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Although it is unambiguously agreed that structure plays a fundamental role in shaping the collective
dynamics of complex systems, how structure determines dynamics exactly still remains unclear. We investigate
a general computational transformation by which we can map the network topology directly to the dynamical
patterns emergent on it—independent of the nature of the dynamical processes. Remarkably, we find that many
seemingly different dynamical processes on networks, such as coupled oscillators, ensemble neuron firing,
epidemic spreading and diffusion can all be understood and unified through this same procedure. Utilizing the
inherent multiscale nature of this structure-dynamics transformation, we further define a multiscale complexity
measure, which can quantify the functional diversity a general network can support at different organization
levels using only its structure. We find that a wide variety of topological features observed in real networks,
such as modularity, hierarchy, degree heterogeneity and mixing all result in higher complexity. This result
suggests that the demand for functional diversity is driving the structural evolution of physical networks.
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I. INTRODUCTION

The advances in the realm of complex networks have fur-
nished us with a new paradigm to understand and character-
ize complex systems �1–3�. A large variety of real-world sys-
tems, from the human brain that is composed of billions of
neurons, to our society, a collection of six billion cooperating
individuals, can all be represented as complex networks. The
discovery of scale free �4� and the small-world �5� structures
has fundamentally altered our view of these networks. A va-
riety of other topological features, such as clustering �6�,
hierarchical ordering �7�, and degree mixing �8,9�, are also
emerging as important to the overall behavior of network
systems. However, recent progress mainly focuses on the
underlying topological structure �1�, the effort to understand
the system’s dynamics or function has been less advanced
�2,3,10–15�.

With the increasing capability to capture simultaneously
the time dependent activity of many components from com-
plex systems �16� �such as the multiple electrode recording
of neuronal populations �17�, gene expression patterns �18�,
and time-resolved email correspondence �19��, unraveling
the intricate relationship between the structure of a network
and its dynamical behavior has become a problem of utmost
importance, and hints toward the general organizing prin-
ciples and a deeper understanding of complexity. Generally,
the topological descriptors fail to capture the dynamical as-
pects explicitly. To characterize the dynamics of a network, it
must be implemented as a dynamical system via extensive
numerical simulations.

In this paper we seek a methodology to understand and
predict the dynamical correlation among the components of a

complex system directly through the underlying topology.
This is achieved by constructing the node interaction profiles
through a tunable kernel function, which identifies the func-
tional role of each node and all interaction pathways in a
multiscale manner. The dynamical correlation among the
units �or correlation pattern� is usually obtained by calculat-
ing the correlation index among the output time series from
the components, and it underlies the functionality of a com-
plex system. It has been intensively studied in chaos com-
munity and brain research groups, under either the banner of
synchronization �20–22� or functional connectivity �23,24�.
For example, it has been suggested that specific correlation
patterns within large populations of neurons in the cortex are
responsible for perception and cognition �25�.

Barabási recently points out that various dynamical pro-
cesses may share some common characteristics, which need
to be unveiled possibly by new frameworks �26�. Interest-
ingly, we find that our methodology is independent of the
details of the dynamical process. Various processes on net-
works such as synchronization of coupled oscillators, en-
semble neuron firing and diffusion processes can all be uni-
fied under this theoretical picture, suggesting that some
general rules may govern the overall dynamical behavior of
the seemingly diverse complex systems. Based on this
dynamics-structure transformation, we propose a multiscale
complexity measure, which can evaluate the range of corre-
lation patterns a network can possibly generate over different
organization levels. We find that various topological features
such as topological heterogeneity �4�, modularity �6�, hierar-
chy �7� and nontrivial correlation �8� all translate into higher
complexity, indicating that the need for multiple function
governs the structural evolution of physical networks.

II. METHOD: MAPPING FROM STRUCTURE TO
DYNAMICS USING KERNEL FUNCTION

Consider a complex system composed of N coupled dy-
namical units, whose equations are described by �20�: ẋi
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=F�xi�+�� j=1
N AijH�xj� , i=1,2 , . . . ,N where ẋi=F�xi� gov-

erns the dynamics of each component, H is a fixed output
function, � represents the coupling strength, and A is the
adjacency matrix of the underlying network. The problem is
now, given only the topology A of the network, can we infer
qualitatively the dynamical correlation among the compo-
nents �i.e., the correlation among the multiple output time
series xi�t� , i=1, . . . ,N form each component� without imple-
menting the network as a dynamical system? If so, what does
this tell us about the behavior of different dynamical units
within the same network structure?

A fundamental feature of a complex system composed of
multiple interacting components is the presence of interac-
tion pathways across a wide range of spatial scales �27�. Take
a network of coupled dynamical systems for example, a pair
of nodes usually exert a stronger influence on each other
when directly coupled �i.e., their shortest path distance lij is
1�, while this influence tends to weaken for indirectly linked
nodes due to intermediaries �i.e., lij �1�. To quantify
the influence attenuation with shortest path distance l on a
network, we adopt a simple, monotonically decreasing
function known as a kernel K �see Fig. 1� �28,29�. For a pair
of nodes i and j, we then define their effective interaction Rij,
in the form of K�lij ,h�, where lij is their shortest path dis-
tance, K is a non-negative, symmetric kernel function satis-
fying �RK�l�dl=1, �RlK�l�dl=0, liml→� K�l�dl=0, and h is
the bandwidth that controls the width of the kernel. For
Gaussian kernel, the interaction matrix R will read: Rij
=exp�−lij

2 /2h2�.
To predict the dynamical correlation among units, we

should not only identify the effective influence among them,
but also distinguish their specific roles in shaping the dynam-
ics of others. Note that the ith column of R, Ri portrays the
effective interaction node i receives from all its neighbors,
which we call interaction profile of node i �We normalize the
interaction matrix R so that each row sums to 1, indicating
that each node exerts similar amount of influence to others�.
This vectorial profile systematically encodes the influence
from all neighbors of node i as distinct driving forces �with
their strengths determined by the kernel function� to its own

dynamics. Therefore Ri fully defines the unique “status” of
node i. To further predict the dynamical correlation or func-
tional connectivity Fij between node i and j, we can calculate
the similarity between their interaction profiles Ri and Rj:
Fij =

Ri·Rj

�Ri��Rj�
.

Here Fij provides a unique clue to evaluate the dynamical
correlation between the components. Unit i and j subject to a
large number of common inputs �up to higher orders� are
more likely to behave similarly. In this case, their profiles Ri
and Rj will largely coincide by sharing many common en-
tries, leading to a large Fij—approaching 1. Conversely, a
pair of units with few common drives tends to be indepen-
dent and thus have a Fij near 0. A great advantage of using
kernel function lies in its adjustable bandwidth h, which can
evaluate different levels of organization of a network and has
concrete physical meanings for various dynamical processes
on networks. In the following we will demonstrate how the
correlation patterns in various dynamical processes can be
inferred using the above mapping from structure A to dynam-
ics F.

III. NUMERICAL VERIFICATION FOR DIFFERENT
DYNAMICAL PROCESSES ON NETWORKS

A. Synchronization of coupled phase oscillators

We start with synchronization phenomena, which are
widely observed in nature and occupy a privileged position
in the understanding of emergent collective behavior across
various contexts: neuroscience, ecology, biology, and engi-
neering �21�. Recently the interplay between a network’s
structure and its synchronization dynamics has attracted sig-
nificant attention �22,30,31�. Here we use the Kuramoto
model defined on various networks as a prototype example.

It is governed by �̇i=�i+
�

k̄
Aij� j=1

N sin�� j −�i� , i=1,2 , . . . ,N,
where �i is the frequency of phase oscillators �uniformly
distributed in �0,1��, � is coupling strength, A is the adja-

cency matrix, and k̄ is mean degree. Specifically, we will
show that Fij obtained at different kernel bandwidth h can
provide a good estimation of the correlation patterns emer-
gent under different �.

With a small coupling �, the oscillators are mostly inde-
pendent. The dynamical distance between outputs of node i
and j, defined as Dij = ��i�t�−� j�t�	 ���t� are wrapped to
�0,2�� and � · 	 means time average� will be nonzero and
constitute a narrow distribution. When � is large, the whole
network reaches complete synchronization, and Dij distribu-
tion will be a narrow peak again near 0. For intermediate �,
various functional clusters are formed, with Dij distribution
broadening �32�. We find that the Dij distributions at various
� are exactly reproduced by Fij with different h, see Fig. 2.
At a small h, all entries in Ri are almost 0 except the ith,
meaning each node only has impact on itself. The Ris are
mostly orthogonal, thus Fij will centralize at 0. By contrast,
the kernel becomes flat at a large h, leading every node to
exert similar influence on all others. The Fij then concen-
trates near 1 as all Ris are almost identical. For medium h,
the distribution of Fij broadens within �0,1� with the peaks
corresponding to the formed functional clusters.
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FIG. 1. �Color online� Modeling influence attenuation versus
shortest distance by seeding a “kernel” function at the node �we
take node d as an example�. �a� Node d will have impact only on its
immediate neighbors c and e under a small kernel bandwidth �h
=0.1�. �b� Node d can affect its higher-order neighbors like b and f
under a large bandwidth �h=1.5�.
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These examples show that the kernel bandwidth h is play-
ing a role directly analogous to coupling strength �. To fur-
ther verify the consistency between Fij and Dij, we first get
Dij by implementing phase oscillators on a random network
and a modular collaboration network �33�. We then calculate
the correlation coefficient � between Dij and 1−Fij obtained
at various h, see Fig. 3 �we use 1−Fij because it is a dissimi-
larity measure that is consistent with Dij, while Fij is a simi-
larity measure�. We find that for a given �, there is always an
optimal kernel bandwidth hmax that attains a maximum simi-
larity between Dij and 1−Fij, with hmax and � being posi-
tively correlated. The matrices Dij and 1−Fij demonstrate
very similar patterns �see Fig. 4�, reflected by a large corre-
lation coefficient � between them. We find that � generally
takes a large value for medium and high coupling �, where
oscillators have self-organized into well-defined clusters. For
weak �, the oscillators remains independent, thus Dij is al-
most random and cannot be accurately fitted by Fij.

B. Ensemble neuron firing of neural networks

Now we turn to a specific example in neuroscience, the
coupled neurons in the cortex which communicate by nons-
mooth, pulselike firings. The population dynamics of neu-
rons, like the synchronous firing in the cortex, plays a fun-
damental role in cognitive functions of the brain �25,34,35�
and is governed by the anatomy of the brain. Therefore un-
derstanding how connectivity influence the neural activity
patterns �thus function� is of considerable importance in neu-
roscience. Here we try to assess the correlation patterns di-
rectly from the underlying structure. In particular, we couple
the FitzHugh-Nagumo �FHN� neurons through real networks
�by excitatory synapse with synaptic conductance g� to get
Dij first, and then check the correspondence between Dij and
Fij. We use two networks possessing key properties of the
cortex, i.e., small-world, hierarchical and modular structure.
One is the neural network of Caenorhabditis elegans whose
anatomy has been identified by biologist. The other is a hi-
erarchically organized modular network �22� with two hier-
archical levels. The network of FHN neurons is described by


�V̇i = Vi − Vi
3/3 − Wi + Iex + Ii

syn

Ẇi = Vi + a − biWi + d	i

Ii
syn = − �1�j�i�

N
gAijsj�Vi − Vsyn�� , �1�

i=1,2 , . . . ,N, where Vi is the membrane potential, 	i is the
i.i.d Gaussian noise �with zero mean and intensity d� repre-
senting the noisy background, and Iex is the externally ap-
plied current. The parameter b, which uniformly distributes
in �0.45, 0.75�, controls the single-neuron dynamics. The
neuron undergoes Andronov-Hopf bifurcation at b=0.45, and
have different excitability for b�0.45. Here the neurons are
pulse-coupled by chemical synapses in an excitatory manner
�the synaptic reversal potential Vsyn is set as 0�, with the
synaptic variable sj obeying ṡ j =
�Vj��1−sj�−�sj, 
�Vj�
=
0 / �1+e−Vj/Vshp�.

The synaptic conductance g determines the amplitude of
pulse conducted to postsynaptic neurons. It plays the same
role as � in coupled phase oscillators. The neurons fire al-
most randomly at a small g, and tend to form synchronous
firing as g increases, giving rise to coherent oscillations. We
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FIG. 2. �Color online� The distribution of Fij for a random ER
network �with 500 nodes and mean degree being 5� obtained at
different bandwidth h. As can be seen, Fij distribution broadens at a
medium h, while shrinks at both small and large h, which has a
good correspondence to coupling �.
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FIG. 3. �Color online� The correlation coefficient � between Dij

and 1−Fij for coupled phase oscillator on �a� random �ER� network
with 500 nodes �mean degree is 5� and �b� a collaboration network
with 379 nodes, where nodes are scientists who conduct research on
networks and links represent coauthorship �33�.
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FIG. 4. Visualization of matrixes �a� Dij and �b� 1−Fij obtained
form Fig. 3�b�, i.e., phase oscillators on collaboration network, with
�=0.6 in computing Dij and h=2.6 for Fij. We show only a portion
of the whole matrix for clarity.
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define the dynamical correlation among neurons as Dij
= ��f i�n�− f j�n��	, where f i�n� is the number of firings within
time window n for neuron i �here the length of time window
is 50 time steps�. Alternatively, we can calculate Dij
= ��vi�t�−v j�t��	, where vi�t� is obtained by proper phase
space reconstruction of Vi�t�. We find that Fij obtained purely
from network structure shows a high correlation with Dij for
both the C. elegans and the hierarchical network, see Fig. 5.
Therefore we can evaluate the dynamics of neuronal popula-
tions directly from the anatomy. Moreover, the kernel band-
width h plays a role similar to synaptic conductance g. For a
given g, there is always an optimal bandwidth hmax under
which Fij best fits Dij, and this hmax is positively correlated
with g.

C. Epidemic spreading on networks

Triggered by the work of Pastor-Satorras et al. �36�, there
has been a revival of interest in understanding how network
topology may affect epidemic propagation, wherein nodes
represent individuals and the edges indicate connections
through which infection can spread. Most current studies
have only focused on the static, ensemble properties like the
final infected numbers �37�. The dynamical evolution of the
state of the individuals and their correlations remains less
investigated. Here we consider the susceptible-infected-
susceptible �SIS� model, in which the healthy node �suscep-
tible� is infected with rate � at each time step, and the in-
fected can recover and become again susceptible with rate 
.
This model is suitable to study the fluctuation of node dy-
namics, and the dynamics of node i is represented by a
discrete-time stochastic process Si�t�, with 1 indicating “in-
fected” and 0 for “healthy.”

The correlation among the epidemic dynamics of the in-
dividuals can be defined as Dij = ��Si��n�−Sj��n��	, where
Si��n� is coarse grained from Si�t� by counting the number of

1 in time window n. We find that Dij is again nicely predicted
by Fij under a suitable h, see Fig. 6, where we run SIS
models on two typical networks. Interestingly, we find hmax
relates closely to the effective spreading rate �=� /
, where
� and 
 are infection and recovery rate, respectively. In Fig.
6 we see that node correlation at a small � is optimally fitted
by a kernel with small h, while correlation of the node dy-
namics under large � is better reproduced by a wider kernel.
This is because an infected node recovers quickly with a
small �, thus having a small range of influence fitted better
with a small h. Conversely, a large � makes the infected node
persistently infective and has a large influence basin de-
scribed well by a wider kernel.

D. Random walk on networks

Another fundamental dynamic process �38� on networks
is the random walk, which relates to many practical prob-
lems on networks, such as navigability �39� and community
detection �40�. Here we explore random walk on networks
with particular attention to the correlation of the dynamics of
the nodes. Here the “dynamics” of a node is encoded in the
specific timings at which it is visited, which is fully de-
scribed by a stochastic process Wi�t�, �t=0,1 ,2 , . . . ,n�, with
1 represents “being visited” at time t and 0 otherwise.

The dynamical correlation of node i and j is then defined
as: Dij = ��Wi��n�−Wj��n��	 �Wi��n� is coarse grained from
Wi�t� by counting the number of 1 in each time window n�,
which is nicely predicted by Fij, as is indicated by a large �
between them �see Fig. 7�. Here the random walk provides
an ideal paradigm to validate our method as a mapping from
structure to dynamics. Nodes sharing significant structural
similarity �41� are more likely to be visited at the same time
window, thus their “dynamics” will be highly correlated,
which is precisely captured by our structure-dynamics trans-
formation.

IV. UNIFYING VARIOUS DYNAMICAL PROCESSES ON
NETWORKS

After demonstrating in Sec. III that the correlation pat-
terns of various dynamical processes can be inferred by our
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FIG. 5. �Color online� The correlation coefficient between Dij

and 1−Fij for �a� C. elegans network with 297 neurons and each
has 14 synaptic couplings on average. �b� Hierarchical network with
480 nodes �22�. Each node has 20 links to the most internal com-
munity �formed by 30 nodes�, 2 links to the most external commu-
nity �120 nodes that form four 30-nodes groups�, and 1 more link to
any other node. The parameters a and Iex are set to be 0.7 and 0.05
in the simulation.
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mapping from A to F, it is then natural to consider what
these processes on networks have in common. Figure 8
shows the functional relation between the optimal kernel
bandwidth hmax and the physical parameters like � for
coupled oscillators, g for coupled neurons, and � for epi-
demic spreading, which are obtained by simulating each dy-
namical process 50 times on a given network. A fundamental
feature of these functional relations, as can be seen in Fig. 8,
is their strict monotonicity, i.e., a wider kernel can be used to
describe dynamical process with a larger coupling �, con-
ductance g, or effective spreading rate �. This indicates that
various dynamical processes on networks follow similar or-
ganization principles, and their dynamics can be understood
and predicted by the same mapping from structure to dynam-
ics. In order to predict exactly the dynamics on a network at
a given physical parameter, we will need a priori knowledge
of the functional relation shown in Fig. 8. Under the circum-

stances that no a priori knowledge is available, we can still
apply our mapping to a given network using kernels with a
series of different width, which is expected to offer a full
scan of the dynamics over a large range of physical param-
eters.

V. CHARACTERIZING COMPLEXITY OF COMPLEX
NETWORKS: FROM STRUCTURE TO FUNCTION

Having established the mapping from network structure to
its dynamics, we are naturally led to the questions: Why do
real networks demonstrate distinctive features such as modu-
larity, hierarchy, degree mixing, and heterogeneity? What are
their roles in shaping the dynamics, or function of the net-
work? Here we come up with a complexity measure by ex-
ploiting our structure-dynamics transformation, which can
conveniently quantify how much function a network can
support.

Understanding and quantifying complexity �32,42,43� has
been an inherently interdisciplinary effort that spans a broad
range of specialties. Sporns et al. proposed “neural complex-
ity” to measure functional connectivity by implementing
Gaussian dynamics �44� on networks. It has been shown that
the correlation patterns lie at the core of functionality of a
network �45–47�. Take coupled dynamical systems for ex-
ample, both small and large couplings result in too narrow
Dij distribution to provide enough patterns of functional con-
nectivity, while medium coupling induces broad Dij distribu-
tion that may offer more choices of function �see Fig. 2�. The
richness of the correlation patterns �which is reflected by the
broadness Dij distribution� therefore determines the range of
function a network can possibly support.

As we have shown in coupled oscillators, the dynamical
correlation Dij at various coupling strengths is well captured
by Fij at various h, thus we can approach the emergent cor-
relation patterns directly form Fij. Specifically, we use en-
tropy H to characterize the broadness of Fij distribution ob-
tained at different h �H�F�=�k=1

m − pk log�pk�, where pk is the
probability that Fij lies within bin k�, which quantifies how
much correlation pattern a network can possibly generate at
various organization levels.

Figure 9�a� shows the complexity computed for typical
networks at various scales. As can be seen, BA network
shows a higher H than ER network at all scales, while assor-
tatively and disassortatively mixed BA networks have higher
H than BA networks. This is because scale free degree dis-
tribution and degree mixing can promote differentiation or
facilitate the formation of various functional modules. Nota-
bly, we find that hierarchical and modular structures, which
are widely observed in biological and social networks �7�,
demonstrate significantly higher complexity than their ran-
dom counterparts, see Figs. 9�b� and 9�c�. This is because the
multiscale modular structure induces a wealth of correlation
patters persistently at different level of organization �corre-
sponding to a wide range of h�. The fact that all these dis-
tinctive topologies lead to higher complexity offers impor-
tant insights into the evolutionary mechanism of real
networks. This suggests that the demand for functional diver-
sity is shaping the network architecture during the develop-
ment of a physical network.
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FIG. 7. �Color online� Correlation coefficient between Dij and
1−Fij for random walk on various networks. The Barabási-Albert
and Erdös-Reńyi network both have 1000 nodes, with mean degree
being 20 and 10, respectively. The length of time window is 200.
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VI. CONCLUSIONS AND DISCUSSIONS

In summary we have introduced an approach that can map
the topological structure of a network directly to its dynam-
ics. We demonstrate that this mapping offers a unified frame-
work to account for the dynamical correlation emergent from
seemingly different dynamical processes on networks, such
as coupled oscillator, ensemble neuron firing and diffusion
processes. A great advantage of our structure-dynamics trans-
formation lies in its multiscale nature, which renders it espe-
cially useful for analyzing networks with hierarchical modu-
lar structure, such as metabolic and protein interaction
networks �7�.

For such networks, the modules that are usually present at
small scale can be fitted by a relatively narrow kernel. Only

nodes within the same module interact, leading to a narrow
Fij distribution. Further up the scale these modules combine
in a hierarchical manner, and Fij distribution achieves the
maximum at certain organization level h, indicating optimal
division and cooperation among nodes. Finally, excessive
widening of the kernel function will cause the nodes to ap-
pear homogenous. The multiscale modular organization in
this case offers a wide range of scales at which segregation
and integration combine to form diversified dynamical pat-
terns, and does not depend on specific choice of kernels.
Consequently the multiscale structure constitutes the struc-
tural basis for multilevel function. The reason why these net-
works are “complex networks” is that the multiscale struc-
ture can provide different levels of function persistently at
different levels—and it is this property that is characterized
by our multiscale entropy H.

Our approach can be directly extended to weighted and
directed networks, and is computationally very effective. The
time complexity of our mapping is bounded by O�nl�, where
l is the largest shortest path distance of a network. Our map-
ping can furthermore be considered as a promising scheme to
other problems like inverse engineering and controllability.
The explicit relation between structure and dynamics will
provide unique clues to infer the structure back from dy-
namical patterns, possibly with constraints like sparseness of
connectivity. The control over the general networked systems
can also be enhanced conveniently by locating the most sen-
sitive nodes or links, the removal or rewiring of which would
result in better network performance.
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