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The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive
behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a
superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any
relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a
simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time tc

delimiting two qualitative distinct dynamical regimes: the �nonrelativistic� superdiffusive Lévy flights, for t
� tc, and the usual �relativistic� Gaussian diffusion, for t� tc. Implications of this crossover between different
diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov
chain can shed some light on several results obtained in much more involved contexts.
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I. INTRODUCTION

Relativistic Brownian motion is an interesting and active
area of research nowadays �1�. The dynamical behavior of
any relativistic process is, of course, strongly constrained by
the main properties of the relativistic kinematics, namely, the
speed of light c as the maximum possible physical velocity,
the invariance under Lorentz transformations, and the causal
structure associate with the light cone. Some well established
nonrelativistic dynamical behaviors are simply incompatible
with the principle of Special Relativity. This is specifically
the case of the so-called Lévy flights �2�, where very rare
events with arbitrarily high velocities give rise to a superdif-
fusive regime characterized by a power law

�X2�t�� � t�, �1�

where ��1 is the corresponding anomalous diffusion expo-
nent. However, Special Relativity does not allow such arbi-
trarily high velocities, preventing the appearance of such su-
perdiffusive regime in Markov chains involving spacetime
events. These points are studied, for instance, in �3� by using
relativistic versions of the Fokker-Planck equation and of the
fluctuation-dissipation theorem, leading to a fractional-
derivative extension of the diffusion equation. An earlier
analysis of relativistic random walks can be found in �4�. In
�5�, a generalized Wiener process avoiding superluminal
propagation is introduced, giving rise to a non-Markovian
relativistic diffusion process. The influence of the spacetime
causal structure on dynamical processes, namely the impli-
cation of the presence of an event horizon, was investigated
recently in �6�.

We consider here a simple relativistic extension of the
Weierstrass random walk in order to shed some light on sev-
eral relativistic aspects of Lévy flights. We remind that the
usual one-dimensional Weierstrass random walk �7� corre-

sponds to a Markov chain governed by the following prob-
ability density function

��x� =
a − 1

2a
�
n=0

�

a−n���x + vJn� + ��x − vJn�� , �2�

with the “jump” function

Jn = Jn
�NR� = bn, �3�

where a�1 and b�1 are dimensionless constants and v
�0 gives the scale of the jumps. A particle moving accord-
ing to Eqs. �2� and �3� can perform jumps, in both directions,
with magnitude v ,bv ,b2v ,b3v , . . . and with probability, re-
spectively, given by �a−1� /a , �a−1� /a2 , �a−1� /a3 , �a−1� /
a4 , . . .. We consider here that each step � lasts for a given and
fixed time interval and, hence, the asymptotic dynamics for
large times and for large number of steps are identical. One
can think the constant v as the velocity acquired by the par-
ticle, just prior to the jump, by some unspecific microscopic
mechanism. Notice that one can indeed define a continuous-
time version of the Weierstrass random walk �8�, but for our
purposes here, the simple Markov chain governed Eq. �2� is
enough.

We are mainly interested in the anomalous diffusion pro-
cess associated to the Weierstrass random walk. A brief re-
view of the main results concerning this topic is necessary
here. We wish to characterize the large L behavior of �X2�L��,
where

X�L� = x1 + x2 + x3 + ¯ + xL, �4�

with x� being the size of the �th jump, with probability den-
sity function given by Eqs. �2� and �3�. Since x� are indepen-
dent random variables for different �, we will have

�X2�L�� = L�x2� . �5�

Notice that
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�x2� = �
−�

�

x2��x�dx =
a − 1

a
v2�

n=0

� 	b2

a

n

, �6�

from where we have that, for b2�a, �x2� is finite, Eq. �5�
reduces to the usual diffusion process with �=1, and, thanks
to the central limit theorem, the total probability density
function describing the passage from �=1 to �=L will be
very close to a Gaussian. For b2	a, on the other hand, �x2�
diverges, the central limit theorem cannot by applied any-
more and the associated distributions will not be Gaussian,
leading to an anomalous diffusion exponent ��1. We can
use the heuristic approach of �9� in order to evaluate � for
this case as well, which corresponds to 
�2, where


 =
ln a

ln b
. �7�

The key idea is that, according to Eqs. �2� and �3�, if one
considers a large number L of steps, the most frequent steps
will have magnitude v. Steps with magnitude bv will be 1 /a
less frequent than the previous one. In general, steps with
magnitude bn+1v will be 1 /a less frequent than those ones
with magnitude bnv. Also, if we consider large, but finite,
number of steps, the summation �Eq. �2�� will be effectively
truncated at a given value n=nmax. Let us consider the fol-
lowing succession of steps, which exhibits the required hier-
archy of jumps,

L = anmax + anmax−1 + anmax−2 + ¯ + 1, �8�

corresponding to anmax steps with magnitude v, anmax−1 with
magnitude bv, and so on. For large nmax, we have

L = �
j=0

nmax

anmax−j �
a

a − 1
anmax. �9�

Yet for large but finite nmax, we can estimate �x2� as

�x2�
v2 �

a − 1

a
�
j=0

nmax 	b2

a

 j

. �10�

For 
�2, as we already know, we have the Gaussian result,
since

�x2�
v2 �

a − 1

a − b2 � � , �11�

which coincides with the exacted result evaluated from Eq.
�6�. For 
�2, on the other hand, Eq. �10� implies that

�x2�
v2 � 	a − 1

a

2/
 a

b2 − a
L2/
−1, �12�

where Eq. �9� was used, leading to a superdiffusive
��=2 /
�1� behavior characterized by

�X2�L��
v2 � 	a − 1

a

2/
 a

b2 − a
L2/
. �13�

The relativistic kinematics, however, will change dramati-
cally this scenario.

II. RELATIVISTIC WALK

The microscopical origin of the jumps in a nonrelativistic
random walk is not relevant from the dynamical point of
view. Provided that the Markov property holds, i.e., the po-
sition X��� of the system at a given step � depends only on
the position at the previous step X��−1�, and that successive
jumps are independent random variables, the standard ap-
proach to lead with random walks �1� can be applied. Let us,
nevertheless, suppose that the jumps are due to microscopi-
cal collisions, as in the historical example of Brownian mo-
tion. The hierarchy of jumps v ,bv ,b2v ,b3v , . . . is, in the non-
relativistic case, associated with a similar hierarchy of
momentum transfers in the collisions p ,bp ,b2p ,b3p , . . ., with
p=m0v, where m0 is the particle rest mass. However, accord-
ing to special relativity, the velocity and the momentum of a
particle should obey

p =
m0v

�1 − �2
, �14�

where �=v /c, with profound implications for the jump hier-
archy. Assuming that the same hierarchy of momentum
transfers is present in the relativistic case, we will have the
following jump function

Jn = Jn
�R� =

bn

�1 + �2b2n
, �15�

instead of Eq. �3�. The hierarchy of relativistic jumps will be

Jnv�, occurring in the dynamics, respectively, with probabil-
ity 
�a−1� /an+1�, with n=0,1 ,2 , . . .. Notice that, in frank
contrast with the nonrelativistic case, for large n, one has
Jnv�c, meaning that there will be no arbitrarily large jumps
in the relativistic case, in agreement with the fact that no
acquired velocity by any microscopical mechanism can ex-
ceed c. The first conclusion we can draw from this relativis-
tic extension of the Weierstrass random walk is that the
whole process must be Gaussian, since, in this case, we have

�x2�
v2 =

a − 1

a
�
n=0

�
�b2/a�n

1 + �2b2n � � , �16�

for any ��0, implying the usual diffusion with �=1, irre-
spective of the value of 
.

Typical nonrelativistic situations are characterized by a
small �. For such cases, from Eq. �16�, one realizes that there
should exist a critical value nc such that, for n
nc, the sum-
mand of Eq. �16� is essentially the same one of the nonrela-
tivistic case. If it is possible to choose a large nmax
nc, one
could apply the same heuristic approach of last section, im-
plying in a superdiffusive behavior with �=2 /
�1. �We
assume hereafter that 0�
�2.� This occurs because L is
large enough to justify the averages of last section, but it is
still small enough to guarantee that the large n events that
would imply the relativistic regime are extremely rare and
will not contribute effectively to the averages. In other
words, the system needs some time to realize that it is indeed
relativistic. If we allow for nmax�nc, we will have in Eq.
�16� the convergent relativistic summation, implying the
usual diffusion with exponent �=1. It is clear that
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nc = −
ln �

ln b
= 


ln �−1

ln a
, �17�

leading to

Lc =
a

a − 1

1

�
 , �18�

where Eq. �9� was used. If � is small, as one expects in the
typical nonrelativistic problems, Lc will be large. For L

Lc, the system behaves as in the nonrelativistic regime and
exhibits the properties of a Lévy flight with �=2 /
. On the
other hand, for L�Lc, the system change its behavior to the
relativistic regime, characterized by ordinary diffusion with
�=1. Such crossover between different diffusion regimes,
depicted in Fig. 1, is compatible with the results of �10�. In
fact, our model can be viewed as a simple microscopical
realization for the generalized Fokker-Planck equation con-
sidered there.

We can apply the same heuristic approach of last section
to the relativistic case. In particular, we have for a finite and
large nmax

�X2�L��
v2 �

a − 1

a
L �

n=0

nmax �b2/a�n

1 + �2b2n , �19�

leading to the following generalization of Eq. �13� for �
�0 �see the Appendix for details�

�X2�L��
v2 �

1

ln�b2/a��	a − 1

a

2/


L2/


�F�1,1 −



2
;2 −




2
;− 	 L

Lc

2/
� −

a − 1

a
L

�F	1,1 −



2
;2 −




2
;− �2
� , �20�

where F�a ,b ;c ;z� stands for the standard hypergeometric
function �11�. Using that F�a ,b ;c ;0�=1, we have from Eq.
�20� an anomalous diffusion process with �=2 /
. for large
L obeying L
Lc. On the other hand, for L�Lc, we have �see
the Appendix for details�

F�1,1 −



2
;2 −




2
;− 	 L

Lc

2/
� � 	 L

Lc

1−2/


, �21�

leading to the usual Gaussian diffusion

�X2�L��
v2 � L , �22�

for L�Lc.

III. DISCUSSION

The results of the preceding sections can be summarized
as follows. Suppose we have a Weierstrass random walk
model with typical velocity v, implying in Lévy flights char-
acterized by an anomalous diffusion exponent ��1. Then,
relativistic effects imply that, after a certain critical number
of steps Lc��c2 /v2�1/�, the system loses it anomalous diffu-
sion properties and the dynamics necessarily settle into a
Gaussian diffusion. In order to estimate the order of magni-
tude of these relativistic effects, let us associate the kinetic
energy of the walking particle, and thus v, with the typical
thermal energy kBT. For nonrelativistic situations, where kBT
is small if compared with m0c2, we will have m0v2 /2�kBT,
leading to

Lc � 	m0c2

2kBT

1/�

. �23�

As our first explicit example, let us consider a system com-
posed by helium atoms, for which m0c2 /kB�4.36�1013 K.
For such a system at room temperature �T�300 K�, a bal-
listic ��=2� Lévy flight originated in a Weierstrass random
walk, will become Gaussian due to relativistic effects after
Lc�2.7�105 steps. Helium atoms at the surface of the sun
�T�5�103 K� can experiment ballistic Lévy flights in a
Weierstrass random walk for no more than Lc�6.6�104

steps. In the interior of the sun �T�5�106 K�, only Lc
�2000 steps will be enough for the dynamics settle into a
essentially Gaussian regime.

Heavier particles or bodies will, naturally, lead to larger
values for Lc. Let us take, for instance, the case of an Es-
cherichia coli bacterium, for which m0=665 femtograms
�12�, leading to m0c2 /kB�4.33�1024 K. At room tempera-
ture, Lc�4.1�1015 for an Escherichia coli undergoing a
Lévy flight originated in a Weierstrass random walk with
diffusion exponent close to those ones observed experimen-
tally �13� in systems of breakable micelles ���1.4�. One
realizes that such microscopic bodies can indeed experience
much longer anomalous diffusion process than atomic scale
particles.
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FIG. 1. Diffusion in the relativistic Weierstrass random walk.
The solid line �left scale� corresponds to Eq. �19�, which, for large
nmax, is well approximated by Eq. �20�. The dotted line �right scale�
is the ratio between the nonrelativistic �Eq. �3�� and relativistic �Eq.
�15�� jump functions. It is clear the appearance of a crossover be-
tween the different diffusion regimes near Lc given by Eq. �18�. For
L�Lc, we have Lévy-type superdiffusive behavior, while for L
�Lc the dynamics settle into a Gaussian diffusion. This plot corre-
sponds to the case where a=2, b=3, and �=10−10.
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APPENDIX

We can approximate Eq. �19� by an integral by using

�
n=0

nmax �b2/a�n

1 + �2b2n �
1

2 ln b
�

1

b2nmax w−
/2

1 + �2w
dw , �A1�

where variable w=b2n was introduced and 
 is, in general, an
irrational. For ��2w��1, we can introduce the following se-
ries expansion:

1

1 + �2w
= �

n=0

�

�− �2w�n, �A2�

and the integral Eq. �A1� will be written as

� w−
/2

1 + �2w
dw = w1−
/2�

n=0

�
�− �2w�n

n + 1 −



2

=
2

2 − 

w1−
/2F	1,1 −




2
;2 −




2
;− �2w
 ,

�A3�

where F�a ,b ;c ;z� is the standard hypergeometric function
�11�. Notice that the hypergeometric functions have a single
valued analytical extension over the entire complex plane,
with the only exception of the positive real axis for z	1
�11�, justifying the use of Eq. �A3� for the evaluation of the
integral Eq. �A1�, which limits, in fact, do not belong to the
region where the expansion �Eq. �A2�� converges. The inte-

gral Eq. �A1� may also be evaluated by exploring the hyper-
geometric function identities �11�

d

dz
�zc−1F�1,b;c;z�� = �c − 1�zc−2F�1,b;c − 1;z� , �A4�

and F�1,b ;b ;z�= �1−z�−1, valid for any b and c. Equation
�20� follows straightforwardly from Eq. �A3�.

The evaluation of Eq. �20� for L�Lc requires an
asymptotic analysis for the hypergeometric function. By us-
ing, for instance, the identity 15.3.8 of �11�, we have

F	1,1 −



2
;2 −




2
;1 − z


=
2 − 




z−1F	1,1;




2
− 1;z−1
 +

�	1 −



2



sin �



2

z
/2−1

�F	1 −



2
,1 −




2
;1 −




2
;z−1
 , �A5�

implying that, for large z and 0�
�2,

F	1,1 −



2
;2 −




2
;− z
 �

�	1 −



2



sin �



2

z
/2−1, �A6�

leading finally to Eq. �21�.
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