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We investigate the properties of and the transition to exploding dissipative solitons as they have been found
by Akhmediev’s group for the cubic-quintic complex Ginzburg-Landau equation. Keeping all parameters fixed
except for the distance from linear onset, �, we covered a large range of values of � from very negative values
to �=0, where the zero solution loses its linear stability. We find, with increasing values of �, stationary
pulses, pulses with rapid oscillations, and pulses modulated with an additional small frequency. The transition
to exploding solitons arises via a hysteretic transition involving symmetric and asymmetric pulses with two
frequencies. As � is increased in the regime of exploding solitons, the fraction of symmetric exploding solitons
is increasing. At the transition from asymmetric two frequency pulses to exploding solitons, only asymmetric
exploding solitons are found. We completed our analysis with an analytic study of the collapse time for the
exploding solitons and found good agreement with our numerical results.
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I. INTRODUCTION AND MOTIVATION

To model stable localized solutions �particle- or holelike�
in macroscopic pattern-forming dissipative systems different
avenues of approach have been used. One is the direct nu-
merical solution of the underlying macroscopic basic equa-
tions, such as, for example, in the case of the localized states
for the convection in binary fluid mixtures the hydrodynamic
equations �1�, or for surface reactions the associated
reaction-diffusion equations �2�. The other main approach is
to apply prototype equations such as envelope equations
�3,4� �frequently applicable near the onset of an instability
�5–7�� or order parameter equations �8–11�, which take into
account the symmetries of the system to be described �7,12�.
In both cases the idea is to have an approach that is useful, at
least qualitatively, for more than one specific system. From
an experimental point of view stable pulses and/or stable
holes have been observed for systems as diverse as binary
fluid convection �13–15�, slot convection �16–19�, the Fara-
day instability in various complex fluids �20�, in chemical
reactions �21,22�, in particular on surfaces �21� as well as for
various optical systems �23�.

Envelope equations are derived systematically near the
onset of an instability via a reduced perturbation expansion
in the distance from instability onset as a small parameter
�5–7�. They are obtained from the underlying macroscopic
basic equations, such as hydrodynamic equations, for ex-
ample, for simple fluids, binary fluid mixtures or nematic
liquid crystals, as well as reaction-diffusion equations used
to describe chemical reactions in spatially extended systems.
The cubic-quintic complex Ginzburg-Landau �CGL� equa-
tion studied in the following is a prototype equation appli-
cable near the weakly hysteretic onset of an oscillatory in-
stability to traveling or standing waves �24�. Sometimes, as

for example for convection in binary fluid mixtures, enve-
lope equations can only be used for qualitative comparisons,
since boundary layers arise �15�.

For the cubic-quintic CGL equation, as a prototype enve-
lope equation, many different types of stable pulse-
�3,4,25–47� and holelike �42–45,48,49� solutions have been
found and analyzed. These various types of localized solu-
tions have been called dissipative solitons �25� in order to
emphasize that they arise for strongly driven and damped
dissipative systems in contrast to classical solitons for which
driving and damping is typically taken into account only
perturbatively �6�.

One has also investigated the influence of different
boundary conditions on many types of pulses and hole solu-
tions. In addition to the numerically most frequently imple-
mented periodic boundary conditions the physically impor-
tant Neumann and Dirichlet boundary conditions have been
examined �48,50–52�.

One type of dissipative solitons with outstanding proper-
ties that set it apart from other dissipative solitons are explo-
sive dissipative solitons �called originally eruptive solitons�
�26,53–56�. They are found in the regime of anomalous dis-
persion. Among the features that have been well character-
ized is the stable existence of symmetric and asymmetric
explosive solitons over a wide range of two parameters �the
real part of the cubic nonlinearity and the imaginary part of
the quintic nonlinearity� in the cubic-quintic CGL equation
�26,53,56�, their experimental observation in nonlinear optics
�54� and a number of features, which are similar to dynami-
cal systems �55,56�.

In the present study we keep all parameters fixed except
for the bifurcation parameter �the distance from linear onset�.
Here we study the transitions involving explosive solitons
and other stable solutions �pulsating dissipative solitons with
two vastly different frequencies and space-filling homoge-
neous solutions� and the associated hysteresis effects. In ad-
dition, we present an analytic estimate of the collapse time*odescalzi@miuandes.cl
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and we point out many differences in behavior when com-
pared to simple dynamical systems with a small number of
degrees of freedom.

Thus explosive dissipative solitons are a rather complex
spatiotemporal object. As a function of time they undergo
several changes: they start with an unstable pulse shedding
radiation or “phonons” �26,53�, then in one of the wings of
the unstable pulse perturbations grow to generate another
pulselike object, these two pulses—both unstable—interact
and form a rather broad, high and highly unstable pulse. In a
last step the latter collapses �26,53� to form the unstable
pulse reminiscent in shape of the stable fixed shaped pulse
found first by Thual and Fauve �3�. The overall behavior is
characterized by a cycle time that fluctuates around an aver-
age and by high frequency oscillations leading to radiation
over most of the average cycle time of an explosive dissipa-
tive soliton.

The paper is organized as follows. In the next section we
describe the model and the numerical technique used. In Sec.
III we describe our numerical and analytic results followed
in Sec. IV by a comparison with previous results on explo-
sive dissipative solitons and in Sec. V by discussion and
conclusions.

II. MODEL

We investigate the complex subcritical cubic-quintic
Ginzburg-Landau equation in one spatial dimension,

�tA = �A + ��r + i�i��A�2A + ��r + i�i��A�4A + �Dr + iDi��xxA ,

�1�

where A�x , t� is a complex field. In writing down this equa-
tion we have already transformed into the moving frame. To
guarantee saturation to quintic order, �r is taken to be nega-
tive, while �r�0 to have a weakly inverted bifurcation. The
diffusion coefficient, Dr is assumed to be positive. In the
spirit of an envelope equation, the fast spatial and temporal
variations have already been split off when writing down the
envelope equation. To compare with measurable quantities

such as, for example, temperature variations in fluid dynam-
ics, these rapid variations must be taken into account
�5,7,24�.

To facilitate the comparison with the notation used in the
field of nonlinear optics, we write down the cubic-quintic
complex Ginzburg-Landau equation in the notation fre-
quently used in optics �25,26�

i�z +
D

2
�tt + ���2� + ����4� = i�� + i����2� + i��tt + i����4� .

�2�

Comparing Eqs. �1� and �2� we can make the identifica-
tions listed in Table I.

In the following we use periodic boundary conditions for
A. Recent studies of the influence of Neumann �51� and Di-
richlet �52� boundary conditions have shown that these do no
affect qualitatively nonmoving pulses, regardless whether
these are breathing or not, provided the box size is large
enough compared to the pulse width at its maximum extent.
We expect the same to hold for exploding solitons.

Most of our numerical and analytic studies were carried
out for the same parameter values as in the plots of the pio-
neering papers of Akhmediev’s group on exploding solitons
�26,53�, which read in the present notation �r=1, �r=−0.1,

TABLE I. Conversion of the coefficients of the two versions of
the cubic-quintic Ginzburg-Landau equation used here versus the
one used in nonlinear optics

Present notation Nonlinear optics

� �

�r �

�i 1

�r �

�i �

Dr �

Di D /2

III

��

� �� �

�

� �

�

� �

I

-0.226

-0.202 -0.183
µ

ST

f1 f1 f2

Symmetric branch

Asymmetric branch

Collapse

I
-1.23

SS
-0.228

���

FIG. 1. �Color online� Phase diagram: the various types of localized states are shown as a function of the bifurcation parameter, �. The
other parameters investigated are: �r=1, �i=0.8, �r=−0.1, �i=−0.6, Dr=0.125, Di=0.5, dx=0.08, and dt=0.005. As � is increased one
obtains first stationary pulses �ST�, followed by oscillating pulses with one frequency �f1� and by a hysteretic transition to pulses with two
frequencies �f1 , f2�, which can be either symmetric or asymmetric. As � is increased beyond �=−0.183 exploding solitons arise stably until
the linear threshold ��0 is reached.
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�i=−0.6, Dr=0.125, and Di=0.5. For �i we use in the figures
shown �i=0.8 �for Figs. 1 and 3� and �i=1 �for all other
figures�. Thus the only parameter value varied in the present
study is �, the distance from linear onset. We varied � from
�=−1.5 �a value below the range, where localized structures
are stable solutions of the cubic-quintic CGL equation� to
�=0, the value where A=0 loses linear stability. In this sense
the avenue of our approach is different from previous work
on exploding solitons, where � was typically held fixed. In-
stead two other parameters �r and �i were varied revealing a
rather large range for the stable existence of exploding soli-
tons for variations in these two parameters �26,53�.

Explicit fourth order Runge-Kutta finite differencing was
used as numerical method. We used a constant box size L
=Ndx=50 and varied the grid spacing dx as well as the time
step dt. The number N was adjusted to achieve a constant
box size L. To validate our numerical method, the grid spac-

ing dx was varied between dx=0.2 and dx=0.04 and the time
step dt between dt=0.01 and 0.002. We thus varied both, the
grid spacing dx and the time step dt, by a factor of 5 to verify
that all results presented in the following were not sensitive
to this discretization. For periodic boundary conditions we
have A�0�=A�L�.

We would also like to stress that increasing the accuracy
the ‘phase diagram’ is slightly shifted in the �−�i plane, but
that the observed sequence ST—f1− �f1− f2�—explosions is
robust.

III. RESULTS

A. Numerical results

To analyze the transitions shown by exploding solitons we
investigated all localized patterns as a function of the bifur-
cation parameter, �. As discussed in the last section, all other
parameter values in the cubic quintic complex Ginzburg-
Landau equation have been kept at a fixed value. For suffi-
ciently negative values of � only the solution R�x���A�x��
=0 is stable. This situation prevails below the saddle node.

As � is increased above ��−1.23 stable localized pulses
of the type described first by Thual and Fauve �3� arise and
dominate until ��−0.227 �compare Fig. 1�. In Fig. 2 we
have plotted the modulus R�x� �a� and the local wave vector
	�x� �b�, which is static, as a function of x. In addition, we
have plotted in �c�, 	t, the time derivative of the phase,
which is constant everywhere except inside the core of the
pulse. In the analytic analysis given below, the constant part
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FIG. 2. The figures show a stationary stable pulse for �
=−0.25, �i=1.0, dx=0.2 and dt=0.01: �a� snapshot of the modulus
R�x���A�x�� and �b� snapshot of the local wave vector 	x as a
function of space, and �c� the local frequency 	t as a function of
space. The qualitative behavior of the local wave vector and of the
local frequency as functions of space will be used below in an
analytic calculation to estimate the collapse time of exploding soli-
tons. The other parameter values are as for Fig. 1.
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FIG. 3. �Color online� The figures show a stable pulse oscillat-
ing with one frequency �denoted by regime f1 in Fig. 1� for �
=−0.21 and �i=0.8 �a� snapshot of the modulus R�x� and �b� x− t
plot for a total time of T=1.7 �340 iterations� in the limit of long
times showing rapid oscillations when compared to the much
slower modulations discussed below. One clearly sees the radiation
or “phonons” coming off the wings in the x− t plot. The other pa-
rameter values are as for Fig. 1.
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of 	t will be denoted as 
. The qualitative features of these
three plots will be used in the next subsection on analytic
results to derive an estimate for the collapse time observed
for exploding solitons.

As � is increased, one finds for the window between �
�−0.227 and ��−0.202 oscillating dissipative solitons
characterized by one rather large and fixed frequency. These
oscillations are accompanied by radiation or “phonons” com-
ing off the wings of the oscillating dissipative soliton. This
phenomenon can be seen very clearly in the x− t plot shown
in Fig. 3 for �=−0.21. We note that the time scale on this
x− t plot is about two orders of magnitude smaller than on
the other x− t plots shown below to bring out clearly the
details of the rapid oscillations. To prepare our snapshots and
x− t plots for all time-dependent states we waited for a suf-
ficiently long time until no further qualitative changes in the
dissipative solitons were detectable. We will call in the fol-
lowing this behavior the “asymptotic time regime.” The tran-
sition from the stationary pulse to the oscillating pulse with
one frequency shows a hysteresis of size ���0.002 around
�=−0.227, which is comparable to the step size with which
we have varied the bifurcation parameter �.

As the value of � is increased, slow temporal modulations
arise giving rise to a state characterized by two frequencies,
which are vastly different �by about two orders of magni-
tude�. As revealed by the x− t plot shown in Fig. 4, the slow

modulations occur symmetrically in space—the regime de-
noted as f1− f2 symmetric branch in Fig. 1. We note that
there is no hysteresis for the transition from the oscillating
pulse with one frequency �f1� to the oscillating pulse with
two frequencies �f1− f2�.

When � is increased above ��−0.183 a qualitative
change arises and the regime of exploding solitons is reached
�Fig. 5�. In the asymptotic time regime we find close to, but
above ��−0.183 exclusively asymmetric exploding soli-
tons. We would like to stress that there is no net motion of
the location of the exploding solitons in the long time limit.
The apparent slow motion of this location to the right in Fig.
5 is due to the rather short time interval shown in the x− t
plot. Before we turn to a thorough discussion of the detailed
spatiotemporal behavior of exploding solitons and of sym-
metric exploding solitons, we finish the overview of the
types of behavior occurring in the “phase diagram” shown in
Fig. 1. When reducing the value of � from above ��
−0.183 to values below ��−0.183, the asymmetric explod-
ing solitons make a transition to a state, which is also asym-
metric and characterized by two frequencies. This behavior
is brought out clearly in the x− t plot shown in Fig. 6 and is

��
t

3
0

x 47

68

FIG. 4. �Color online� The figure shows the x− t plot of a stable
pulse oscillating symmetrically with two frequencies �denoted by
regime f1− f2 symmetric branch in Fig. 1� for �=−0.19, �i=1.0,
dx=0.2, and dt=0.01 in the asymptotic time regime. The total time
shown is T=68 �corresponding to 6800 iterations� clearly revealing
the much slower time scale of the modulations. The other parameter
values are as for Fig. 1.
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FIG. 5. �Color online� The figure shows the x− t plot of an
asymmetric exploding pulse for �=−0.17, �i=1.0, dx=0.2, and
dt=0.01 in the asymptotic time regime. The total time shown is T
=215 �corresponding to 21 500 iterations� clearly revealing the al-
ternating nature of the explosions. The other parameter values are as
for Fig. 1.
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FIG. 6. �Color online� The figure shows the x− t plot of a stable
pulse oscillating asymmetrically with two frequencies �denoted by
regime f1− f2 asymmetric branch in Fig. 1� for �=−0.19, �i=1.0,
dx=0.2, and dt=0.01 in the asymptotic time regime. The total time
shown is T=68 �corresponding to 6800 iterations� again clearly
revealing the much slower time scale of the modulations—similar
to Fig. 4. The other parameter values are as for Fig. 1.
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FIG. 7. �Color online� The figure shows the blow-up of the x
− t plot of an asymmetric exploding pulse for �=−0.17, �i=1.0,
dx=0.2, and dt=0.01 already shown in Fig. 5 for one asymmetric
explosion. Here the total time shown is T=6 �corresponding to 600
iterations�. The labels �a�, �b�, �c�, and �d� denote four characteristic
instants in time for the evolution of an asymmetric exploding soli-
ton: �a�: start of the peak growing in the wing of the main peak, �b�:
maximum of the width of the side peak and start of the interaction
with the main peak, �c�: maximum width of the single peak after the
interaction just before the beginning of the collapse, �d�: asymptotic
shape of the peak before the beginning of the next growth cycle.
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denoted as the asymmetric f1− f2 branch in Fig. 1.
Reducing � on the asymmetric f1− f2 branch leads at �

�−0.202 to a transition back to the state characterized by
one rapid frequency only. Thus we have hysteretic behavior

between asymmetric and symmetric behavior for the f1− f2
branches in the regime �−0.202��� �−0.183.

To characterize asymmetric solitons in some detail we
have plotted in Fig. 7 part of one life cycle of an asymmetric
exploding dissipative soliton and in Fig. 8 four snapshots
taken at characteristic instances in time during one life cycle.
Notice that as shown in Fig. 5 the cycle time of one explo-
sion �“life cycle”� varies randomly around a value close to
21.5. For an exploding soliton one has not only radiation or
‘phonons’ as in the case of the oscillating dissipative solitons
shown in Figs. 3, 4, and 6. In addition, one has a perturbation
growing in the wings of the original dissipative soliton above
a certain threshold size �location �a� in the x− t plot in Figs. 7
and 8�a��. This side peak grows in magnitude and interacts
with the previous main peak and reaches a maximum width
of the compound object. This instant in time is denoted as �b�
in Fig. 7 and shown as a snapshot in Fig. 8�b�. As a conse-
quence of the interaction one peak with a fixed maximum
width results �shown as location �c� in Fig. 7 and as a snap-
shot in Fig. 8�c��, which in turn collapses rather rapidly to a
state similar, but shifted in space compared to the original
starting peak. Since this starting peak as well as the final
peak in one life cycle are also both unstable, the same cycle
starts again, which leads to a fairly well defined repeat time,
which we have called the life cycle. It turns out that the
collapse time between the two states indicated in Figs. 7�c�
and 7�d� and shown as plots in Figs. 8�c� and 8�d� can be
calculated quite accurately by approximate analytic tech-
niques as we will demonstrate in the next subsection. We
would like to emphasize that the rather rapid spatial varia-
tions of the modulus in Figs. 3 and 8 are not due to the
spatial grid spacing used, but are rather due to the nature of
the exploding solitons. We have checked this carefully by
varying the grid spacing for both figures by a factor of 5.

As the bifurcation parameter � is increased, we find in the
asymptotic time regime first only asymmetric exploding soli-
tons over a substantial range in � and then alternating peri-
ods of asymmetric exploding solitons and symmetric explod-
ing solitons starting at a threshold value ��−0.075. As � is
increased further and as eventually the linear threshold �
=0 is reached �compare the two snapshots shown in Fig. 9�,
the fraction of space-filling patterns in the whole box is in-
creasing and leads to a filling-in in the long time limit and
thus to a spatially homogeneous pattern at ��0.

In Fig. 10 we have quantified the total number of explo-
sions for symmetric and asymmetric exploding dissipative
solitons as a function of � for a fixed time interval T=600
�60 000 iterations� in the asymptotic time regime. Two main
features emerge: �a� the total number of explosions increases
almost linearly as � is increased toward zero; and �b� the
number of symmetric explosions also increases approxi-
mately linearly as � is increased above ��−0.075.

B. Analytic results

It is always interesting �and important� to see to what
extent experimental and/or numerical results can be obtained
by analytical calculations. Equation �1�, which has been
studied numerically above, can be written as
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FIG. 8. Four snapshots during one life cycle of an asymmetric
exploding soliton for �=−0.17, �i=1.0, dx=0.2, and dt=0.01. The
location in time of the four snapshots shown has already been de-
noted by �a�, �b�, �c�, and �d� in Fig. 7.
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Rt = �R + �rR
3 + �rR

5 + Dr�Rxx − R	x
2� − Di�R	xx + 2Rx	x� ,

�3�

R	t = �iR
3 + �iR

5 + Dr�R	xx + 2Rx	x� + Di�Rxx − R	x
2� ,

�4�

by replacing the complex field A�x , t� by its polar represen-
tation A�x , t�=R�x , t�exp	i	�x , t�
. In Sec. III it has been
mentioned that from ��−1.23 until ��−0.227 we obtain
stationary pulses whose modulus R and local wave vector 	x
are static. In addition, 	t turns out to be also static and even
constant everywhere except inside the core of the pulse.
Thus, such stationary localized structures can be viewed ap-
proximately as rigid bodies rotating at fixed frequency 

around the x axis. Figure 2 shows the modulus, local wave
vector and frequency for a stationary pulse at �=−0.25.
Then for the stationary pulse we can replace the phase 	�x , t�
by 
t+�x�, where x is the static local wave vector. After
some algebra Eqs. �3� and �4�, for this case, reduce to �57�

0 = �+R + �+R3 + �+R5 + Rxx − Rx
2, �5�

�−R = �−R3 + �−R5 + Rxx + 2Rxx, �6�

where

�+ =
Dr� − Di


�D�2
; �+ =

Dr�r + Di�i

�D�2
,

�+ =
Dr�r + Di�i

�D�2
; �− =

Di� + Dr


�D�2
,

�− =
Dr�i − Di�r

�D�2
; �− =

Dr�i − Di�r

�D�2
,

and �D�2=Dr
2+Di

2.
In spite of the nonlinearities involved in Eqs. �5� and �6�

we can calculate the frequency 
 by noticing that the local
wave vector x is constant �x=+p for Rx�0 and x=−p for
Rx�0� outside the core of the pulse �see Fig. 2�b��, in par-
ticular for R�1. Thus Eqs. �5� and �6� become linearized,

0 = �+R + Rxx − Rp2, �7�

�−R = − 2pRx sgn�Rx� , �8�

The above equations imply the following relation to be
satisfied:

0 = �+ − p2 +
�−

2

4p2 . �9�

Solving this equation for 
 we obtain finally,


 = −
1

Dr
2 �Di��Dr − 2p2�D�2� + 2p�D�2�− �Dr + p2�D�2� .

�10�

Evaluating this expression for �=−0.25, �r=1, �i=1, �r
=−0.1, �i=−0.6, Dr=0.125, Di=0.5, and p=6.34 �value ob-
tained directly from Fig. 2�b�� we get 
=−21.06. From Fig.
2�c� we see that this analytical result is in very good agree-
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FIG. 9. Two snapshots of spatiotemporal structures for �=0,
�i=1.0, dx=0.2, and dt=0.01 that is as the linear threshold is ap-
proached. In this case the fraction of the box filled by spatiotempo-
ral structures is very large even in a large box, eventually leading to
a filling-in and thus to a spatially homogeneous state in the long
time limit.
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FIG. 10. �Color online� This plot shows the number of explo-
sions of an exploding soliton for a fixed time interval in the
asymptotic time limit as a function of the bifurcation parameter, �.
Here Nt �open squares� denotes the total number of explosions with
Nt=Na+2Ns where Na �solid squares� and Ns �solid circles� denote
the number of asymmetric and symmetric explosions, respectively.
Two main features emerge: �a� the total number of explosions is
growing, as the linear threshold is approached, approximately lin-
early and �b� above a threshold value for � symmetric explosions
start and also increase in number roughly linearly for growing val-
ues of �.
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ment with the numerical calculation, which gives −21.10.
To estimate the collapse time of an exploding dissipative

pulse, that is, the time the pulse needs to pass from a maxi-
mum �see state �c� in Figs. 7 and 8� to a minimum width �see
state �d� in Figs. 7 and 8�, we study the relaxational dynam-
ics in the wings of a stationary pulse. From Eqs. �3� and �4�
the dynamics of a slightly perturbed modulus in the wings
�R�1� reduce to

Rt =
�D�2

Dr
���+ − p2�R + Rxx� . �11�

Notice that the above system can be derived from a
Lyapounov potential �compare, for example, Ref. �58� for a
review of the notion of nonequilibrium potential for systems
far from equilibrium�,

Rt = −
��

�R
, �12�

where

� =�  �D�2

2Dr
��p2 − �+�R2 + Rx

2�dx� . �13�

From the above expressions clearly the fast dynamics is
given by the k=0 perturbations so that the collapse time is
given by

tcollapse �
Dr

�D�2�p2 − �+�
. �14�

Evaluating this expression for �=−0.25, and using the
above indicated parameters tcollapse results to be close to 0.7.
From Fig. 7 we see that the collapse time for exploding
dissipative solitons is �0.68.

IV. COMPARISON WITH PREVIOUS RESULTS ON
EXPLOSIVE SOLITONS

The pioneering work on exploding �first denoted as erupt-
ing� dissipative solitons by the group of Akhmediev �26,53�
demonstrated the stable existence of symmetric exploding
solitons as well as their occurrence over a rather large range
of the parameters �r and �i. As �r is reduced, symmetric
exploding solitons were found to either become periodic so-
lutions or to collapse completely. As �r was increased, sym-
metric exploding solitons were replaced by chaotic or sta-
tionary pulses. Shortly thereafter Cundiff and colleagues �54�
provided experimental evidence for soliton explosions in a
Ti:sapphire mode-locked laser in a study combined with a
numerical investigation of a model closely related to the ex-
periment.

Later on these studies were used as a starting point to
investigate the bridge to dynamical systems �55,56�, in par-
ticular to Shilnikov’s theorem, incorporating a linear stability
analysis. It was also pointed out that there is a number of
differences to the case of exploding solitons because of the
fact that the cubic quintic complex Ginzburg-Landau equa-
tion is a system with an infinite number of degrees of free-
dom and not a dynamical system with a small �three in

Shilnikov’s case� number of degrees of freedom. In addition,
it was pointed out in Ref. �56� that stable strongly asymmet-
ric soliton explosions can arise for a small region inside the
parameter space where symmetric explosions occur.

The approach here has been quite complementary to the
one used before. We kept all the parameters at the values
used in Refs. �26,53� for preparing the x− t plots, except for
the distance from linear onset, �, the bifurcation parameter
in the context of the onset of instabilities, for example, in
fluid systems and for chemical reactions. We covered all val-
ues of � from the collapse of all pulse solutions at very
negative values of � �for which only A=0 is known to be a
stable solution�, all the way to �=0, where the zero solution
loses its linear stability and where instead space-filling solu-
tions with �A�=const. prevail. In between we find, with in-
creasing values of �, stationary pulses, pulses with one rapid
frequency oscillation, and pulses modulated with an addi-
tional small frequency. When � is varied the transition to
exploding solitons arises via a hysteretic transition involving
symmetric and asymmetric pulses with two frequencies. As
� is increased in the regime of exploding solitons, the frac-
tion in time of symmetric exploding solitons is increasing
above another threshold in the overall regime of stable ex-
ploding dissipative solitons. At the transition from the asym-
metric two frequency pulses to exploding solitons, only
asymmetric exploding solitons are found. We did not observe
purely symmetric exploding solitons in the long time limit
for the range of parameters studied here. We completed our
analysis with an analytic study of the collapse time for the
exploding solitons and found good agreement with the re-
sults of our numerical investigations.

V. DISCUSSION AND CONCLUSIONS

Here we have presented the results of our studies on the
dynamics and transitions shown by exploding dissipative
solitons. All investigations were performed changing only
the bifurcation parameter measuring the distance from linear
onset. Previously it had already been shown �26,53� that ex-
ploding dissipative solitons exist over a substantial range of
values of the quintic refractive index and of the value of the
cubic destabilizing coupling in the cubic-quintic complex
Ginzburg-Landau equation. As major results the following
features emerge. First of all we find that exploding dissipa-
tive solitons arise from modulated oscillatory dissipative
solitons characterized by two frequencies via a hysteretic
transition involving symmetrically as well as asymmetrically
modulated dissipative solitons. The latter two in turn arise
from an oscillatory branch showing rather fast oscillations.
Within the stable regime of exploding solitons we find for
increasing bifurcation parameter first exclusively asymmetric
exploding solitons and only above a threshold value of the
bifurcation parameter we find sequences of symmetric and
asymmetric exploding dissipative solitons of various dura-
tions alternating as a function of time in the asymptotic time
regime. A statistical analysis shows that both, the total num-
ber of soliton explosions as well as the number of symmetric
soliton explosions, increases approximately linearly with the
value of the bifurcation parameter as the latter is increased
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toward linear onset. When linear onset is reached, the spa-
tially homogeneous solution with a fixed modulus is ob-
tained in the long time limit.

In addition, we have demonstrated that approximate ana-
lytic calculations give almost quantitative agreement with
our numerical results for the collapse time associated with
the time scale between the maximum and the minimum
width of the pulse of the exploding dissipative solitons.

A detailed comparison with previous work on exploding
solitons shows that our results are almost completely
complementary, but coincide in the region of overlap. Natu-
rally we do not expect the phenomenon of exploding dissi-
pative solitons to be confined to the cubic-quintic complex
Ginzburg-Landau equation, but to arise equally well for cor-
responding order parameter equations of Swift-Hohenberg
type as well as for suitable reaction-diffusion equations. This
expectation is, in particular, based on our previous work
pointing out a number of similarities for different types of
localized solutions of such prototype equations �8,11,59–62�.

While our analysis has been performed for periodic
boundary conditions, we expect it to be equally applicable
for Dirichlet and Neumann boundary conditions, since pre-

vious work on these boundary conditions has indicated that
stationary or breathing localized solutions can accommodate
Dirichlet or Neumann boundary conditions essentially un-
changed provided the box size is large compared to the maxi-
mum width reached for the localized, non-propagating solu-
tions �51,52�.

Clearly it is highly desirable to see experimental tests of
the predictions presented here. Since one has already inves-
tigated exploding solitons in optics �54�, it will be natural to
check for the transitions and the dynamical properties stud-
ied here in optical systems. Possible additional experimental
systems include autocatalytic chemical reactions and binary
fluid convection.

ACKNOWLEDGMENTS

O.D. wishes to acknowledge the support of FAI �Univer-
sidad de los Andes, 2010�. H.R.B. thanks the Deutsche
Forschungsgemeinschaft for support of this work through the
Forschergruppe FOR 608. “Nichtlineare Dynamik komplexer
Kontinua.”

�1� W. Barten, M. Lücke, and M. Kamps, Phys. Rev. Lett. 66,
2621 �1991�.

�2� M. Bär, M. Eiswirth, H. H. Rotermund, and G. Ertl, Phys. Rev.
Lett. 69, 945 �1992�.

�3� O. Thual and S. Fauve, J. Phys. �France� 49, 1829 �1988�.
�4� H. R. Brand and R. J. Deissler, Phys. Rev. Lett. 63, 2801

�1989�.
�5� A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279

�1969�.
�6� A. C. Newell, Solitons in Mathematics and Physics �Society

for Industrial and Applied Mathematics, Philadelphia, 1985�.
�7� M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

�1993�.
�8� H. Sakaguchi and H. R. Brand, Physica D 97, 274 �1996�.
�9� H. Sakaguchi and H. R. Brand, EPL 38, 341 �1997�.

�10� H. Sakaguchi and H. R. Brand, J. Phys. II 7, 1325 �1997�.
�11� H. Sakaguchi and H. R. Brand, Physica D 117, 95 �1998�.
�12� J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319 �1977�.
�13� P. Kolodner, Phys. Rev. A 44, 6448 �1991�.
�14� P. Kolodner, Phys. Rev. A 44, 6466 �1991�.
�15� B. L. Winkler and P. Kolodner, J. Fluid Mech. 240, 31 �1992�.
�16� M. Dubois, R. DaSilva, F. Daviaud, P. Bergé, and A. Petrov,

EPL 8, 135 �1989�.
�17� F. Daviaud, P. Bergé, and M. Dubois, EPL 9, 441 �1989�.
�18� M. Dubois, P. Bergé, and A. Petrov, The Geometry of Nonequi-

librium, NATO ASI Series, edited by P. Coullet and P. Huerre
�Plenum, New York, 1990�, Vol. 237, p. 227.

�19� J. Hegseth, J. M. Vince, M. Dubois, and P. Bergé, EPL 17, 413
�1992�.

�20� F. S. Merkt, R. D. Deegan, D. I. Goldman, E. C. Rericha, and
H. L. Swinney, Phys. Rev. Lett. 92, 184501 �2004�.

�21� H. H. Rotermund, S. Jakubith, A. von Oertzen, and G. Ertl,
Phys. Rev. Lett. 66, 3083 �1991�.

�22� K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney,
Nature �London� 369, 215 �1994�.

�23� V. B. Taranenko, K. Staliunas, and C. O. Weiss, Phys. Rev. A
56, 1582 �1997�.

�24� H. R. Brand, P. S. Lomdahl, and A. C. Newell, Phys. Lett. A
118, 67 �1986�; Physica D 23, 345 �1986�.

�25� N. Akhmediev Ed, Dissipative Solitons �Springer, New York,
2008�.

�26� N. Akhmediev, J. M. Soto-Crespo, and G. Town, Phys. Rev. E
63, 056602 �2001�.

�27� R. J. Deissler and H. R. Brand, Phys. Lett. A 146, 252 �1990�.
�28� S. Fauve and O. Thual, Phys. Rev. Lett. 64, 282 �1990�.
�29� W. van Saarloos and P. C. Hohenberg, Phys. Rev. Lett. 64, 749

�1990�.
�30� V. Hakim and Y. Pomeau, Eur. J. Mech. B/Fluids 10, 137

�1991�.
�31� B. A. Malomed and A. A. Nepomnyashchy, Phys. Rev. A 42,

6009 �1990�.
�32� R. J. Deissler and H. R. Brand, Phys. Rev. A 44, R3411

�1991�.
�33� R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 72, 478

�1994�.
�34� P. Marcq, H. Chaté, and R. Conte, Physica D 73, 305 �1994�.
�35� V. V. Afanasjev, N. N. Akhmediev, and J. M. Soto-Crespo,

Phys. Rev. E 53, 1931 �1996�.
�36� R. J. Deissler and H. R. Brand, Phys. Rev. Lett. 81, 3856

�1998�.
�37� O. Descalzi, M. Argentina, and E. Tirapegui, Int. J. Bifurcation

Chaos Appl. Sci. Eng. 12, 2459 �2002�; Phys. Rev. E 67,
015601�R� �2003�.

�38� O. Descalzi, Physica A 327, 23 �2003�.
�39� O. Descalzi and E. Tirapegui, Physica A 342, 9 �2004�.
�40� J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev,

ORAZIO DESCALZI AND HELMUT R. BRAND PHYSICAL REVIEW E 82, 026203 �2010�

026203-8

http://dx.doi.org/10.1103/PhysRevLett.66.2621
http://dx.doi.org/10.1103/PhysRevLett.66.2621
http://dx.doi.org/10.1103/PhysRevLett.69.945
http://dx.doi.org/10.1103/PhysRevLett.69.945
http://dx.doi.org/10.1103/PhysRevLett.63.2801
http://dx.doi.org/10.1103/PhysRevLett.63.2801
http://dx.doi.org/10.1017/S0022112069000176
http://dx.doi.org/10.1017/S0022112069000176
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1016/0167-2789(96)00077-2
http://dx.doi.org/10.1209/epl/i1997-00249-7
http://dx.doi.org/10.1051/jp2:1997188
http://dx.doi.org/10.1016/S0167-2789(97)00310-2
http://dx.doi.org/10.1103/PhysRevA.15.319
http://dx.doi.org/10.1103/PhysRevA.44.6448
http://dx.doi.org/10.1103/PhysRevA.44.6466
http://dx.doi.org/10.1017/S0022112092000028
http://dx.doi.org/10.1209/0295-5075/8/2/005
http://dx.doi.org/10.1209/0295-5075/9/5/006
http://dx.doi.org/10.1209/0295-5075/17/5/006
http://dx.doi.org/10.1209/0295-5075/17/5/006
http://dx.doi.org/10.1103/PhysRevLett.92.184501
http://dx.doi.org/10.1103/PhysRevLett.66.3083
http://dx.doi.org/10.1038/369215a0
http://dx.doi.org/10.1103/PhysRevA.56.1582
http://dx.doi.org/10.1103/PhysRevA.56.1582
http://dx.doi.org/10.1016/0375-9601(86)90649-3
http://dx.doi.org/10.1016/0375-9601(86)90649-3
http://dx.doi.org/10.1016/0167-2789(86)90140-5
http://dx.doi.org/10.1103/PhysRevE.63.056602
http://dx.doi.org/10.1103/PhysRevE.63.056602
http://dx.doi.org/10.1016/0375-9601(90)90974-S
http://dx.doi.org/10.1103/PhysRevLett.64.282
http://dx.doi.org/10.1103/PhysRevLett.64.749
http://dx.doi.org/10.1103/PhysRevLett.64.749
http://dx.doi.org/10.1103/PhysRevA.42.6009
http://dx.doi.org/10.1103/PhysRevA.42.6009
http://dx.doi.org/10.1103/PhysRevA.44.R3411
http://dx.doi.org/10.1103/PhysRevA.44.R3411
http://dx.doi.org/10.1103/PhysRevLett.72.478
http://dx.doi.org/10.1103/PhysRevLett.72.478
http://dx.doi.org/10.1016/0167-2789(94)90102-3
http://dx.doi.org/10.1103/PhysRevE.53.1931
http://dx.doi.org/10.1103/PhysRevLett.81.3856
http://dx.doi.org/10.1103/PhysRevLett.81.3856
http://dx.doi.org/10.1142/S0218127402005960
http://dx.doi.org/10.1142/S0218127402005960
http://dx.doi.org/10.1103/PhysRevE.67.015601
http://dx.doi.org/10.1103/PhysRevE.67.015601
http://dx.doi.org/10.1016/S0378-4371(03)00432-1
http://dx.doi.org/10.1016/j.physa.2004.04.053


Phys. Rev. E 70, 066612 �2004�.
�41� O. Descalzi and H. R. Brand, Phys. Rev. E 72, 055202�R�

�2005�.
�42� O. Descalzi, J. Cisternas, and H. R. Brand, Phys. Rev. E 74,

065201�R� �2006�.
�43� O. Descalzi, H. R. Brand, and J. Cisternas, Physica A 371, 41

�2006�.
�44� H. R. Brand, O. Descalzi, and J. Cisternas, AIP Conf. Proc.

913, 133 �2007�.
�45� O. Descalzi, J. Cisternas, P. Gutiérrez, and H. R. Brand, Eur.

Phys. J. Spec. Top. 146, 63 �2007�.
�46� O. Descalzi, J. Cisternas, D. Escaff, and H. R. Brand, Phys.

Rev. Lett. 102, 188302 �2009�.
�47� P. Gutiérrez, D. Escaff, S. Pérez-Oyarzún, and O. Descalzi,

Phys. Rev. E 80, 037202 �2009�.
�48� H. Sakaguchi, Prog. Theor. Phys. 86, 7 �1991�.
�49� H. Sakaguchi, Prog. Theor. Phys. 89, 1123 �1993�.
�50� O. Descalzi, P. Gutiérrez, and E. Tirapegui, Int. J. Mod. Phys.

C 16, 1909 �2005�.
�51� O. Descalzi and H. R. Brand, Prog. Theor. Phys. 119, 725

�2008�.

�52� O. Descalzi and H. R. Brand, Phys. Rev. E 81, 026210 �2010�.
�53� J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, Phys.

Rev. Lett. 85, 2937 �2000�.
�54� S. T. Cundiff, J. M. Soto-Crespo, and N. Akhmediev, Phys.

Rev. Lett. 88, 073903 �2002�.
�55� N. Akhmediev and J. M. Soto-Crespo, Phys. Lett. A 317, 287

�2003�.
�56� N. Akhmediev and J. M. Soto-Crespo, Phys. Rev. E 70,

036613 �2004�.
�57� O. Descalzi, Phys. Rev. E 72, 046210 �2005�.
�58� O. Descalzi, S. Martinez, and E. Tirapegui, Chaos, Solitons

Fractals 12, 2619 �2001�.
�59� Y. Hayase, O. Descalzi, and H. R. Brand, Phys. Rev. E 69,

065201�R� �2004�.
�60� O. Descalzi, Y. Hayase, and H. R. Brand, Int. J. Bifurcation

Chaos Appl. Sci. Eng. 14, 4097 �2004�.
�61� O. Descalzi, Y. Hayase, and H. R. Brand, Phys. Rev. E 69,

026121 �2004�.
�62� Y. Hayase, O. Descalzi, and H. R. Brand, Physica A 356, 19

�2005�.

TRANSITION FROM MODULATED TO EXPLODING … PHYSICAL REVIEW E 82, 026203 �2010�

026203-9

http://dx.doi.org/10.1103/PhysRevE.70.066612
http://dx.doi.org/10.1103/PhysRevE.72.055202
http://dx.doi.org/10.1103/PhysRevE.72.055202
http://dx.doi.org/10.1103/PhysRevE.74.065201
http://dx.doi.org/10.1103/PhysRevE.74.065201
http://dx.doi.org/10.1016/j.physa.2006.04.085
http://dx.doi.org/10.1016/j.physa.2006.04.085
http://dx.doi.org/10.1063/1.2746737
http://dx.doi.org/10.1063/1.2746737
http://dx.doi.org/10.1140/epjst/e2007-00169-8
http://dx.doi.org/10.1140/epjst/e2007-00169-8
http://dx.doi.org/10.1103/PhysRevLett.102.188302
http://dx.doi.org/10.1103/PhysRevLett.102.188302
http://dx.doi.org/10.1103/PhysRevE.80.037202
http://dx.doi.org/10.1143/PTP.86.7
http://dx.doi.org/10.1143/PTP.89.1123
http://dx.doi.org/10.1142/S0129183105008424
http://dx.doi.org/10.1142/S0129183105008424
http://dx.doi.org/10.1143/PTP.119.725
http://dx.doi.org/10.1143/PTP.119.725
http://dx.doi.org/10.1103/PhysRevE.81.026210
http://dx.doi.org/10.1103/PhysRevLett.85.2937
http://dx.doi.org/10.1103/PhysRevLett.85.2937
http://dx.doi.org/10.1103/PhysRevLett.88.073903
http://dx.doi.org/10.1103/PhysRevLett.88.073903
http://dx.doi.org/10.1016/j.physleta.2003.08.060
http://dx.doi.org/10.1016/j.physleta.2003.08.060
http://dx.doi.org/10.1103/PhysRevE.70.036613
http://dx.doi.org/10.1103/PhysRevE.70.036613
http://dx.doi.org/10.1103/PhysRevE.72.046210
http://dx.doi.org/10.1016/S0960-0779(01)00077-7
http://dx.doi.org/10.1016/S0960-0779(01)00077-7
http://dx.doi.org/10.1103/PhysRevE.69.065201
http://dx.doi.org/10.1103/PhysRevE.69.065201
http://dx.doi.org/10.1142/S0218127404011806
http://dx.doi.org/10.1142/S0218127404011806
http://dx.doi.org/10.1103/PhysRevE.69.026121
http://dx.doi.org/10.1103/PhysRevE.69.026121
http://dx.doi.org/10.1016/j.physa.2005.05.006
http://dx.doi.org/10.1016/j.physa.2005.05.006

