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We discuss the complex dynamics of a nonlinear random networks model as a function of the connectivity
k between the elements of the network. We show that this class of networks exhibits an order-chaos phase
transition for a critical connectivity kc=2. Also, we show that both pairwise correlation and complexity
measures are maximized in dynamically critical networks. These results are in good agreement with the
previously reported studies on random Boolean networks and random threshold networks, and show once again
that critical networks provide an optimal coordination of diverse behavior.
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I. INTRODUCTION

Random Boolean networks �RBNs� are a class of complex
systems that show a well-studied transition between ordered
and disordered phases. The RBN model was initially intro-
duced as an idealization of genetic regulatory networks.
Since then, the RBN model has attracted much interest in a
wide variety of fields, ranging from cell differentiation and
evolution to social and physical spin systems �for a review of
the RBN model, see �1,2�, and the references within�. The
dynamics of RBNs can be classified as ordered, disordered,
or critical, as a function of the average connectivity k, be-
tween the elements of the network, and the bias p in the
choice of Boolean functions. For equiprobable Boolean func-
tions, p=1 /2, the critical connectivity is kc=2. The RBNs
operating in the ordered regime �k�kc� exhibit simple dy-
namics and are intrinsically robust under structural and tran-
sient perturbations. In contrast, the RBNs in the disordered
regime �k�kc� are extremely sensitive to small perturba-
tions, which rapidly propagate throughout the entire system.
Recently, it has been shown that the pairwise mutual infor-
mation exhibits a jump discontinuity at the critical value kc
of the RBN model �3�. More recently, similar results have
been reported for a related class of discrete dynamical net-
works, called random threshold networks �RTNs� �4�.

In this Brief Report we consider a nonlinear random net-
work �NLRN� model, which represents a departure from the
discrete valued state representation, corresponding to the
RBN and RTN models, to a continuous valued state repre-
sentation. We discuss the complex dynamics of the NLRN
model as a function of the average connectivity �in-degree�
k. We show that the NLRN model exhibits an order-chaos
phase transition, for the same critical connectivity value kc
=2, as the RBN and RTN models. Also, we show that both
pairwise correlation and complexity measures are maximized
in dynamically critical networks. These results are in very
good agreement with the previously reported studies on the
RBN and RTN models, and show once again that critical
networks provide an optimal coordination of diverse behav-
ior.

II. NLRN MODEL

The NLRN model consists of N randomly interconnected
variables, with continuously valued states −1�xn�+1,

where n=1, . . . ,N. At time t the state of the network is de-
scribed by an N-dimensional vector

x�t� = �x1�t�, . . . ,xN�t��T, �1�

which is updated at time t+1 using the following map:

x�t + 1� = f„w,x�t�… , �2�

where

f„w,x�t�… = �f1„w,x�t�…, . . . , fN„w,x�t�…�T, �3�

fn„w,x�t�… = tanh��
m=1

N

wnmxm�t� + x0�, n = 1, . . . ,N .

�4�

Here, w is an N�N interaction matrix, with the following
randomly assigned elements:

wnm =�
− 1 with probability

k

2N

0 with probability
N − k

N

+ 1 with probability
k

2N
,
	 �5�

and k is the average in-degree of the network.
The interaction weights can be interpreted as excitatory, if

wnm=1, and inhibitory, if wnm=−1. Also, we have wnm=0 if
xm is not an input to xn. Obviously, the threshold x0 can be
considered as a constant input, with a fixed weight wn0=1, to
each variable xn. Therefore, in the following discussion we
do not lose generality by assuming that the threshold param-
eter is always set to x0=0.

III. PHASE TRANSITION

In order to illustrate the complex dynamics of the NLRN
system, we consider the results of the simulation of three
networks, each containing N=128 variables, and having dif-
ferent average in-degrees: k=1, k=2, and k=4. Also, the
continuous values of the variables xn�t� are encoded in
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shades of gray, with black and white corresponding to the
extreme values of �1. In Fig. 1, one can easily see the three
qualitatively different types of behavior: ordered �k=1�, criti-
cal �k=2�, and chaotic �k=4�.

A quantitative characterization of the transition from the
ordered phase to the chaotic phase is given by the Lyapunov
exponents �5�, which measure the rate of separation of infini-
tesimally close trajectories of a dynamical system. The lin-
earized dynamics in tangent space is given by

�x�t + 1� = J„w,x�t�…�x�t� , �6�

where J is the Jacobian of the map f , with the elements

Jnm =
� fn

�xm
= wnm
1 − tanh2��

m=1

N

wnmxm�t�� , �7�

and �x�t� is the separation vector. The dynamics of �x�t� is
typically very complex, involving rotation and stretching.
Therefore, the rate of separation can be different for different
orientations of the initial separation vector, such that one
obtains a whole spectrum of Lyapunov exponents. In gen-
eral, there are N possible values, which can be ordered: �1
	�2	 ¯ 	�N. These Lyapunov exponents are associated
with the Lyapunov vectors, v1 ,v2 , . . . ,vN, which form a basis
in the tangent space. A perturbation along vn will grow ex-
ponentially with a rate �n. Oseledec’s theorem �6� proves that
the following limit exists:

� = lim
t→


1

t
ln

��x�t��
��x�0��

. �8�

We should note that Oseledec’s limit will always correspond
to �1, because an initial random perturbation will always
have a component along the most unstable direction, v1, and

because the exponential growth rate the effect of the other
exponents will be obliterated over time. Thus, in general, it is
enough to consider only the maximal Lyapunov exponent
�MLE�, which is enough to characterize the behavior of the
dynamical system �5�. A negative MLE corresponds to an
ordered system �fixed points and periodic dynamics�, while a
positive MLE is an indication that the system is chaotic. A
zero MLE is associated with quasiperiodic dynamics and
corresponds to the critical transition. Figure 2 shows the
MLE as a function of the average in-degree, ��k�. One can
see that the critical in-degree is kc=2, such that for k�kc the
NLRNs are ordered, and for k�kc the NLRNs become cha-
otic. The numerical results were obtained by averaging over
the NLRN ensemble for each k, using M =256 NLRNs with
N=256 elements. Also, for each time series we have dis-
carded the first 1024 steps, in order to eliminate the transient,
and the MLE was calculated from the next 1024 steps.

In order to provide a more detailed characterization of the
order-chaos phase transition we introduce the following
spectral complexity measure:

Q� = H�D�, �9�

where H� is the spectral entropy and D� is the spectral dis-
equilibrium. The complexity is defined by the interplay of
two antagonistic behaviors: the increase in entropy as the
system becomes more and more disordered and the decrease
in the disequilibrium as the system approaches chaos
�equiprobability�. A similar complexity measure, evaluated
in the direct �time� space, was introduced in �7�, for discrete
state systems. In contrast, our complexity measure is defined
for continuous state systems, and it is evaluated in the in-
verse �frequency� space.

In order to define the spectral entropy �8�, we consider the
discrete Fourier transform �DFT�

Xn��� = F��xn�t�� = �Xn�1�, . . . ,Xn����T, �10�

Xn��� = �
t=1

T

xn�t�exp�− 2i�t/T�, � = 1, . . . ,� , �11�

and the power spectrum
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FIG. 1. Three qualitatively different types of behavior or the
NLRN model: ordered �k=1�, critical �k=2�, and chaotic �k=4� �the
transient has been removed�.
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FIG. 2. �Color online� The maximal Lyapunov exponent of the
NLRN model as a function of the connectivity: ��k�.

BRIEF REPORTS PHYSICAL REVIEW E 82, 022105 �2010�

022105-2



Yn��� = �Yn�1�, . . . ,Yn����T, �12�

Yn��� = Xn
����Xn��� = �Xn����2, � = 1, . . . ,� , �13�

of the time series

xn�t� = �xn�1�, . . . ,xn�T��T, �14�

corresponding to the attractor of the variable n of a given
NLRN. Here, Xn

� stands for the complex conjugate value.
Since the variables xn�t� are real, the DFT result has the
following symmetry:

Xn��� = Xn
��T − �� , �15�

and therefore the power spectrum Yn��� has only �=T /2
positive values.

One can normalize the power spectrum such that

pn��� =
Yn���

�
�=1

�

Yn���

, � = 1, . . . ,� , �16�

�
�=1

�

pn��� = 1. �17�

The new variable pn��� can be interpreted as the probability
of having the frequency � embedded in the time series xn�t�.
Thus, using the spectral probability vector

pn��� = �pn�1�, . . . ,pn����T, �18�

one can define the spectral entropy of the time series xn�t� as
follows:

H��pn���� = −
1

log2 �
�
�=1

�

pn���log2 pn��� , �19�

where log2 � is the normalization constant, such that 0
�H��1.

Obviously, the spectral entropy of the ordered systems
will be low, H��0, since only a very small number of fre-
quencies are present, while the spectral entropy of chaotic
systems will be high, H��1, since a large number of fre-
quencies are present. The spectral entropy takes the maxi-
mum value, H�=1, for the equilibrium state, which is de-
fined deep in the chaotic regime, where all frequencies
become equiprobable: p���=�−1, with �=1, . . . ,�.

The spectral disequilibrium of the time series xn�t� mea-
sures the displacement of the corresponding probability vec-
tor pn��� from the equilibrium state, and it is defined as
follows:

D��pn���,�−1� = �
�=1

�

�pn��� − �−1�2. �20�

Special attention is necessary in the case when the attractor is
zero: xn�t�=0. In this particular case, the power spectrum is
also zero, Yn���=0, and the probability vector pn��� is un-
determined. In order to overcome this difficulty, we define
H�=0 and D�=1 for this particular attractor, such that it has

the lowest entropy and the largest displacement from equi-
librium.

Since the spectral disequilibrium measures the distance
between two distributions, one may consider also the spectral
Kullback-Leibler divergence �9� as an alternative. However,
for the considered NLRN model, the Kullback-Leibler diver-
gence is simply given by

D�
KL�pn��� � �−1� =

1

log2 �
�
�=1

�

pn���log2� pn���
�−1 �

= 1 − H��pn���� . �21�

Similarly, one can show that the symmetrical Kullback-
Leibler divergence is given by

D�
KL�pn��� � �−1� + D�

KL��−1 � pn����

= − H��pn���� −
1

� log2 �
�
�=1

�

log2 pn��� . �22�

Therefore, in this case, the Kullback-Leibler divergence �or
its symmetrical version� can be expressed in terms of en-
tropy. Thus, the spectral disequilibrium seems to be a more
appropriate distance measure since it cannot be expressed in
terms of entropy.

Another quantity of interest is the pairwise spectral corre-
lation between the power spectra of two network variables n
and m, which is defined as

C��Yn,Ym� =
�Yn − Ȳn�T�Ym − Ȳm�

�Yn − Ȳn��Ym − Ȳm�
, �23�

where Ȳn and Ȳm represent the mean values. The average
correlation for a given NLRN is

C� =
1

N�N − 1��n=1

N

�
m=1

N

�1 − ��n,m��C��Yn,Ym� , �24�

where we have excluded the self-correlation terms ���n ,m�
=1 if m=n, and ��n ,m�=0 if m�n�.

In Fig. 3 we give the numerical results for the above
spectral measures �entropy, disequilibrium, complexity, and
correlation�, obtained by averaging over the NLRN ensemble
�M =256 networks with N=256 elements and T=1024�. One
can see that both the complexity and the correlation mea-
sures are maximized by the critical NLRNs with kc=2.

As mentioned at the beginning of this Brief Report, the
continuous NLRN model is directly related to the binary
RTN model, which has been extensively studied recently
�4,10�. Recently, we have investigated the binary RTN
model, using similar quantities—complexity, entropy, and
the mutual information—which are well defined in the time
domain. The obtained results for both NLRN and RTN mod-
els are in very good agreement, showing a phase transition
for the same critical connectivity kc=2. Also, for the RTN
model, we have shown that the mutual information, which is
the binary counterpart of the spectral correlation, is maxi-
mized for kc=2. Similar results have also been previously
reported for the RBN model �3�.
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IV. CONCLUSION

We have shown numerically that the NLRN model exhib-
its an order-chaos phase transition, for the same critical con-
nectivity value kc=2, as the RBN and RTN models. Also, we
have shown that both the pairwise correlation and the com-

plexity measures are maximized in dynamically critical net-
works. These results are in very good agreement with the
previously reported studies on the RBN and RTN models,
and show once again that critical networks provide an opti-
mal coordination of diverse behavior. We would like also to
note that these optimal properties of critical networks are
likely to play a major role in biological systems, perhaps
serving as important selective traits. Given the potential bio-
logical implications, it is of interest that recent data suggest
that genetic regulatory networks in eukaryotic cells are dy-
namically critical �11�. Also, recent experiments conducted
on rat brain slices show that these neural tissues are critical
�12�. Thus, it seems plausible that in cells, neural systems,
and other tissues, natural selection will have acted to maxi-
mize both the correlation across the network and the diver-
sity of complex behaviors that can be coordinated within a
causal network. Ordered networks have convergent trajecto-
ries, and hence forget their past. Chaotic networks show sen-
sitivity to initial conditions, and thus they too forget their
past and are unable to act reliably. On the other hand, critical
networks, with trajectories that on average neither diverge
nor converge �quasiperiodic dynamics�, seem best able to
bind past to future and therefore to maximize the correlated
complex behavior.
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FIG. 3. �Color online� The spectral measures of the NLRN
model as functions of connectivity: entropy H��k�, disequilibrium
D��k�, complexity Q��k�, and correlation C��k�.
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