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Diverse self-sustained oscillatory patterns and their mechanisms in small-world networks �SWNs� of excit-
able nodes are studied. Spatiotemporal patterns of SWNs are sensitive to long-range connection probability P
and coupling intensity D. By varying P in wide range with fixed D, we observe totally six types of asymptotic
states: pure spiral waves, pure self-sustained target waves, patterns of mixtured spirals and target waves,
pseudospiral turbulence, synchronizing oscillations, and rest state. The parameter conditions for all these states
are specified, and the mechanisms of these states are heuristically explained. In particular, the mechanism of
emergence and annihilation of synchronizing oscillations is explained by using the shortest path length
analysis.
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I. INTRODUCTION

A regular lattice with elements persisting excitable local
dynamics is called an excitable medium �1,2�. Spatiotempo-
ral pattern formation in excitable media has been attracted
much attention during the last 30 years, not least because it is
observed in a wide variety of natural systems, ranging from
physical �3,4� to chemical systems such as Belousov-
Zhabotinsky �5�. The interesting nonlinear dynamics of such
patterns and their potential applications in various biological
�6,7� or physiological �8� systems make them imperative to
be understood. Spiral waves and target waves are two typical
and important spatiotemporal patterns observed in these ex-
citable systems �3,9�. Spiral waves can self-organize in the
cardiac tissues and can self-sustain in autonomous systems
with the spiral tips serving as the oscillation sources, while
target waves can exist only by external pacings, such as the
sinoatrial node performing as the pacing of the synchronous
electrical waves in the intact heart, and can never exist in
autonomous regular excitable media.

So far most of the research studying pattern dynamics of
excitable tissues has focused on locally and regularly
coupled media, and little has been known on the influences
of long-range connections �LRCs� on the system dynamics.
However, in many realistic systems of great importance the
consideration of regular lattices may not yield adequate de-
scription given that distant elements may interact. Recently
Watts and Strogatz proposed the so-called “small-world” net-
work �SWN� model that takes into account both local and
long-range interactions �10�. It was found that the existence
of a small fraction of LRCs can essentially change the fea-
tures of the given media and plays very important role in
determining the system behaviors �11–16�. Further investiga-
tions showed that many realistic systems, in particular neural
systems, indeed display the small-world properties, and these

small-world structures and LRCs do play crucial roles in
deciding the functions of systems. In the autonomous regular
excitable media spiral waves are the unique self-sustained
oscillating patterns. However, in excitable SWNs much
richer self-organized oscillatory patterns have been revealed,
such as self-sustained target waves and synchronizing oscil-
lations �17–24�. The mechanisms underlying these new types
of oscillations are however still not completely clear. In our
recent work �25�, we have proposed a method of dominant
phase-advanced driving to reveal the oscillation sources of
self-sustained target waves. The mechanism of synchronizing
oscillation is still unknown. Moreover, the parameter condi-
tions for different states of SWNs have not been systemati-
cally investigated. All of these are the tasks of the present
paper.

In this paper we use a simple model, Bär-Eiswirth model,
which has been widely used for discussing excitable dynam-
ics, to study the diverse self-sustained oscillatory patterns of
excitable SWNs by varying the LRC probability P in wide
range with fixed coupling intensity D. Six types of
asymptotic states have been observed: pure spiral waves,
pure self-sustained target waves, patterns of mixtured spirals
and target waves, pseudospiral turbulence, synchronizing os-
cillations, and rest state. The parameter conditions for these
states are specified and the mechanisms of these states are
heuristically explained. In particular, the mechanism of
emergence and annihilation of synchronizing oscillations is
explained by using the shortest path length �SPL� analysis.

II. MODEL AND DIFFERENT STATES
IN EXCITABLE SWNs

We take a two-dimensional �2D� Bär-Eiswirth model �26�
as our example:

u̇i,j = −
1

�
ui,j�ui,j − 1��ui,j −

vi,j + b

a
� + Di,j ,

Di,j = D�ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j� , �1a�
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v̇i,j = f�ui,j� − vi,j , �1b�

where f�ui,j�=0 for ui,j �
1
3 , f�ui,j�=1−6.75ui,j�ui,j −1�2 for

1
3 �ui,j �1, and f�ui,j�=1 for ui,j �1. Here, u and v are the
activator and the inhibitor variables, respectively; � is the
ratio of their temporal scales; and the dimensionless param-
eters a and b denote the activator kinetics with b effectively
controlling the excitation threshold of the system. The sys-
tem parameters are kept throughout this paper as a=0.84,
b=0.07, and �=0.04. Therefore, the local cell can follow a
typically excitable dynamics and the spiral patterns formed
under these parameters are periodic �26�. D is the coupling
intensity and it is selected as a controllable parameter. In the
present paper we consider 100�100 cells in 2D regular lat-
tices with constant and homogeneous nearest couplings. In
addition to the diffusive coupling, we introduce LRCs such
that each cell receives unidirectionally a connection from a
randomly chosen cell with probability P �19�. These LRCs
are chosen initially and kept for the durations of the system
evolutions. We thus add an additional coupling term Di,j� to
Eq. �1a� as

u̇i,j = −
1

�
ui,j�ui,j − 1��ui,j −

vi,j + b

a
� + Di,j + Di,j� ,

Di,j� = �D�ui�,j� − ui,j� if node �i, j� receives

an interaction from node �i�, j��
0, otherwise,

�
v̇i,j = f�ui,j� − vi,j . �2�

Here, site �i� , j�� is randomly chosen in the 2D lattice. The
equations are integrated by the second-order Runge-Kutta
scheme with the time step �t=0.031 and the no-flux bound-
ary condition is used. For every simulation we use the ran-
dom initial condition, i.e., the initial values of ui,j and vi,j of
each sites are randomly given between 0 and 1. The spa-
tiotemporal pattern formation in excitable SWNs is studied
after getting rid of the starting 10 000 transient steps.

In simulations, we find that the LRC probability P and the
coupling intensity D can strongly influence the spatiotempo-
ral dynamics of the given system, and then we first study the
system behaviors by widely varying these two parameters.
For each pair of �P ,D�, we take 50 samples of SWNs with
different random initial conditions and different random net-
work structures, and measure the quantities of ui,j�t� and
vi,j�t�. Here, we define the averages of u variable as

	u�t�
 = �1/N2��i,j=1
N=100ui,j�t�

and v variable as

	v�t�
 = �1/N2��i,j=1
N=100vi,j�t� ,

and use the maximum value of 	u�t�
�umax=max�	u�t�
� to
classify the system state. Figure 1 shows three essentially
distinct regions for different parameter combinations of P
and D. The red region represents that in all the 50 samples
the system totally develops from the random initial condi-
tions into the rest state classified by umax=0. In the purple
domain we observe nonzero but small umax�umax�0.5�,

where the system states are dominated by various spiral and
target wave patterns. In these patterns different cells have
different phases and they are not synchronized in their mo-
tions, and then we call these states as nonsynchronizing os-
cillatory states. In the blue region umax is very high �nearly
equal to 1�. This indicates that most of the cells are synchro-
nously excited at umax, and then we call these states as syn-
chronizing oscillations. The transition colors between differ-
ent state domains mean that in these parameter regions there
are some probabilities with which the system evolve into
different states of the nearby domains. For instance, at the
transition between the blue �synchronizing oscillation� and
red �rest state� parameter regions �see B3 in Figs. 1 and 2�
the system evolves into synchronizing oscillatory states for a
part of initial conditions and network structures while into
the rest state for the other part of samples. In the following,
we will keep the coupling intensity D=1.0 and vary the LRC
probability P. We will focus our investigation on how LRCs
influence the spatiotemporal pattern formation in the excit-
able SWNs.

Black squares in Figs. 2�a�–2�c� show the probabilities for
the system �N=100� to evolve into different spatiotemporal
patterns with increasing P for fixed D=1.0. Generally speak-
ing, the asymptotic spatiotemporal dynamics can be divided
into three categories. First, for small P, the states of the
system are characterized, after initial transient periods, by
nonsynchronizing oscillations �various spiral and target wave
patterns�. Second, when P reaches a critical value �Pc
=0.45 for D=1.0�, synchronizing oscillations emerge and
dominate the system after a short transient P region between
0.45� P�0.46, where both nonsynchronizing and synchro-
nizing oscillations can be observed, depending on different
initial conditions. In the blue synchronizing oscillation re-

FIG. 1. �Color online� Three distinct regions for different pa-
rameter combinations of P and D. The red, purple, and blue regions
represent that in all the 50 samples the system totally develops from
the random initial conditions and arbitrary network structures into
the rest state, the nonsynchronizing oscillation states, and the syn-
chronizing oscillation states, respectively. Coexistence of two types
of states are observed on the narrow strips between different col-
ored domains �B1: nonsynchronizing oscillations and the rest state;
B2: nonsynchronizing and synchronizing oscillations; B3: synchro-
nizing oscillations and the rest state�.
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gion a large fraction of cells get simultaneously active, and
then refractory, in a periodic manner. Third, the self-
sustained oscillatory activity begins to cease after P�0.76
and the system totally falls into the rest state for P�0.82. In
the crossover domain 0.76� P�0.81 we observe coexist-
ence of synchronizing oscillations and the rest state for dif-
ferent initial conditions. A larger system size �red circles for
N=200 and blue triangles for N=500� has been considered
for the finite-size effects on the discontinuous transition.
From these two sets of data, we can find that the critical
values for the transition from nonsynchronizing oscillations
to synchronizing oscillations are all around 0.45 and are in-
dependent of the system size N2, while the system-size-
dependent critical values are found when the system under-
goes the transition from synchronizing oscillations to the rest
state. For a larger system size, more LRCs are needed to
reach the rest state.

To investigate these oscillatory states in detail, we plot the
distributions of umax and oscillation period T of the system
versus the LRC probability P in the oscillatory region 0.01
� P�0.81 in Figs. 3�a� and 3�b�, respectively. Figure 3�a�
shows the statistical results of umax with each of data com-
puted for a given P by 100 samples. When P is small the
system is in the nonsynchronizing oscillation region and umax
is low �i.e., umax�0.5�, while umax is high for the synchro-
nizing oscillation with large P. In the transient region B2
both low and high values of umax have been revealed simul-
taneously for the same P. In Fig. 3�b� we do the same as in
Fig. 3�a� for T vs P. Besides the remarkable transition from
nonsynchronizing region to synchronizing region as shown
in Fig. 3�a�, clearly two period bands have been found in the
nonsynchronizing oscillation domain for small P �P�0.12�.
It indicates that in this small connection probability region
the system has two types of stable nonsynchronizing oscilla-
tions; one has a period larger than the other. Increasing P,
these two period bands merge to a single band after P
�0.13. By further increasing P, the system undergoes dis-
continuous transitions: T jumps up from the lower band at
P=0.47 and jumps down from the upper band at P=0.44,
and the transient region B2 is between 0.45� P�0.46. All

these different T bands correspond to characteristically dis-
tinctive self-sustained oscillatory patterns, which will be ana-
lyzed in detail in the following sections.

III. FOUR SELF-SUSTAINED NONSYNCHRONIZING
OSCILLATORY PATTERNS OF EXCITABLE SWNs

First we investigate the system dynamics in the two bands
in Fig. 3�b� for small P �P=0.01�. Two different kinds of
spatiotemporal patterns have been found, pure single or mul-
tiple spiral waves and pure self-sustained target waves,
which have been shown in Figs. 4�a� and 4�b�, respectively.
Figures 4�c� and 4�d� show the periodic time series of 	u�t�

and 	v�t�
 of spiral waves �Fig. 4�a�� and self-sustained target
waves �Fig. 4�b��, respectively. The maximum values of
	u�t�
 for spiral and target waves are about 0.331 and 0.293,
and both are much lower than the value of synchronous state

FIG. 3. �a� Distributions of umax of the system versus the LRC
probability P. When P is small the system is in the nonsynchroniz-
ing oscillation region and umax is low, while umax is high for the
synchronizing oscillation with large P. In the transient region B2
both low and high values of umax have been revealed simulta-
neously for the same P. �b� The same as �a� with oscillation period
plotted vs P. Note that besides the discontinuous jump around the
transient region B2, there are two branches of period distribution in
the range of 0.01� P�0.12 in the nonsynchronizing oscillations.
The single period band jumps up �jumps down� around 0.47 �0.44�.

FIG. 2. �Color online� Probabilities for the system with three different sizes �N=100 �black square�, N=200 �red circle�, and N=500 �blue
triangle�� evolving into �a� nonsynchronizing oscillations, �b� synchronizing oscillations, and �c� the rest state with increasing the LRC
probability P for the fixed coupling intensity D=1.0. At various transition regions we can observe that different types of states coexist, i.e.,
coexistence between nonsynchronizing and synchronizing oscillations in �a� �B2�, synchronizing oscillations and the rest state in �c� �B3�,
and both coexistences in �b� �B2 and B3�.
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�umax�1� and we thus classify these two kinds of spatiotem-
poral patterns as nonsynchronizing oscillations. The oscilla-
tion sources of these two kinds of patterns are known clearly.
For spiral waves �Fig. 4�a��, spiral tips serve as the sources to
support the oscillation and the waves propagate from the
spiral tips to boundary. For self-sustained target waves �Fig.
4�b��, successively phase-advanced driven loops have been
revealed recently playing the role of oscillation sources �25�.
In the present paper we go further to study in detail the
influences of small-world structures to the dynamic charac-
teristics of these spiral and target waves. In Fig. 1 we specify
the parameter region for spiral and target waves, and we find
that these two types of waves always coexist in the entire
purple region. An interesting phenomenon is that in the re-
gion P�0.12 �R1 in Fig. 3�b�� spiral and target waves coex-
ist for the same parameter set, but they can never coexist in
the same spatiotemporal pattern, i.e., the system is domi-
nated by either spirals or targets. We thus call these patterns
as pure spiral or pure target wave patterns. The reason is that
in R1 region the frequency of spiral waves is always higher
than that of the self-sustained target waves, and whenever
both types of waves appear simultaneously in a same pattern
due to certain initial conditions, the spiral waves must win
the competition against the target waves and control the
whole system. Therefore, target waves can asymptotically
survive in a pattern only where no spiral remains, and spiral
must kill all targets whenever they are produced simulta-
neously by certain initial conditions. This competition
mechanism leads to states of the so-called “pure spiral” or
“pure target” waves. In this bistable parameter region we
also find that even for the same network structure, we can get

spiral waves or self-sustained target waves for different ran-
dom initial conditions. For a given initial condition all the
spatial sites can be regarded to set into three different states:
excited, refractory, and excitable states. The excited nodes
can excite target waves as the target centers. If target wave
fronts induced by these target centers encounter some suffi-
ciently large refractory regions, the wave fronts can break
there to produce wave tips, and then the system will evolve
into spiral wave states. However, if these target wave fronts
can all propagate smoothly and self-organize a successively
phase-advanced driving loop, then they dominate the system
with self-sustained target waves. From the above analysis,
spiral waves have much larger probability of observation
since from random initial conditions the probability to form
sufficiently large refractory regions must be large. This is
indeed the case in our simulations. For P=0.01, the prob-
abilities of spirals and targets are 66% and 34%, respectively.

With increasing of P the period of pure target waves de-
creases. When P�0.13, two period bands, one for spiral
waves and the other for target waves, become merged. In the
band region R2, besides the pure spiral waves as in Fig. 4�a�
and pure self-sustained target waves as in Fig. 4�b�, we ob-
serve patterns with both spiral and target waves mixtured
�Fig. 5� and pseudospiral turbulence �Fig. 6�. In Fig. 5�a� we
take P=0.15 and show a typical example of mixtured pat-
terns with both spiral and target waves. Figure 5�b� shows
the corresponding 	u�t�
 and 	v�t�
 of Fig. 5�a�. The maxi-
mum value of 	u�t�
 for this new spatiotemporal pattern is
about 0.345 and thus the state is also in the domain of non-

FIG. 4. �Color online� P=0.01. �a� and �b� Snapshots of the
spatial profile of ui,j realized from random initial conditions. �a�
Spiral waves realized from a certain set of initial conditions. �b�
Self-sustained target waves realized from another set of initial con-
ditions. �c� and �d� Time series �	u�t�
 , 	v�t�
� of patterns �a� and
�b�, respectively.

FIG. 5. �Color online� P=0.15. �a� Snapshot of the spatial pro-
file of ui,j realized from random initial condition. �b� Time series
�	u�t�
 , 	v�t�
� of pattern �a�. �c� 1:1 periodic response frequencies
of target waves generated by a single pacing �black triangle: single-
center target� and two pacings �red circle: double-center target�. The
blue squares show the frequency of spiral. It is found that the
double-center target waves can reach larger maximum frequency
than the single-center target.
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synchronizing oscillation region. However, the essential dif-
ference between Figs. 4 and 5 is that in the former spirals
and targets exist separately in different patterns �from differ-
ent initial conditions�, while in the latter both spirals and
targets appear simultaneously in the asymptotic state of a
given pattern. The key reason for this difference is that in
Fig. 5�a� all the target waves are generated by multiple �at
least two� LRCs, and these targets are called multicenter tar-
gets. Further study show that 1:1 periodic response frequen-
cies of target waves generated by pacing sources have certain
maximum values, and these maximum frequencies can in-
crease as they are generated by more pacing sources as
shown in Fig. 5�c�. In SWNs all LRCs play the role of pac-
ing sources. For small P almost all target waves are gener-
ated by only single LRC. In this case �R1 region in Fig. 3�b��
the maximum frequency of possible target waves is low �see
the black triangle for single-center target in Fig. 5�c�� and is
lower than that of spiral frequency �see blue squares for spi-
ral�. Spiral waves can thus not generate new target waves by
LRCs. On the contrary spiral waves can kill all existing tar-
get waves �if they exist in the transient period due to a cer-

tain initial condition� according to the competition law: high-
frequency waves kill low-frequency waves. Therefore, we
observe pure spirals or pure target waves in R1 region. The
R2 region with larger P spiral has a larger probability to
generate target waves via two or more LRCs. Since these
target waves can have the same frequency as spiral waves
�see the red circle for double-center target�, they can survive
and coexist with spirals in the same patterns. For instance, in
Fig. 5�a� two centers of target wave 1 indicated by two red
arrowed lines are all driven by the same spiral, and the two
centers of target wave 2 indicated by two blue arrowed lines
are driven one by a spiral wave and the other by the wave
emitted from itself. These double-center target waves can
reach larger maximum frequency which is the same as spiral
than the single-center target. So they can coexist with spirals
in the same pattern.

With more random LRCs, spatiotemporal patterns become
chaotic. In Fig. 6 we fix P=0.30 and observe spiral turbu-
lence in the nonsynchronizing oscillation region. Figures
6�a� and 6�b� show for a typical spiral turbulence pattern the
time series of the average 	u�t�
 , 	v�t�
 of the whole system
and u�t� ,v�t� of a single space node �80,60� randomly chosen
in the 2D space, respectively. Figures 6�c�–6�f� show the
snapshots of the given state at the four different moments
indicated in Fig. 6�a�. The moments t1 and t3 are at the in-
stants of the maximum and minimum 	u�t�
 in a period while
t2 and t4 are the moments corresponding to middle 	u�t�

values. The snapshots at all these four moments look similar
and there are no distinct differences between these patterns.
This indicates that the spiral turbulence has temporal trans-
lational symmetry. This spiral turbulence is a kind of
pseudoturbulence. For the real spiral turbulence spiral tips
move randomly in the 2D space and they are generated and
annihilated also randomly. Moreover, the time series of
single sites are chaotic. In our case of pseudospiral turbu-
lence, the dynamics of single site is nearly periodic as shown
in Fig. 6�b�. All spiral tips are located at fixed positions in
the 2D space �see the arrowed sites in Fig. 6�. The reason for
these seemly random spatial patterns is that there are a large
number of waves generated by LRCs, and these waves col-
lide, and they collide also with the waves emitted from the
fixed spiral tips. Therefore, the waves emitted from these
fixed spiral tips are destroyed randomly by these random
waves and cannot propagate to the whole media regularly,
and these collision mechanisms produce the randomlike spa-
tial patterns in Fig. 6.

IV. SELF-SUSTAINED SYNCHRONIZING OSCILLATIONS
AND REST STATE

When the LRC probability P reaches a critical value �B2
in Figs. 1 and 2� we observe a discontinuous transition from
nonsynchronizing oscillations to synchronizing ones. Typical
time evolutions of averages 	u�t�
 and 	v�t�
 are shown in
Fig. 7�a� with P=0.75. The maximum value of 	u�t�
 reaches
nearly umax�1.0, and this indicates that the system exhibit
synchronizing excitations at the moments of maximum
	u�t�
, i.e., a large fraction of the system is excited simulta-
neously, and then decays to refractory states synchronously.

FIG. 6. �Color online� P=0.30. �a� Time series �	u�t�
 , 	v�t�
� of
a spiral turbulent pattern. Note that the periodicity of �	u�t�
 , 	v�t�
�
is lost, unlike Figs. 4 and 5. �b� Time series �u�t� ,v�t�� of a spatial
site �80,60� randomly chosen in the 2D apace. �c�–�f� Snapshots of
the spatial profile of ui,j obtained at four moments indicated in �a�.
�c� t= t1, �d� t= t2, �e� t= t3, and �f� t= t4.
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Snapshots of the state at five instantaneous moments indi-
cated in Fig. 7�a� are shown in Figs. 7�b�–7�f�. These five
spatiotemporal patterns are remarkably different from the
spatiotemporal patterns shown in Fig. 6. In Fig. 6 all snap-
shots have no considerable difference, i.e., the spatiotempo-
ral patterns of pseudospiral turbulence have approximately
time translational symmetry of all cells. In sharp contrast to
Fig. 6, Figs. 7�b� and 7�f� show patterns with most of the
cells being at the rest states while Fig. 7�d� presents synchro-
nous excitations of most of the cells. In these figures the
system states are dramatically different for different time
moments and the approximate time translational symmetry is
lost completely. This is the reason for the discontinuous
jumps in Fig. 3.

It should be emphasized that the synchronization shown
in Fig. 7 can never be complete. In Figs. 7�b� and 7�f� we can
still see that some cells do not step synchronously with most
of the cells, and they are excited when most of other spatial
sites are in the refractory state. This minority of cells are
crucially important, called “antiphase wave tips.” These an-
tiphase wave tips can be formed by two processes: first, part
of the target wave fronts induced by some LRCs encounter
the refractory regions where wave fronts break to produce
antiphase wave tips; second, some of the target wave fronts
collide and yield new tips. These wave tips in very small
fraction of cells play the role as the excitation sources to
stimulate the system from the almost all “dead” states in Fig.
7�b� and then carry on the oscillatory activity of the whole
system to the next cycle in Fig. 7�f�. Because of the excita-
tions by a large number of LRCs, and also because of local
couplings around all the cells excited by the LRCs, most of

spatial sites can be excited almost simultaneously by these
few oscillation sources and the whole system exhibits the
synchronizing oscillations which can be seen in Fig. 7�d� at
the moment when 	u�t�
 approximates to 1.0. This mecha-
nism differs essentially from that of Fig. 6 where some fixed
oscillation sources �spiral tips� persistently emit waves and
maintain oscillations of spiral turbulence.

For even larger P, the huge number of shortcuts can guar-
antee simultaneous spread of excitation to nearly all cells. As
the result most of the spatial sites are in the refractory state
also simultaneously, and thus not enough susceptible cells
are left to sustain the excitation of the system. So for suffi-
ciently large P the system falls into rest state after a short
transient.

V. MECHANISM OF EMERGENCE AND ANNIHILATION
OF SYNCHRONIZING OSCILLATION

To explore the mechanism underlying the transitions from
nonsynchronizing oscillations to synchronizing ones and
from synchronizing oscillations to the rest state �shown in
Figs. 1 and 2 around the boundaries B2 and B3� with in-
creasing LRCs, we investigate how the network structures
influence the spreading of the excitable waves on SWNs. The
initial spreading of excitation through the system can be de-
picted by recording the time when each node is first excited,
following the starting initiation at the center of the medium.
The initial waves expand radially, after the central node is
excited, via local and LRCs to destination nodes. These ini-
tiations continue to propagate until all of the nodes have
been excited at least once. Figure 8�a� shows a typical con-

FIG. 7. �Color online� P=0.75. �a� Time series �	u�t�
 , 	v�t�
� of the synchronizing oscillatory pattern. �b�–�f� Snapshots of the spatial
profile of ui,j obtained at five moments indicated in �a�. �b� t= t1, �c� t= t2, �d� t= t3, �e� t= t4, and �f� t= t5.
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figuration for P=0.10, where each node is shaded according
to the normalized excitation time after the central site of the
medium is excited. Lots of target-wave-like patterns can be
seen and from which we can find the wave spreading path-
way from the central excitation through various local cou-
plings and LRCs.

On the other hand, the network structure can be described
by using the SPL between each node and the central node in
the network. Figure 8�b� shows the network structure same
as in Fig. 8�a�, where each node is shaded according to its
normalized distance from the central node along the shortest
pathway. The striking similarity between Figs. 8�a� and 8�b�
indicates that excitable waves propagate through the network
via the shortest path between nodes. Therefore, the network
structure of the excitable SWN is closely related to the spa-
tiotemporal dynamics of the system. The LRC probability P
is a crucial parameter determining the network structure. Fig-
ure 8�c� shows the evolutions of 	u�t�
 after the central node
of the medium is excited for three different values of P. To

our surprise, even for rather small P �when asymptotically
nonsynchronizing oscillations are observed in Figs. 1–3�
synchronizing oscillation can be clearly seen at early several
periods �see the black solid curve in Fig. 8�c��. For small P
this synchronizing oscillation cannot persist and it is re-
placed with spiral waves in asymptotic motions due to the
wave propagation through local couplings. The red dashed
curve shows the persistent synchronizing oscillation at fairly
large P �P=0.75�, while for even larger P synchronizing
oscillation can damp after early synchronizing oscillatory
transient �see the blue dotted curve in Fig. 8�c��. From all the
three curves in Fig. 8�c�, we realize that the synchronizing
oscillations are always existent at the early evolutions after
initiations. Due to the different network structures, these
early synchronizing motions can be suppressed �with low P,
P� P1�, persistently �with fairly large P, P1� P� P2� and
damped �with too large P, P� P2� for different P’s. Then we
are faced with a question of why the synchronizing oscilla-
tion can be suppressed or can damp for too low or too large
LRC probabilities, respectively.

To answer the above question, we calculate SPLs for dif-
ferent sets of LRC probabilities P’s and record the SPLs for
each test and then find the maximal SPL from each of 50
samples for a given P. Figure 8�d� shows the average of the
maximal SPL among 50 samples versus the LRC probability
P. There are two characteristic horizontal lines shown in Fig.
8�d�: the red dashed line is the length for perfect spiral waves
to span two wave arms in the corresponding regular medium
and the blue dotted line is the minimal wavelength to gener-
ate target waves via LRC pacings. With increasing of P the
average of the maximal SPL decays exponentially and inter-
sect with the red and blue lines, successively. When the
maximal SPL is above this red dashed line, excitation waves
can propagate in sufficiently large space and two spiral wave
arms �one is a spiral tip and the other is a wave front� can be
formed along this wave pathway, i.e., the phase of excitable
wave on this pathway can be 4	. Because of the existence of
the front wave arm which will collide with other waves, the
spiral tips cannot be annihilated by other invading waves
within a period and then the tips can survive during the evo-
lution. Whenever spiral tips survive, spiral waves can self-
sustain and can succeed to control the whole system. So the
early synchronizing oscillations are suppressed. The intersec-

tion point locates at P̂1�0.42 which approximately agrees
with the critical point for the nonsynchronizing-
synchronizing oscillation transition at P1=0.45. When the
maximal SPL is below the blue dotted line, all nodes return-
ing to the refractory state after excited by an excitation of the
previous period cannot be excited again within so short pe-
riod by the second initiation. So all the initiation excitations
will be damping within a period, just like what happen in

Fig. 8�c�. The second intersection point locates at P̂2�0.85
which approximately coincides with the threshold at P2
=0.82, over which the system transits from synchronizing
oscillation to the rest dead state.

VI. CONCLUSION

In conclusion we have investigated the spatiotemporal
pattern formation in excitable media with small-world con-

FIG. 8. �Color online� �a� The normalized excitation time
needed from the central wave initiation to each node. �b� The nor-
malized SPL from the central node to each node of the network of
�a�. The two distribution patterns of �a� and �b� are similar to each
other, indicating wave propagation along the shortest pathway in
excitable SWNs. �c� The evolutions of 	u�t�
 for three distinct net-
work structures. Black solid, red dashed, and blue dotted curves
show 	u�t�
 signals after the central wave initiation for P=0.30
�asymptotically nonsynchronizing oscillation�, P=0.75 �asymptoti-
cally synchronizing oscillation�, and P=0.90 �asymptotically rest
state�, respectively. �d� The average of the maximal SPL versus the
LRC probability P. The red dashed line is the length for perfect
spiral waves to span two wave arms. The blue dotted line is the
minimal wavelength to generate target waves via LRC pacing. The

crossing P values P̂1�0.42 and P̂2�0.85 are approximately equal
to the discontinuous transitions around 0.45 �from nonsynchroniz-
ing oscillation to synchronizing oscillation� and 0.82 �from syn-
chronizing oscillation to the rest state�, respectively.
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nections. With increasing of the LRC probability P, five self-
sustained oscillating patterns have been observed, such as the
coexistence of pure spiral and pure target waves, patterns of
mixtured spirals and target waves, pseudospiral turbulence,
and synchronizing oscillations. The mechanisms underlying
all these characteristically different oscillatory states are in-
tuitively explained. In particular, we use the SPL analysis to
explain the mechanism of the emergence of synchronizing
oscillations and give predictions of the appearance and anni-
hilation of the synchronizing oscillations by varying the LRC
probability with good approximation. Since self-sustained
oscillations in SWNs are a very important topic in wide prac-

tical fields such as neural networks, a systematical investiga-
tion of the phenomena and explanations of the mechanisms
of various significant phenomena are expected to be useful
both for theoretical understandings and practical applica-
tions.
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