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We derive an approximate expression for mutual information in a broad class of discrete-time stationary
channels with continuous input, under the constraint of vanishing input amplitude or power. The approximation
describes the input by its covariance matrix, while the channel properties are described by the Fisher infor-
mation matrix. This separation of input and channel properties allows us to analyze the optimality conditions
in a convenient way. We show that input correlations in memoryless channels do not affect channel capacity
since their effect decreases fast with vanishing input amplitude or power. On the other hand, for channels with
memory, properly matching the input covariances to the dependence structure of the noise may lead to almost
noiseless information transfer, even for intermediate values of the noise correlations. Since many model
systems described in mathematical neuroscience and biophysics operate in the high-noise regime and weak-
signal conditions, we believe, that the described results are of potential interest also to researchers in these
areas.
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I. INTRODUCTION

Information theory is a mathematical framework that pro-
vides tools for quantification of information content and in-
formation transfer in systems defined by general probabilistic
rules �1�. The theory has been applied successfully to a wide
range of problems �2�, including, e.g., classical and quantum
computation and communication �3–5�, optical communica-
tion �6–8� or quantification of different aspects of informa-
tion processing in real neurons and neuronal models �9–15�.

The measure of information transfer in information theory
is represented by a nonlinear functional of the probability
measure over the joint input-output space �1�. The concavity
of this functional in the input probability measure has impor-
tant implications for numerical approaches to finding the in-
formation optimality conditions �1,16–18�. On the other
hand, approximations or even closed-form solutions are quite
rare. The classical exact solution for the linear channel with
additive �possibly nonwhite� Gaussian noise �1,19� and input
power constraint has been applied in many different situa-
tions. However, in many cases of interest the channel is sig-
nificantly nonlinear or non-Gaussian or there are different
input constraints �20� and one has to rely on numerical solu-
tions or approximations.

The approximations allow us to investigate, although lo-
cally and under perhaps restrictive scenario, the effect of
individual components in the system on the optimality con-
ditions. In particular, if the noise in information transfer is
substantially low and regular, there exists a tight lower
bound on the information optimality conditions �denoted as
low-noise approximation in this paper� which has been in-
vestigated in �12,21–23�. In this paper we continue the effort
started in �24� and we describe essentially the opposite situ-
ation: the high-noise approximation. Such approximation is
of interest when the signal is very weak compared to the
noise in the information transfer, for example, as in the clas-

sical stochastic resonance effect observed in electrosensory
neurons �24,25�.

II. MEASURES OF INFORMATION

Throughout this paper we assume the discrete-time setting
�5�, we denote the consequent channel outputs �responses� as
a vector of random variables �r.v.� R= ��Ri�i=1

n �T, which may
be discrete or continuous, i indexes the time and � · �T denotes
the transposition. The response, Ri=ri, results from the cor-
responding input �i=�i, where the input is also described by
a n-dimensional r.v. �. The multidimensional description of
the process of information transfer between � and R allows
us to include the effect of memory, i.e., the dependence on
current and also on past inputs and responses. We also as-
sume that the input alphabet is continuous �5�. In the follow-
ing we consider stationary channels fully described by the
conditional probability density function �p.d.f.� f�r ���,
which generally factorizes as �26�

f�r��� = �
i=1

n

f i�ri��i,�i−1, . . . ,�1,ri−1, . . . ,r1� . �1�

We do not consider channel feedback, the dependence of
current input on past responses �1�.

Mutual information �MI� is the fundamental quantity
measuring information transfer in channels �1�. MI I�� ;R�
gives the degree of statistical dependence between inputs and
responses, defined as

I��;R� = 	DKL�f�r��� 
 p�r����, �2�

where

p�r� = 	f�r����� �3�

is the marginal joint p.d.f. of responses, and the averaging is
with respect to the input p.d.f., ����. The Kullback-Leibler
�KL� divergence is defined as*kostal@biomed.cas.cz
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DKL�f�r��� 
 p�r�� = �ln
f�r���
p�r� r��

, �4�

where the averaging is with respect to f�r ���. From Eq. �2�
follows, that MI is a property of the joint distribution of
stimuli and responses. Of particular interest are the optimal-
ity conditions for information transfer, that is the maximum
value of I�� ;R� and the corresponding optimal ����. In
order to have a well-posed problem, one is interested in the
optimality conditions for � satisfying certain additional con-
straints, e.g., average power or range of inputs �1,20�. The
maximum value of MI per channel use, taken over all pos-
sible stimuli distributions satisfying constraints G, is denoted
as the information capacity, C, defined as �20�

C = lim
n→�

1

n
� sup

�����G
I��;R�� . �5�

In this paper we interpret C as the upper bound on the rate at
which the information can be transmitted reliably �1�, with-
out considering the complexity of achieving such maximum
rate in practical terms. Specifically, we do not discuss the
properties of any particular coding and decoding schemes
�5�.

Whenever we are interested in reliability of input-output
transmission, we naturally interfere with the domain of sta-
tistical estimation theory �27�. Fisher information �FI� ma-
trix, defined as

J���R� = 	�� ln f�r������ ln f�r����T�r��, �6�

where

� = � �

��1
, ¯ ,

�

��n
�T

, �7�

imposes limits on the precision of � estimation from the
responses by means of the Cramer-Rao bound, which says
that for the variance of any unbiased estimator of �i holds

Var��̂i�� �J−1�� �R��ii �27�. Generally, FI requires that f�r ���
is continuously differentiable in � �27�. In this paper, we
additionally assume that f�r ��� is twice continuously differ-
entiable in �, so that the following conditions hold

�
R

�f�r���dr = 0, �
R

��Tf�r���dr = 0 . �8�

There is a variety of relationships between FI, MI, and KL
divergence established in the literature �1,28,29�, further mo-
tivated by the fields of information geometry �30� or stochas-
tic complexity �31�. The already mentioned low-noise ap-
proximation to MI is constructed by employing the Cramer-
Rao bound �12,21–23�. Although we demonstrate that the
high-noise approximation also involves FI, we never employ
the Cramer-Rao bound and the appearance of FI is due to
certain asymptotic properties of the KL distance �28�.

III. INFORMATION TRANSFER BY WEAK SIGNALS

A. Small input amplitude limit

The channel properties are described by the conditional
probability density f�r ���, which satisfies the regularity con-

ditions �Eq. �8��. The input, described by r.v. �, is restricted
in amplitude,

� � ��0 − ��,�0 + ��� , �9�

for chosen �0 and ��, or more precisely in components: for
all i holds �i� ��0−�� ,�0+��� and ���0. The situation
for a memoryless channel is illustrated in Fig. 1. The goal is
to derive an approximation to mutual information in the limit

��
→0. We demonstrate in detail in Appendix A, that the
approximation �to second order in the input amplitude� can
be written as

I��;R� �
1

2
tr�J��0�R�C�� , �10�

where J��0 �R� is the FI matrix from Eq. �6� evaluated at �
=�0, C� is the covariance matrix of � and tr� · � is the matrix
trace. Equation �10�, derived also in �24�, holds for a broad
class of channels with memory, both biologically inspired
and artificial and represents the main result. An important
feature of Eq. �10� is, that the channel properties �described
by the FI matrix� and the input properties �described by its
covariance matrix� are separated. Therefore, the maximum
value of MI can be found by matching the corresponding
elements of J��0 �R� and C�. The elements of the covariance
matrix of � can be written as �32�

�C��ik = 	2�ik, �11�

where 	2��Var��i�Var��k� is constant for all i ,k due to
stationarity, and �ik=corr��i ,�k� is the correlation coeffi-
cient. The maximum variance of the amplitude-constrained
input from Eq. �9� is max 	2= ����2 and −1
�ik
1, thus
I�� ;R� in Eq. �10� is maximized if

FIG. 1. Information transmission with amplitude-constrained in-
puts. The input signal, described by r.v. �, is restricted to the inter-
val ��0−�� ,�0+���. Due to presence of noise, the responses to
each particular � vary randomly, described by the conditional prob-
ability density f�r ���. While the memoryless information channel is
fully described by f�r ���, the amount of information transferred
depends on both f�r ��� and the distribution of �. We examine the
maximum information transfer by inputs restricted to small ampli-
tudes when there is a significant overlap of f�r ��0−��� and
f�r ��0+���. Heuristically, the problem can be also described as the
information transmission in a very noisy environment, or under
very low signal-to-noise ratio conditions.
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�ik → sgn�J��0�R��ik, �12�

where sgn� · � is the sign function. Note, that the diagonal
elements of the FI matrix are positive while the off-diagonal
elements can be negative. It may happen, that the matrix C�

formed by Eqs. �12� and �11� is not positive-semidefinite
�33�, i.e., it cannot be a proper covariance matrix �34�, even
though J��0 �R� generally is positive-semidefinite �27�. How-
ever, in all problems we have calculated so far, proper input
covariance matrix could be formed, given J��0 �R�, and then
it holds from Eqs. �5� and �10�

C � Chigh = lim
n→�

����2

2n �
i,k

��J��0�R��ik� , �13�

where Chigh denotes the high noise approximation to the true
capacity C.

For stationary memoryless channels f�r ��� factorizes due
to Eq. �1� as �1�

f�r��� = �
i=1

n

f�ri��i� , �14�

thus from Eq. �6� follows that the FI matrix is diagonal,
J��0 �R���J��0 �R��ii= 	��� ln f�r ����2�r��, and from Eq. �13�
we have

Chigh =
����2

2
J��0�R� , �15�

a result obtained by different means in �35�. The optimal
input p.d.f., �����, is the maximum variance distribution
over the given input range,

����� =
1

2
��� − �0 − ��� +

1

2
��� − �0 + ��� , �16�

where �� · � is the Dirac’s delta function. In other words, the
capacity is achieved by a binary input, and thus C�1 bit.

From Eq. �10� follows, that nondiagonal elements of C�

do not affect the information capacity of memoryless chan-
nels in the vanishing input amplitude case. This result is
counterintuitive, because correlations generally decrease the
input entropy �1�. Therefore in the following we provide a
proof which is independent of Eq. �10�. Let us consider two
consequent uses of a stationary memoryless channel, i.e.,
�= ��1 ,�2�T, R= �R1 ,R2�T. We assume, that the inputs �1
and �2 are generally statistically dependent, ��1 ,�2�
����1 ,�2�, and the joint marginal distribution of responses
is denoted as p�r�, see also Eq. �3�. By employing the fac-
torization �Eq. �14�� and basic relations between entropy,
h�R�=−	ln p�r��r, and MI �1� we have

I��;R� = h�R� − 	h�R�����

= h�R1� + h�R2� − I�R1;R2� − 	h�R1��1� + h�R2��2���

= I��1;R1� + I��2;R2� − I�R1;R2�

= 2I��1;R1� − I�R1;R2� , �17�

since I��1 ;R1�= I��2 ;R2� due to stationarity. In other words,
the difference in information transfer when using two depen-
dent or independent inputs in the memoryless channel is

equal to I�R1 ;R2�. Obviously, for �1 ,�2 independent holds
I�R1 ;R2�=0. The strength of the dependence between R1 and
R2 for correlated inputs depends on the input range and the
conditional response distributions, see Fig. 1. We expect
I�R1 ;R2� to be maximal for the extreme input dependence,
e.g., �2=�1, where �1 is equiprobably equal either to �0
−�� or �0+��. It follows, that R1 ,R2 are conditionally
�given �1� identically and conditionally independently dis-
tributed. If f�r ��0−��� and f�r ��0+��� are well separated,
then I�R1 ;R2��0 because R2 provides redundant informa-
tion to R1. As ��→0, then f�r ��0−��� and f�r ��0+��� be-
come �almost� identical due to continuity in � and thus
I�R1 ;R2�→0. To make the argument precise, we show that
I�R1 ;R2�=0 to the second order in the input amplitude, so
that the effect of input correlations in memoryless channels
is of higher order than the approximate Eq. �10�. The joint
response distribution is

p�r1,r2� =
1

2
f�r1��0 + ���f�r2��0 + ���

+
1

2
f�r1��0 − ���f�r2��0 − ��� , �18�

from which the marginals follow p�r1�= f�r1 ��0+��� /2
+ f�r1 ��0−��� /2, and similarly for p�r2�. We employ another
formula for MI ��1�, P.251�

I�R1;R2� = DKL�p�r1,r2� 
 p�r1�p�r2�� . �19�

By substituting from Eq. �18� into Eq. �19�, and by employ-
ing the Taylor expansion in �� around ��=0, we have �the
terms up to �� are zero�

I�R1;R2� � ����2� �
R1R2

�� � f�r1���
��

� f�r2���
��

��
�=�0

dr1dr2,

which is equal to zero, due to Eq. �8�. The first nonzero term
is of fourth order, and can be written as
����4J��0 �R1��J�0 �R2� /2, provided that f�r ��� is three times
continuously differentiable in �.

On the other hand, for channels with memory the input
correlations do matter, irrespectively of the smallness of the
amplitude. Consider, for example, two channel uses in the
additive noise case, Ri=�i+Zi, 	Zi�=0, where i=1,2. It is
possible to approach the noiseless channel in the extreme
case of matching input and noise correlations in accord with
Eq. �10�, e.g., if corr�Z1 ,Z2�→−1 and corr��1 ,�2�→1, then
R1=�1+Z1 and R2=�1−Z1 and so by adding R1+R2 we can
recover the value of �1 perfectly.

B. Small input power limit

The signal power �36�, P�, of an input signal described
by r.v. � is defined as

P� =
1

n
	�T�� . �20�

For the covariance matrix C� of r.v. � holds C�= 	��
− 	�����− 	���T�, and therefore
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P� =
1

n
�tr C� + 
	��
2� . �21�

The information channel is constrained in the input power P
if only inputs that satisfy P� P� are considered. It is com-
mon in information theory of power-constrained channels, to
assume 	��=0, then P�=tr C� /n ��1�, P.277�, which we
assume here also. The assumption 	��=0 results in simpler
notation, although it does not affect the generality of results.
Due to stationarity, the marginal variances of r.v. � are con-
stant, Var��i�=const. for all i, thus we can write

� = ��̃ , �22�

where Var��̃i�=1 and ��0 is the scaling factor. The power
of the input is then P�=�2, and the vanishing input power is
achieved by �→0.

The approximate expression for MI in the vanishing input
power limit is obtained analogously to the proof presented in
Appendix A, by expressing I�� ;R� in terms of the auxiliary

r.v. �̃, and then expanding for �→0 around �=0. Let

������ and �̃�g��̃�, then from Eq. �22� follows ����
=g�� /�� /�=g��̃� /�, and also d�=�d�̃. The MI can be writ-
ten by �analogously to Eq. �A2��

I��;R� = 	DKL�f�r���̃� 
 	f�r���̃���̃���̃. �23�

The rest follows the argument of Appendix A, although sim-
plified due to 	��=0. It is obvious from the general proof,
that the assumption on zero 	�� is not essential, only that the
vanishing input power is then with respect to 	��, so that
tr C� /n is the vanishing power of input fluctuations. Never-
theless, the approximation is the same in both cases and
reads

I��;R� �
�2

2
tr�J��0�R�C�̃� =

1

2
tr�J��0�R�C�� , �24�

where 	��=�0.
Equations �10� and �24� are identical, although the as-

sumptions on � are different. Consider for example the
memoryless channel with power constraint P��2 on the in-
put and 	��=0, so that Eq. �24� can be written as

I��;R� �
�2

2
J�0�R� . �25�

The capacity is achieved by any distribution of inputs with
power P�=�2= P, for example by the discrete distribution
from Eq. �16� with ��=�P, or by the Gaussian distribution
N�0, P�. Specifically, it is well known that the capacity of a
power-constrained linear additive white Gaussian noise
�AWGN� channel is �1�

C =
1

2
ln�1 +

P

N
� , �26�

where P is the power constraint on the input and N is the
noise power, and that the capacity is achieved by a normal
distribution N�0, P�. The signal-to-noise ratio �SNR� is then
defined as SNR= P /N. By expanding Eq. �26� to first order

in P for P�N we have C� P /N /2, which corresponds ex-
actly to Eq. �25�, since for the Gaussian additive noise holds
J�0 �R�=1 /N. A detailed review of AWGN channel capacity
and its different approximations for different SNR regimes
�including the high-noise approximation above� can be found
in �37�. The conclusion that in the vanishing input-power
limit the capacity of AWGN channel can be achieved by both
discrete and N�0, P� distributions is not so surprising in the
light of some recent research on the AWGN channels �38�. It
has been shown, that although the optimal input distribution
is generally N�0, P�, the capacity can be near-achieved by a
discrete distribution, and specially, if P�N the other pos-
sible capacity-bearing distribution is indeed binary discrete.
The methods employed in �38� are, however, different from
our approach. We further discuss the compatibility of Eq.
�24� with the exact results obtained for nonwhite AGN chan-
nels in the low-input power regime in the Results section of
this paper.

C. Simple lower bound on memoryless channel capacity

We have demonstrated in the previous sections, that if the
input to the memoryless channel is weak �in amplitude or
power�, the optimal distribution is discrete and binary. There-
fore the channel capacity cannot be more than 1 bit. Note,
however, that the capacity can be larger than 1 bit for chan-
nels with memory under certain circumstances, as we dem-
onstrate in the Results section.

It follows from the proof in Appendix A, that the Fisher
information arises in Eq. �10� from Taylor-expanding the in-
volved KL distances in the expression for MI. More precise
approximation to channel capacity, Cbin, can be thus obtained
without Taylor expansions, just by substituting the discrete
input distribution from Eq. �16� into Eq. �2�,

Cbin =
1

2
DKL�f�r��0 − ��� 
 p�r�� +

1

2
DKL�f�r��0 + ��� 
 p�r�� ,

�27�

where p�r�= f�r ��0−��� /2+ f�r ��0+��� /2. The parameter
�� is half of the maximum input amplitude for amplitude-
constrained channels, and ��=�P for power-constrained
channels.

Equation �27� is the lower bound on the true capacity, C
�Cbin, which holds whether the amplitude �or power� is
small or not. The extension of Eq. �27� to channels with
memory is not straightforward, for example the calculation
of Cbin would require numerical evaluation of possibly high-
dimensional integrals which may not be numerically stable
�39�. Therefore for channels with memory we propose to
employ Eq. �10� as the simplest method.

IV. RESULTS FOR SELECTED SYSTEMS

A. Memoryless channels

1. Amplitude constrained linear AWGN channel

The capacity and capacity-bearing input distributions of
the linear AWGN channel,
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R = � + Z , �28�

where r.v. Z is zero-mean Gaussian and the input is con-
strained in amplitude, were studied in detail in �18�. Contrary
to the well known Eq. �26� for the input power-constrained
channel, no closed-form expression for capacity exists in the
amplitude-constrained version, moreover the optimal input
distribution is known to be discrete with finite set of mass
points.

We assume �0=0, the maximal input amplitude is 2��,
thus the input is bound to lie in the interval �−�� ,���. Fur-
thermore we assume that the power of the noise is N=1, so
the noise is described by the standard normal r.v., Z
�N�0,1�. Equation �15� then becomes

Chigh =
1

2
����2. �29�

The binary approximation, Cbin given by Eq. �27�, has to be
evaluated numerically. Additionally, we also investigate the
low-noise approximation to MI, Clow, which is also based on
FI �12,21,22�,

Clow = ln

�
�

�J���R�d�

�2�e
. �30�

Equation �30� is a lower bound on the true channel capacity,
C�Clow, tight with the vanishing noise in the information
transmission. In the case of amplitude-constrained AWGN
channel we have

Clow = ln
2��

�2�e
. �31�

Figure 2�a� shows the comparison of the exact channel
capacity �data taken from �16�� with Chigh, Cbin, and Clow,
expressed as functions of the signal-to-noise ratio �in dB�,
which is defined as �16�

SNR = 10 log10�����2� . �32�

The capacities are evaluated in bits which means converting
the natural logarithms in Eqs. �15�, �27�, and �30� to base 2,
i.e., to divide the values by ln 2. While Clow and Chigh provide
good approximations only for rather high and small SNR
values, the Cbin approximation gives good results even for
intermediate SNR values. A similar figure with additional
approximations for the classical AWGN channel capacity can
be found in �37�.

2. Temporal neuronal coding

Recently, the information capacity of a memoryless neu-
ronal model has been analyzed in detail �17�. It is assumed,
that the neuronal response R is the interval between two
consequent action potentials. In agreement with some experi-
mental observations �40–43�, the response for each input fol-
lows the gamma distribution,

f�r��� =
r�−1

��

exp�− r/��
����

, �33�

where the parameter � is assumed to be the input �stimulus
intensity�. Based on further experimental observations �44�,
the input is constrained in amplitude, 5 /����50 /�. The
exact capacity was calculated numerically by �17� for 0.75
���4.5.

While Cbin has to be evaluated numerically, for the high-
and low-noise approximations we have

Chigh =
81

242
�, Clow = ln

�� ln 10
�2�e

. �34�

The results are shown in Fig. 2�b�. For the investigated val-
ues of �, both Chigh and Cbin approximations give better re-
sults than Clow, which suggests that this particular case of
temporal coding falls within the “high noise” category. Neu-
ronal responses often vary substantially across identical
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(a) Amplitude constrained linear AWGN channel
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FIG. 2. Capacities and their approximations in memoryless
channels. The high-noise capacity approximation �Chigh, Eq. �15��
approximates the true capacity of the amplitude-constrained AWGN
channel �a� well only for very low signal-to-noise ratios �SNR�, just
like the low-noise approximation �Clow, Eq. �30�� does for high
SNRs. The binary-channel approximation �Cbin, Eq. �27�� holds well
even for intermediate-low SNRs. The exact solution is taken from
�16�. The information capacity of a simple model of neuronal cod-
ing �b� apparently falls into the high-noise category, since both Chigh

and Cbin approximate the true capacity �taken from �17�� better than
Clow.
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stimulus trials, thus the highly noisy information transmis-
sion is not unusual as reported from experimental measure-
ments �45�. A simple model of a stochastic resonance in an
electrosensory neuron, subject to subthreshold �i.e., very
weak� stimulation �25,46� has been analyzed by employing
Chigh recently �24�.

B. Linear Gaussian channel with memory and input power
constraint

First, we demonstrate that Eq. �24� is compatible with
exact results available on input power-constrained linear
AGN channels with memory �1,19� in the limit of weak input
power. The channel is defined as

R = � + Z , �35�

where the zero-mean input is constrained in power P ��1�,
P.277�,

P �
1

n
tr C�, �36�

and the noise is given by the multivariate normal distribution
with covariance matrix CZ, Z�N�0 ,CZ�. The channel con-
ditional p.d.f. is therefore

f�r��� =
1

��2��ndet CZ

exp��r − ��TCZ
−1�r − ��� , �37�

and substituting Eq. �37� into Eq. �6� gives �27�

J���R� = CZ
−1, �38�

which is independent of �.
From the spectral decomposition theorem �34� follows

that

CZ = Q�QT, �39�

where the matrix � is diagonal with positive elements and Q
is orthonormal. The capacity per channel use is then given by
�19�

C =
1

2n
�
i=1

n

ln�1 +
mi

���ii
� , �40�

where the constants mi�0 are determined by the water-
filling procedure ��1�, P.274�, so that the power constraint
given by Eq. �36� holds as �i=1

n mi=nP. Furthermore, the op-
timal input distribution is also multivariate normal, �
�N�0 ,C��, with covariance matrix C�=QMQT ��19�,
P.279�, where the diagonal matrix M is defined as �M�ii
=mi.

In order to obtain the vanishing input power limit of Eq.
�40�, we observe that as P→0 also mi→0, so we can expand
Eq. �40� as

C �
1

2n
�
i=1

n
mi

���ii
=

1

2n
tr��−1M� . �41�

By combining Eqs. �38�, �39�, and �41� and basic properties
of matrix inverse and trace �34� we have

C �
1

2n
tr��QTCZQ�−1M� =

1

2n
tr�QTCZ

−1QM�

=
1

2n
tr�CZ

−1QMQT� =
1

2n
tr�J���R�C�� , �42�

which corresponds to the capacity per channel use as n→�,
due to Eq. �24�, for power achieving input, tr C� /n= P.

Next, we illustrate Eq. �42� on two simple models of
Gaussian noise with memory.

1. First-order autoregressive noise

The channel is given by Eqs. �35� and �36�, with Zi’s
following the first-order autoregressive �AR�1�� process: Zi
=�Zi−1+Xi, where −1
�
1 is the correlation coefficient,
�=corr�Zi ,Zi−1�, and Xi are independently distributed stan-

dard normal r.v.’s, Xi �
i.i.d.

N�0,1� �32�. The noise covariance
matrix has elements

�CZ�ik = ��i−k�, �43�

and its inverse, equal to the FI matrix by Eq. �38�, is tridi-
agonal,

J���R� =
1

1 − �2�
1 − � 0 ¯ 0

− � 1 + �2 − � ¯ 0

0 − � � � ]

] ] � 1 + �2 − �

0 0 0 − � 1
� .

�44�

We denote the correlation coefficient between consequent in-
puts as c=corr��i ,�i+1�. The MI per channel use for maxi-
mum power achieving input, P=tr C� /n, can be found ex-
actly by employing Eq. �24�,

lim
n→�

1

n
I��;R� =

P

2

�2 + 1 − 2c�

1 − �2 . �45�

For �=0 �memoryless channel� the value of c does not mat-
ter as discussed earlier. The capacity per channel use is

Chigh =
P

2

�2 + 1 + 2���
1 − �2 , �46�

since sup−1
c
1�−c��= ���. The capacity in bits per vanish-
ing input power, Chigh / P, is shown in Fig. 3 in dependence on
the noise correlation �. Note that from Eq. �46� follows
Chigh / P→� as ���→1, i.e., as the noise correlation in-
creases, its corrupting power decreases and in the limit we
can approach the noiseless channel.

2. First-order moving average noise

The channel is given by Eqs. �35� and �36�, r.v.’s Zi follow
the first-order moving average �MA�1�� process, Zi=Xi
−�Xi−1, where −1
�
1 is the parameter of the process and

Xi �
i.i.d.

N�0,1�. The parameter of the MA�1� process and the
correlation coefficient �=corr�Zi ,Zi−1� are related as �=
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−� / �1+�2�, and therefore −0.5
�
0.5 �32�. The covari-
ance matrix of the MA�1� process is tridiagonal, and its in-
verse has all elements nonzero, although decreasing in abso-
lute value with the distance from the main diagonal, see Figs.
4�a� and 4�b�.

Recently, a closed form expression for CZ
−1 of the MA�1�

process has been published �47�. The expression is rather
complicated and we cannot evaluate the analogous limit to
Eq. �45� in a closed form. Nevertheless, we approximate the
capacity per channel use by considering n high enough, and
the closed form expression for the elements of the FI matrix
allows us to avoid numerical issues when inverting the co-
variance matrix. The capacity per vanishing input power,
Chigh / P, is shown in Fig. 3. Note, that for n�2000 we were
unable to obtain stable values of Chigh for ����4.2. This is
caused by the fact, that the dominant terms of the FI matrix,
and consequently Chigh / P, diverge to +� as ���→0.5 �in a
similar way as Eq. �46� does for ���→1�. In other words, the
dependence structure of the MA�1� process is sufficiently
“rigid” even for intermediate correlation values, that by
properly matching the input correlations we can approach the
noiseless information transfer. The examples of optimally
matched input signals are shown in Figs. 4�c�–4�e�.

V. CONCLUSIONS

We derive approximate expression for mutual information
in a broad class of discrete-time stationary channels �includ-
ing those with memory� with continuous, but small, input.
The input is restricted either in amplitude or in power and we
study the optimality conditions on information transfer as the
power or amplitude approach zero. We find that the input and
channel properties are separated in the approximate formula,
which allows us to study the optimality conditions in a con-

venient way. Specifically, we find that the increase of mutual
information from zero power �or amplitude� for a given
channel depends only on the input covariances.

For memoryless channels, the capacity cannot be more
than 1 bit per channel use and the optimal input is unique
discrete binary distribution in the small input amplitude case,
but generally nonunique in the small input power case. We
demonstrate, that the effect of input correlations in memory-
less channels is of higher order than the order of the capacity
approximation, and thus the additional correlations do not
decrease the capacity although they decrease the input en-
tropy. We also provide a simple lower bound on capacity of
memoryless channels subject to weak-stimulus constraints
that gives better results in practical situations.

In channels with memory, the capacity can be greater than
1 bit and the input correlations play the most important role.
We show, that the approximate formula includes the small
input power limit of the exact solution for linear additive
Gaussian noise channels with memory. We show, that by
properly matching the input covariances to the dependence
structure of the noise, we can approach in certain cases the
noiseless channel even for intermediate values of the noise
correlations.
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AR(1) Gaussian noise

FIG. 3. The capacities per vanishing input powers for the AR�1�
and MA�1� Gaussian additive noise models in dependence on the
noise correlation coefficient � �the graphs are symmetric in ��.
Note that the capacity tends to infinity as ���→0.5 �the MA�1�
model� and as ���→1 �the AR�1� model�. In these limits, the cor-
rupting power of the noise in the information transfer is decreased
to the point, that the channel approaches the noiseless channel and
the input value can be recovered perfectly.
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(e) Optimal signalling, noise ρ ≥ 0
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(c) Optimal signalling, noise ρ = 0
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FIG. 4. Small input amplitude optimality conditions for linear
channels with AR�1� or MA�1� additive Gaussian noise. The struc-
ture of the Fisher information matrix of the MA�1� model �panels
�a� and �b� for n=50� shows elements decaying in absolute value
with distance from the main diagonal, sign changes occur for posi-
tively correlated MA�1� process and all elements are positive for
��0. The structure of the FI matrix determines the covariance
matrix of the optimal signal. Panel �c� shows the example optimal
input to the memoryless channel �noise correlation �=0�: random
switching between input values +�P and −�P �discrete binary in-
put�, where P is the input power constraint. The same capacity
would be achieved by input values described by the normal distri-
bution N�0, P�, as discussed in the text. Depending on the sign of
the noise correlation �, the optimal input is characterized by ex-
tremal value of correlation between consequent inputs �panels �d�
and �e��. Note, that the capacity of the memoryless channel is
achieved by �d� and �e� also, independently on the input correla-
tions.
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APPENDIX A: CAPACITY IN THE VANISHING INPUT
AMPLITUDE

We introduce an auxiliary r.v. �� by employing Eq. �9� as

�� = � − �0, �A1�

so that for all i holds ��i� �−�� ,���. The p.d.f. of r.v. �� is
denoted as �����. Mutual information I�� ;R� from Eq. �2�
can be written in terms of r.v. ��, whether 
��
 is small or
not as

I��;R� = 	DKL�f�r��0 + ��� 
 	f�r��0 + ����������.

�A2�

In order to approximate I�� ;R� around �0 in terms of �� for
small 
��
, we need to expand the KL distance in Eq. �A2�.
We introduce

��r,�0 + ��� = f�r��0 + ���ln f�r��0 + ��� , �A3�

��r,�0 + ��� = f�r��0 + ���ln	f�r��0 + ������, �A4�

and rewrite the KL distance as

DKL�f�r��0 + ��� 
 	f�r��0 + �������

= �
R

���r,�0 + ��� − ��r,�0 + ����dr , �A5�

thus reducing the problem to expanding ��r ,�� and ��r ,��.
While the Taylor expansion of ��r ,�� is straightforward, the
expansion of the logarithm of the expected value of f�r ��� in
��r ,�� is examined in the following Lemma.

Lemma 1. Let f�r ��� be twice continuously differentiable
with respect to �. Then for a chosen �0, r.v. �������� and
�� such, that for all i holds ���0 and −�����i���,
there exists P�0 such, that the following approximation for
small enough 
��
 holds

ln	f�r��0 + ������ � ln f�r��0� + 	���T�f�r��0�
f�r��0�

,

�A6�

where �f�r ��0�=�f�r ��� ��=�0
, the gradient is taken with re-

spect to � and 	���= 	����� is the expectation of r.v. ��.
The maximum error of expansion �A6� is bounded by
P
��
2.

Proof. From the continuity of second derivatives of f�r ���
around �0 follows

� �2f�r���
��i � � j

� � M , �A7�

for all i , j. The Taylor expansion of f�r ��� around �0 in terms
of �� reads

f�r��0 + ��� � f�r��0� + ��T � f�r��0� , �A8�

and furthermore

�f�r��0 + ��� − f�r��0� − ��T � f�r��0�� � nM
��
2

� C
��
2. �A9�

By integrating the expansion �A8�, i.e., by taking the expec-
tation with respect to r.v. ��, and by employing inequality
�A9� it can be established that

��
R

�����f�r��0 + ���d���� − f�r��0� − 	���T � f�r��0��
= ��

R
������f�r��0 + ��� − f�r��0�

− ��T � f�r��0��d�����
� �

R
�����C
��
2d���� = C
��
2, �A10�

and therefore the following expansion holds

�
R

�����f�r��0 + ���d���� � f�r��0� + 	���T � f�r��0� ,

�A11�

with the maximum error of order 
��
2. From the Lagrange
mean value theorem follows, that for A ,B�0 holds

�ln A − ln B� �
1

min�A,B�
�A − B� . �A12�

We set A=�R�����f�r ��0+���d����, B= f�r ��0�
+ 	���T� f�r ��0�, and combine the inequalities �A10� and
�A12� to obtain

�ln A − ln B� = �ln�
R

�����f�r��0 + ���d����

− ln�f�r��0� + 	���T � f�r��0���
�

1

min�A,B�
�A − B� �

1

min�A,B�
C
��
2,

�A13�

where min�A ,B� is finite due to regularity of f�r ���. From
the Taylor expansion of ln�a+x� around a in terms of x and
the expression for the Lagrange remainder �48� we have

�ln�a + x� − ln�a� −
x

a
� �

x2

a2 . �A14�

Setting a= f�r ��0� and x= 	���T� f�r ��0� thus gives

�ln�f�r��0� + 	���T � f�r��0�� − ln f�r��0�

−
	���T � f�r��0�

f�r��0�
� �


�f�r��0�
2

f2�r��0�

��
2. �A15�

Finally, we apply the triangle inequality for absolute value,
��−��� ��−��+ ��−��, setting
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� = ln A = ln�
R

�����f�r��0 + ���d����,

� = ln f�r��0� +
	���T � f�r��0�

f�r��0�
, �A16�

� = ln B = ln�f�r��0� + 	���T � f�r��0�� , �A17�

and by combining inequalities �A13� and �A15� we obtain

�ln�
R

�����f�r��0 + ���d���� − ln f�r��0�

−
	���T � f�r��0�

f�r��0� �
� �ln�

R
�����f�r��0 + ���d����

− ln�f�r��0� + 	���T � f�r��0���
+ �ln�f�r��0� + 	���T � f�r��0��

− ln f�r��0� −
	���T � f�r��0�

f�r��0�
�

�
1

min�A,B�
C
��
2 +


�f�r��0�
2

f2�r��0�

��
2 = P
��
2,

�A18�

and therefore

ln	f�r��0 + ������ � ln f�r��0� + 	���T�f�r��0�
f�r��0�

,

�A19�

with error of order 
��
2.
In the following we set ����r ,�0+���, ����r ,�0

+���, f � f�r ��0� and �f ��f�r ��� ��=�0
for shorthand, and

by repeatedly applying Lemma 1 and keeping in mind the
rules for derivatives �fg��= f�g+2f�g�+ fg�, and �ln f��
= f� / f − �f� / f�2, we obtain the expansions

� � f ln f + ��T ln f � f + ��T � f +
1

2
��T ln f � �Tf��

+ ��T�f�Tf

f
�� +

1

2
��Tf���Tf

f
−

�f�Tf

f2 ��� , �A20�

� � f ln f + ��T ln f � f + 	���T � f +
1

2
��T ln f � �Tf��

+ ��T�f�Tf

f
	��� +

1

2
	���Tf���Tf

f
−

�f�Tf

f2 �	��� .

�A21�

We substitute these expansions into Eq. �A5�, and by apply-
ing the regularity conditions �8� we have

�
R

�� − ��dr �
1

2
��TJ��0�R��� − ��TJ��0�R�	���

+
1

2
	���TJ��0�R�	��� , �A22�

where we employed the definition �6� of Fisher information
matrix for J��0 �R�=J�� �R� ��=�0

. Due to symmetry
J��0 �R�= �J��0 �R��T holds

��TJ��0�R�	��� =
1

2
���TJ��0�R�	��� + 	���TJ��0�R���� ,

�A23�

and so from Eq. �A2� we have

I��;R� �
1

2
	��� − 	����TJ��0�R���� − 	�������.

�A24�

The covariance matrix C�� of r.v. �� is defined as

C�� = 	��� − 	������� − 	����T���, �A25�

and obviously C��=C��
T . Since �0 is fixed, and �=��

+�0, the covariance matrices of r.v. � and r.v. �� are equal,
C�=C��. Furthermore, the law of matrix multiplication
gives �AB�ik=� j�A�ij�B� jk, thus summing along i=k gives
the trace, i.e., tr�AB�=�i�AB�ii=�i,j�A�ij�B� ji. Therefore,
Eq. �A24� can be written in a compact form as Eq. �10�.
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