constants to which the solution tends at infinity. The four
eigenvalues A\, may be found by the method introduced in

Ref. [11]. We obtain
No=—c/2+p1y Nu=—c/l2-piy (11)

with

pra= A+ (e +a)2 = (e + @) ld—e(a+@). (12)

The constants B, can be expressed in terms of the A, as B,
= ()\i+c)\,,— a)A,, or

Bl,3=/-L]Al,3’ Bz,4=,Uv2A2,4, (13)
where
—
mo=(e—a)2 * V(e - a)’/4 - ca. (14)

To construct the front solutions from the two pieces valid on
either side of the jump point, a, we must take into account
the signs of the \,. Since & and « are positive, A ,>0 and
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N\34<<0, so the front solutions, which must approach the
steady state values, (0,0) and (u*,v") at —o and +%, respec-
tively, are

() =AM+ Ay,

v1(§ =BME+ By, E=<§, (15)

I/l2(§) =A3€)\3§ +A4€)\4§+ M*,

0,(&) = B3e™¢ + ByeMt 4 v,

§=¢&,. (16)

Here u"=(1+p)/(a+a@) and v*=(a-aB)/(a+a).

For some values of € and «, the simple exponential front
solutions (15) and (16) take on a damped oscillatory charac-
ter, because, as found in Ref. [11], there exists a range of &
and a where the eigenvalues A\, become complex. For a=1,
when &) <e<e}, where &, =a+2*2Va+1, the \, have
nonzero imaginary parts, so that the functions u(¢) and v ()
contain cosine and sine terms.

In the Rinzel-Keller case we have a=a=1 and S=0.
Then

pa=Vcd+(e+ )2+ e+ 1)4—-2¢e,  (17)

ma=(E-112= VEe-1)Y4-¢ (18)

and u*=v*=1/2. This case was studied in detail in Ref. [11].

In the Tonnelier-Gerstner case we set =0 and S<<0. In
this situation w;=0 and w,=e—a<0 since we usually
choose a=1 and the ratio of the time scales is already very
small, e<<1. Hence

—_—

pr=NcHd+a, py=\cd+e=cl2 (19)

and u*=(1+B)/a, v*=—p. Thus, the traveling fronts in this
case always have nonoscillatory tails. The front profiles in
the Tonnelier-Gerstner case have shapes similar to the FHN
model and we do not discuss them in detail here.

III. SPEED EQUATIONS

The analytic solutions discussed above are constructed on
two half-lines and must be matched where they meet. Re-
quiring the continuity of the functions u(§),v(€) and their
derivatives yields five equations, with the fifth equation fix-
ing the matching point, #(0)=a, where &,=0 is chosen,

A +A,=a, As+A,+u‘=a,
1 +A 3+ Ay

Al)\l +A2)\2 =A3)\3 +A47\4,
Ay + Agpy = Agpuy + Ay + 07,

ANy + Agpiohy = Az Ny + Agpuohy. (20)

Eliminating the constants A,, we reduce the number of equa-
tions from five to one and after introducing Eq. (11), simple
algebra yields the following equation for the speed c:
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FIG. 2. Speed diagrams. Wave speed vs excitation threshold at (a) S=0 (the Rinzel-Keller model), (b) 8=0.3 and (c) B=1 (two coupled

Nagumo equations). Parameters: a=a=1 and £=0.1.

U (P11 = paita) = v (p1=p2) + p1pa(pey = pp) (1™ = 2a)

=0. (21)

Here we have taken into account that u; # w,. From this
speed equation it follows directly that there exists a motion-
less front (c=0) when the system is symmetric (a=u"/2).
From Eq. (21) one can express the threshold a as

®

u c 1 N X
a=—+-———"[u"(pp1 — papa) v (p1 - p2)].
2 4pipr(py = mo)

(22)

In the Rinzel-Keller model, because u*=v*=1/2, the
speed Eq. (22) reduces to

1 ¢ 1

a=—+-—|( - )= (p1 = p)]
478 pipy(r — o) P11 — PaM2 P1— P2

(23)

and the symmetry condition is a=1/4. The front speed be-
havior for the FHN model and its piecewise linear approxi-
mation are well known [4,13,14] and are not discussed fur-
ther here.

In the Tonnelier-Gerstner case, using the fact that u,=0,
we can write the speed Eq. (22) in the form

u* cl cv'(1 1
a=—|1l+=-——|+-——(—-—]|. (24)
2p 4ur\py  p

There is an additional special case (two coupled Nagumo
equations) with symmetric null clines, i.e., when a=a=p
=1 in Egs. (7) and (8). Here u*=1 and v*=0 and the speed
equation becomes

1 ¢ pipy—papiy

= . (25)
2 4pipy(uy = po)

a
The symmetric situation appears here when a=1/2.

The speed diagrams, ¢ vs a, described by Eq. (22) for a
=a=1 and £=0.1 and at fixed values of 3, are shown in Fig.
2. In Fig. 2(a) the c—a curve folds to form three connected
branches, i.e., a bifurcation occurs as we vary the control
parameter a. This bifurcation has been referred to in the lit-
erature as a nonequilibrium Ising-Bloch bifurcation [14,15].
As the influence of the nonlinearity of the inhibition, f3,
grows, the folded region of the curve narrows and unfolds
[see Fig. 2(b)] when B=1 [Fig. 2(c)]. The same bifurcation

scenario is found when the bifurcation parameter is chosen
as the ratio of time scales, €. On the c—& diagram the bifur-
cation appears as a pitchfork curve. In the additional special
case [Eq. (25)] the front speed behavior is very simple and
corresponds to that shown in Fig. 2(c). The speed diagrams
for the Tonnelier-Gerstner case, ¢ vs a, show the same bifur-
cation scenario as in the above-described general case. The
nonequilibrium Ising-Bloch bifurcation now occurs when the
parameter 3 becomes negative.

The corresponding wave profiles are shown in Figs. 3—6.
In Fig. 3 the activator front u=u(&) with nonoscillatory tails
is presented; the corresponding inhibitor front v=v(§) is il-
lustrated by Fig. 5(a). In Fig. 4 the activator front has oscil-
latory tails; the related inhibitor front is shown in Fig. 6(a).
Figures 5(b), 5(c), 6(b), and 6(c) represent the inhibitor
waves for different parameter values. The corresponding ac-
tivator profiles are similar to those shown in Figs. 3 and 4
and are not displayed here.

In Figs. 3 and 5 the ratio of the time scales is €=0.1, and
the slope of the activator null cline is a=1, so that the fronts
have nonoscillatory tails. When g is small the fronts are
similar in shape to the classical FHN fronts. But when S is
large enough (>0.5) the profile of the inhibitor front be-
comes nonmonotonic [Fig. 5(a)], whereas the activator pro-
file remains the same. Moreover, for 8=1 we obtain a front-
pulse combination of waves: the activator wave is still
associated with a front (heteroclinic-type wave), but the in-
hibitor wave is represented now by a homoclinic-type curve
or pulse [Figs. 5(b) and 5(c)]. Similar combinations of this
front-pulse type were described recently by Berezovskaya et
al. [16] in models with cross-diffusion. In Figs. 5(a) and 5(c)

u
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FIG. 3. Traveling wave solution with nonoscillatory tails for the
activator variable u=u(¢). a=0.5, a=1, a=1, =0.9, and £=0.1.
The calculated speed is ¢=0.134.
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FIG. 4. Traveling wave solution with oscillatory tails for the

activator variable u=u(§). a=1, a=0.1, a=1, B=5, and £=0.05.
The calculated speed is ¢=—0.975.

the fronts propagate with positive speed, i.e., from left to
right. When u*=2a the speed value is equal to zero, the
fronts are motionless [Fig. 5(b)].

In Figs. 4 and 6 the values of the basic parameters are
chosen to yield waves with oscillatory tails. The ratio of time
scales is fixed at £=0.05, and the slope of the activator null
cline is @=0.1. The characteristic features of the fronts with
oscillatory tails remain the same as in the FHN case: (i) the
oscillations are behind the front and (ii) the trajectory in the
u—v plane is a spiral, as described in Ref. [17].

IV. STABILITY ANALYSIS

To investigate the stability of the solutions u(&) and v (),
we consider a perturbation of the form Au(é,y,?)
=u(é)exp(wr+iky) and Av(&,y,1)=0(é€)exp(wt+iky), where
y is the direction transverse to the direction of propagation of
the planar front, and w and k are the growth rate and the
wave number, respectively. A linear stability analysis as-
sumes perturbed solutions of the form

U(&y,t) =u(é) +Au(éy,1),

V(& y,1) =v(é) + Av(£.y.1), (26)

where the small perturbations Au(&,y,r) and Av(€,y,t) are
added to the planar front solutions. In the stationary frame,
the full perturbed solutions satisfy

ﬂ]azu FU

=—+
gt 9&  9y?

+f(U,V),
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(27)

and u(¢), v(§) are time-independent solutions of these equa-
tions. Subtracting the equations for the unperturbed solutions
and linearizing for small Au and Av, we obtain the varia-
tional equations for the perturbations

dAu  PAu  PAu  of of
- _ 5+ 7+ —Au+—Av,
at & yr  ou du
JA PA FPA J d
_v=_2v+—zv+—gAu+—gAv. (28)
at & ay*  du v

The equations for the eigenfunctions (the variational
equations) read

d*n  di _
d—§2+cd—§—[a—5(u—a)]u—v=0,
d*v 7]

s s[a-Bou—-a)li-55=0,

dé
where @=a+w+k* and E=g+w+k>.
Inserting the perturbation solutions in the form i, 7(§)

=SA, B exp()tg) into the variational Eqs. (29) we obtain the
following matrix equation:

|

with y=A2+cN. Hence the characteristic equation is
¥ —(8+ @) y+Ea+ea=0, with roots

d_§2 + (29)

y-a -1 0

ea

Yia=(E+a)2 = (- )4 -ca (31)
so that ¥, ,—a=pu,, and
Bis=mA 3 Byy=mohy,, (32)

The perturbations #(£) and 0(€) should be matched as was
done for the wave solutions. However, now the matching
conditions for the derivatives have jumps due to the delta
function in the variational equations. To make use of this
behavior, we integrate the variational equations over a small

20 -10 0 10 20

Vv (b) 0.057 Y (C)
70 20
\ﬁ -20 v 1% 20

FIG. 5. Traveling wave solutions with nonoscillatory tails for the inhibitor (recovery variable) v=v(£). a=1, a=1, £=0.1 and (a) a
=0.5, 8=0.9, (b) a=0.5, B=1, (c) a=0.6, B=1. The speed is: (a) c=0.134, (b) c=0 and (c) c=0.459.
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FIG. 6. Traveling wave solutions with oscillatory tails for the inhibitor (recovery variable) v=v(£). a=0.1, a=1, £=0.05 and (a) a=1,
B=5, (b) a=1, B=10, (c) a=9, B=10. The speed is: (a) c=-0.975, (b) c=-1.163 and (c) c=1.163.

interval about the matching point of the perturbations. Non-
zero contributions arise from the diffusive terms and terms
containing the delta function, i.e.,

di| (88

dé o_+fo_ dufoyag "¢ =" (33)
for the first equation in Eq. (29) and

1 R L R

d§ o__sﬁfo_ |du(0)/dg|“d§ =0 (34)

for the second one. After the integration of the delta function
we can rewrite the last two equations as

dii,(0)/d & = dity(0)/d& + iiy/|du(0)/dé

k)

dir,(0)/dé = diy(0)/dé — eBiiy/|du(0)/dg,  (35)

where #y=const is a perturbation amplitude. The other
matching equations are i,(0)=i,(0), 0,(0)=0,(0), and
ﬁ1(0)=ﬁ0.

Eliminating A from the matching conditions, we obtain
the growth rate equation

(1P = papa) + €B(P1 — P2) — 2P1 P21 — o) |du(0)/dé = 0,

(36)
with
2 2
+ +
Pro= \/Cz+w+kz+8 Za * \/(8 4a) —ela+a).
(37)
Thus, the growth rate equation has the form F(w

+k2,s,a,&,,8):0. From this fact it follows that the fastest
growing mode will always correspond to k=0, and we may
then restrict ourselves to the k=0 case as we did in Ref. [11].
Moreover, the combination w+k* appears in all expressions

for the eigenvalues X and the perturbations #(£) and 0(§).
The stability analysis generalizes the results which were
obtained for the Rinzel-Keller model. The stability criteria
are similar, because the underlying front speed bifurcation,
the Ising-Bloch bifurcation, remains the same. At this bifur-
cation, a pair of counterpropagating fronts arises instead of a

single stationary front. The stationary front becomes un-
stable, whereas the two moving fronts are stable. This insta-
bility corresponds to the real eigenvalue (the growth rate w)
crossing zero. Because the nonequilibrium Ising-Bloch bifur-
cation remains the same as in the Rinzel-Keller case, we
omit a more detailed discussion here.

V. SUMMARY AND CONCLUSION

Wave propagation from the perspective of reaction-
diffusion systems has been studied based on exact analytic
solutions for the traveling waves obtained using piecewise
linear approximations for the reaction terms. The main result
of the paper is a description of the diverse wave forms in
FHN-type systems with modified excitability (nonlinear in-
hibition). We find that a nonequilibrium bifurcation of the
Ising-Bloch type for the wave speed disappears when the
nonlinearity in the inhibitor reaction function grows. This
type of bifurcation determines the excitable properties of the
system and hence the wave propagation in the medium. Such
wave propagation may lead to complex pattern formation in
a variety of 2D systems [14].

The reaction-diffusion model considered here differs from
the classical Morris-Lecar model developed to describe os-
cillations in the giant muscle fiber of barnacles. Because it
has biophysically meaningful and measurable parameters,
that model has become quite popular in the computational
neuroscience community. The mixed form discussed in our
paper is mathematically easier to treat and can be extended to
generalize the FHN equations by taking into account the
nonlinear inhibition kinetics (as in Refs. [5,18]) similar to the
behavior of the recovery variable in the Morris-Lecar case.
The model presented here can exhibit various types of trav-
eling waves and may be considered as a starting point for
more elaborate investigations.
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