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Effect of the ordered interfacial water layer in protein complex formation:
A nonlocal electrostatic approach
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Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media,
we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In
this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent
interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the
electrostatic contribution to the protein binding (change in free energy upon the complex formation of two
proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that
electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.
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I. INTRODUCTION

Adequate and accurate calculations of the intramolecular
and intermolecular electrostatic interactions (EI) in a polar
solvent are very important for the analysis of structural, as
well as functional features of bimolecular and colloidal
nanoparticles in medical, biological and bioengineering ap-
plications. These interactions contributing to the formation
of protein complexes, oligomers, and/or other complex struc-
tures are actively studied [1-4]. The recent progress in
nanobiotechnology indicates that a more detailed under-
standing of intramolecular EI at the molecular scale is
needed [5-10]. Furthermore, the knowledge of these interac-
tions is necessary for sufficient description of the protein
adsorption mechanisms on nanostructured implant surfaces,
as well as in studies of the interfacial protein-protein inter-
actions that determine biocompatibility of the various im-
plant surfaces in bioengineering applications.

The analysis of many protein associations has shown that
the opposite charged and polar residues located in the vicin-
ity of binding sites tend to form interprotein electrostatic
contacts [1,11-17]. It was found, both experimentally and
theoretically, that the favorable EI between the two associat-
ing proteins could be an essential factor for this binding pro-
cess [1,2,11-15,17-30]. Specifically, according to the afore-
mentioned theoretical works [1,13,17,26,27], the existence of
favorable electrostatic binding thoroughly explains the ex-
perimentally measured rate constants for protein association.
However, several theoretical works promote an alternate
opinion [31-34]. The calculations of the Coulomb interac-
tions in these works, performed in the framework of the con-
tinuum classical electrostatic model [35-37], suggest that
these interactions are generally not strong enough to com-
pensate for the unfavorable desolvation effects. Thus, it is
still uncertain whether the EI favor the process of protein
binding.
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The electrostatic free energy (AGg;) of binding two inter-
acting macromolecules, in particular proteins A and B into
the complex AB, in an aqueous solvent can be computed as
the difference in the electrostatic free energy between bound
(AG”B) and unbound (AG*+AGB) protein states [1]:

AGg = AG*E — (AG* + AG®)

-] 2, @@= @0~ 3 @)’
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(1)

where the summation is over all the charges ¢; located in the
macromolecule(s), and ®; is the electrostatic potential at the
position of g;. Ordinarily, the electrostatic potential is calcu-
lated using the Poisson-Boltzmann equation in the frame-
work of classical electrostatics with a local relation between
the field and its electric induction [1,35,38].

In view of the present uncertain opinions regarding the
essential role of EI on molecular binding in an aqueous so-
lution, it is necessary to point out that both groups of the
theoretical works, mentioned above, were treating the inter-
facial water molecular layer as bulk, i.e., assuming that its
dielectric constant to be ~80. It should be noted that this
model, however, may be incorrect even in a general case.
Many experimental [39—-41] and theoretical works based on
molecular dynamic simulations [42-46] (see also [38] and
references cited therein) suggest that the solvent near the
protein surface forms an effective layer of partially struc-
tured interfacial water with dielectric properties distinct from
the bulk solvent.

Recently, in the framework of a continuum nonlocal (NL)
electrostatic model adopting an integral relationship between
the electric field and its induction, it was shown that includ-
ing the dynamic solvent microstructure stipulates the spatial
heterogeneity of the effective dielectric properties of both
protein and solvent at their interface [38,47]. In particular,
the rather extended water shell occurs at the protein-solvent
interface with substantially reduced dielectric permittivity.
This effect results in the prominent decline of the electric
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field screening in vicinity to the interface. It was also shown
that the high magnitude of the rate constants in the associa-
tion protein kinetics can be explained by the existence of the
extended low-dielectric interfacial water shells, mentioned
above, through which EI between two protein subunits are
accomplished [47].

In our study, to assess the role in the electrostatic contri-
bution to the binding free energy of protein-protein associa-
tion (AGg), we considered a simple system that is composed
of two model macromolecular particles, in particular proteins
A and B. Single point charges of opposite signs are located at
their respective surfaces in the region of functional patches
(binding sites). The bound state of the complex AB assumes
the contact of these particles at the location of opposite
charges by their binding sites. To estimate EI energy of the
point charge placed into the isolated particle (A or B) in
close proximity to the solvent interface (AG*, AG®) we cal-
culated the corresponding “charge image potential” (IP) act-
ing on the above charge due to its electrostatic interaction
with the induced polarization at the interface [48-51]. We
adopted the concept of the NL electrostatics and phenomeno-
logical theory of polar solvent [38,47] (and references cited
therein). Assuming that the charges located at the protein
binding sites are in close proximity to their molecular sur-
face, the interface in the vicinity of the charge was approxi-
mated as a locally flat (planar) solvated region.

Based on our asymptotic and numerical analysis of the IP
potential, we conclude that the charge placed in the protein
(solute) near the solvent interface experiences relatively
moderate attraction to the interface in comparison with the
significantly larger attraction calculated in the classical sol-
vent models. As a result, in this case the electrostatic contri-
bution of the protein binding free energy is much stronger
and can be consider an important factor to compensate for
the unfavorable desolvation effects in the formation of the
protein complex.

II. METHODS

In the present work, we applied the NL electrostatic ap-
proach to calculate the electrostatic interactions at the model
protein-solvent interface [38,47]. In this approach, the linear
dielectric response for each of the media in contact is pre-
sented by the integral nonlocal relation between the electric
induction D and the electric field E:

Dm,a(r) = E f sm,aﬁ(r’rl)Em,‘B(r,)drlv a3B = X,y,Z,
B JVm
2)

where m=1, 2 refers to the media, solvent and solute; the
function &, ,4(r,r’) is the dielectric permittivity tensor that
is determined by the spatial correlation induced by the polar-
ization of the medium; and the integration is taken over the
volume V,, of the medium. The main purpose of this ap-
proach is to incorporate the short-range structure of the con-
tacting media into electrostatics.

For simplicity, we adopted the planar dielectric boundary
that models the local regions of the interface between pro-
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FIG. 1. The charge Qlocated at the point (0, Z;) of the cylindri-
cal coordinate system, Z, is the distance to the interface.

teinlike medium (solute) and solvent (i.e., both media are
semi-infinite). The cylindrical coordinate system, (R,Z), was
introduced for this boundary, where Z is the axis perpendicu-
lar to the plane passing through the boundary, and R is the
two-dimensional radius vector in this plane (Fig. 1). As
shown in Fig. 1, the semi-infinite regions Z<0 and Z>0
were assigned to a solvent and a solute, respectively. The
charge Q=¢, (£ is the fraction of the electron charge e) is
located in the solute at point (0, Z,).

In the framework of the so-called “specular reflection
approximation” model for the system of two semi-infinite
media [38,47,48,50], which we adopted here, the proper-
ties of the media along the plane of the boundary are
considered as homogeneous isotropic with &, ,5(r,r")
=€ 08(Z,Z" ,R-R’) and can be expressed through the bulk
dielectric function [48]. In order to compute the electrostatic
potential ¢(R,Z,Z,) created by charge Q in any point (R,Z)
with Z>0, we combined the first Maxwell’s equation, i.e.,
Gauss’s Law, with non-local relationship Eq. (2). This allows
one to express the potential in terms of the Fourier-
transformed dielectric functions &,(r-r') and &,(r-r’) [&,(k)
and &,(k), respectively], which characterize the bulk dielec-
tric properties of the solvent and solute, respectively
[38,48,49]:

[
9(RZZ)=7— f dKKJ(KR)¢(K,Z,Zy),Z0,Z > 0

0
(3)
where:
< A(K)
o(K,Z,Z,) = 4Qf Zkz (k){cos(KzZO)—WK)}
cos(KZO)
AlK) = f K e 2(k)
B(K) = f { 1 }
& (k) Sz(k)
K=K +K, (4)
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K= > K,

a=xy

enlk) = 2 (KKgK?) f d(r-r")exp[=ik(r-r")Jem,ag(r-r").
a.B Vm

and J, (KR) is the Bessel function of the first kind.

The derived potential allows for the calculation of the TP
potential W(Z,), which is a change in free energy of the
system when transferring charge Q from infinity (bulk of the
solute) to the point R=0, Z=Z, at the interface. This energy
is determined by the Giintelberg charging cycle using the
Fourier-Bessel transformation [50,51]:

W(ZO)=glim f dKK[ o(K,Z,Zy) — ¢°(K,Z,Zy)] (5)
4’”'2*20 0

where ¢(K,Z,Z,) is given by Eq. (4), and ¢*(K,Z,Z,) de-
notes the electrostatic potential when the charge located at
infinity and can be obtained by setting Z, Z,— +% in Eq. (4):

K22

KZ k282(k) . (6)

(K, Z,Zy) =20 f d

In order to analyze the behavior of the IP potential, the
solute was considered as a uniform dielectric with low di-
electric constant &,(k)=¢,=4, taking into account small di-
polar fluctuations in proteins [52]. The dielectric function
£,(k) in the bulk of the aqueous solvent in Eq. (4) was ap-
proximated in the context of polar solvent phenomenological
model [38,47,50]:

g(k) =g+ (g, —e)/[1 + (Lk)*e/e*], (7)

where €+ =6 and &,=78.3 are short- and long-wavelength
dielectric constants of the solvent at room temperature; and L
is the correlation length of the water dipoles, which is pro-
portional to the characteristic length of the hydrogen-
bonding network of water molecules (~3—5 A). The dielec-
tric function &,(k) is the “one pole approximation” that
considers the orientational Debye polarization (caused by the
rotations of water dipoles, which, in turn, are hindered by the
hydrogen-bonding chains) and neglects the higher frequency
(infrared, electronic or optical) modes [38,53-55]. This
simple model suggests that in liquid water the whole spec-
trum of the polarization fluctuations can be divided into two
zones: (i) the low-frequency zone associated with the orien-
tational Debye mode; and (ii) the high-frequency zone asso-
ciated with infrared and optical modes. Due to the strong
nonelectrostatic interactions, the polarizations within the ori-
entational mode are correlated (with some effective correla-
tion radius L) in space, while the polarizations within the
high-frequency modes are assumed to be noncorrelated
[53,56]. The dielectric constant, determined within the trans-
parency zone of the electromagnetic absorption (which sepa-
rates frequencies typical for low- and high-frequency zones),
corresponds to the short-wavelength dielectric constant e
[53,56]. Thus, the “one pole approximation” dielectric model
for liquid water assumes that the function &,(k) is changed at
the length-scale ~L from the values characteristic for the
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macroscopic, long-wavelength dielectric constant, g, to the
value of the short-wavelength dielectric constant £=6
[53,54,56]. It should be mentioned that the “one pole ap-
proximation” is appropriate for the description of polar mol-
ecules without internal degrees of freedom, such as rigid,
strong correlated dipoles [53].

It is very important to note that the quantities e* and L in
the bulk dielectric permittivity of liquid water provide good
fits to the experimental data analyzed in terms of the free
energy of interaction between protonated amino groups in
dibasic amines [55]. It should be noted also that &,(k) func-
tion, Eq. (7), is an insightful solvent dielectric model that
was applied in the framework of the NL electrostatic ap-
proach to explain several experimental data in the electrolyte
theory, interfacial electrochemistry, and computational bio-
physics (see [38,47] and references cited therein).

III. RESULTS AND DISCUSSION

In order to estimate the electrostatic free energy of bind-
ing of two proteins forming the complex we considered a
model of two idealized (spherical) proteins A and B of simi-
lar size. Each protein possesses a single ion charge of oppo-
site sign located at the protein surface interacting patches or
protein “binding sites.” We considered each ion as a point
charge located in the solute, at the proximity of its molecular
surface. This approach is similar to the one proposed by
Rubinstein and Sherman [47] for estimation of protein asso-
ciation rate in solvent.

The bound state AB occurs through the contact of the
corresponding binding sites (facing each other) of proteins A
and B. We asserted that the opposite point charges (Q,=ée
and Qz=—¢&e, £=1) belonging to the binding sites form the
ion pair with minimal inter-charge distance r,. This distance
is about r,=2r,,,~5 A, where r,,,~2.5 A is the maxi-
mum proximity of a charged center of an ionogenic group of
amino acid residue to the molecular protein surface. The ra-
dius of the globular protein R, is usually much larger than
Tion(Tion/ R, << 1), for example, in the case of globular proteins
and their complexes, as well as biological and artificial (non-
organic) supramolecular structures. Consequently, the inter-
face in the vicinity of the charge can be considered as planar
to estimate the electrostatic component of the free energy of
binding in the bound state. However, when R, is comparable
with ry,, (i.e., a curvature of the interface cannot be ne-
glected), the corresponding correction needs to be included.

In the case of planar interface, the electrostatic free en-
ergy of the bound system described by the first term of Eq.
(1) is Coulomb interaction energy in a proteinlike medium
(AB complex) with the dielectric constant £p,=4 and the in-
tercharge distance rj, mentioned above:

AG*® = 0,0p/(e,r10) == 28 kT, (8)

where kg7 is Boltzmann’s constant times the absolute tem-
perature of the system (kg7=0.593 kcal/mol at 25 °C).
To estimate the electrostatic free energy of the proteins in
the unbound states AG* and AG® we calculated the IP po-
tential, Eq. (5), that is equivalent to the change of electro-
static free energy of one protein when the charge Q (Q4 or
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Qp) is transferred from infinity (the bulk of the solute) to the
point R=0, Z=Z, at the interface (Fig. 1).

Omitting cumbersome computations, the W(Z;) potential
in the kgT energy units can be written in the form of (see
Appendix):

W(Z)/(560 kgT&) = (4e,Zy)"" f dxS(x, p)exp(- x),
0

S(x,m) =[D(x,n) - 1/, )/[D(x,n) + 1/g,],

D(x,m) = (1/eg) + (1/e % = 1/eg)[1 + (xp) 272, (9)

where 7=L/2Z, is a dimensionless parameter, and Q>
=&e*=560 kyT&.

The IP potential, Eq. (9), calculated in the framework of
the NL electrostatic approach, is reduced to the classical ex-
pression W, (Z,) of two uniform dielectrics when g,=g* (or
L=0) [37]:

Wcl(ZO) _ 1 8p — &
560§2kBT 4ZOSp 8[) + Eg ’

(10)

To analyze the dependence of the IP potential, Eq. (9), on the
distance Z; from the interface, we carried out both the
asymptotic and numerical analysis.

The asymptotic expansion of the integral Eq. (9) was per-
formed for the limiting large and small values of L/2Z,.
Although in some cases these asymptotic limits are outside
of the physical scales, yet they still reveal features of the
W(Z,) function that can be compared with classical results.
Simple estimations of W(Z;) were carried out by taking the
first terms of the expansions. The following asymptotic ex-
pression is:

W(Z) 1 J(g,—edlle,tes), Zy<L
560&%kT  4Zge, (e, &s)l(e, + 85), Zg>L
(11)

These asymptotic solutions are similar to those of the air-
solvent interface obtained in the framework of the NL model
when &,=1 [57]. As it follows from Eq. (11), there is a
characteristic length, Z,~ L, that divides the entire solvent
space into two parts, i.e., Zy<<L and Z,>L, and shows the
distinct behaviors of W(Z;). The asymptotic solution Eq. (11)
for Zy>L is equivalent to the classical function Eq. (10)
determined for any Z,>0, while the corresponding
asymptotic solution Eq. (11) at the Z,<<L is significantly
different from the classical solution. Thus, the IP potential
[Eq. (9)] at the very small values Z,<<L asymptotically ap-
proaches the expression as if the dielectric constant of the
solvent is e*, while at the very large values Z,>L the IP
approaches the corresponding expression as if the dielectric
constant of solvent is gg. All of these findings suggest that
there is an effective reduction of the dielectric function of the
solvent in close proximity to the interface when considering
the IP potential at small enough Z,. This effect is consistent
with our results in the case of pairwise EI at the protein-
solvent interface [38,47].
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W(Z,)/kT

FIG. 2. The numerical calculation of W(Z,) as a function of the
distance Z; to the interface. Parameters of the solvent for the curves
1-3: (1: dotted line) eg=e*=78.3, Wy(Zy=2.5 A)=—12.6 kgT;
(2: solid line) e* =6, £,=78.3, L=5 A, W(Zy=2.5 A)=—6.6 kyT;
(3: dashed line) eg=e*=6, Wy(Zy=2.5 A)=—2.8 kgT. For all

cases the dielectric constant of the solute g,=4.

Numerical calculations of the W(Z,) and W (Z,) func-
tions were performed using Egs. (9) and (10), respectively.
Results of these calculations are shown in Fig. 2. In this
figure we compare the behavior of the IP potential estimated
by the NL model (e =6, £,=78.3, L=5 A) and the classical
local model (g*=g,=78.3) of the aqueous solvent. As seen
in Fig. 2, numerical calculations are consistent with our
asymptotic analysis. At the very small distances Z;<<L
=5 A, the values of the IP potential W(Z,) approaches to the
values of the classical function W, (Z,) calculated using
short-wavelength dielectric constants of the solvent (g,=¢&*
=6). At the distances Z,>L(Z,~6-8 A) the IP potential
Eq. (9) approaches the values of the classical function Eq.
(10) with £,=78.3, and at the very large Z,> L the curve 2
almost coincide with the asymptotic values that are equiva-
lent to the classical case with e,=g%=78.3 (curve 1).

The above asymptotic and numerical analysis, comple-
mented with results of our recent works [38,47] (carried out
in the framework of the NL electrostatic approach for the
pairwise EI energy at the model protein-solvent interface),
suggests that a layer of interfacial water on the protein sur-
face has effective dielectric properties different from the bulk
solvent. In fact, the effective dielectric permittivity of the
solvent is a function of distance from the interface. The mag-
nitude of the function is ~(g,+&%)/2 at small Z~Z,<L
(in close proximity to the interface), while it approaches
~(g,+eg)/2 at the large distances Z~Z,>10-15 A. The
validity of these average dielectric constants at the interface
is also supported by recent work [58]. It should also be noted
that the occurrence of a low-dielectric layer on the protein
surface is consistent with the experimental study of hydra-
tion dynamics on the protein surface [41,47] (and references
cited therein).

When considering IP at the distance Z,<<L, the majority
of the induced boundary charges at the interface is localized
in the proximity of point charges Q4 or Oy and decrease
rapidly along the interface approximately as ~Zy/(R?
+7;)%? [37,58]. Thus, the planar interface approximation of-
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fers an accurate estimation of the main electrostatic contri-
bution to the change of the free energy of the unbound model
protein due to charging. Hence, the electrostatic free energy
of the unbound protein states (AG*+AG®) is determined by
summing the two identical IP potentials calculated by Eq.
9).

Overall, the asymptotic and numerical analysis shows
that, in close proximity to the solvent within region Z,~ L at
the protein-solvent interface, the charge experiences rela-
tively moderate effective favorable electrostatic binding to
the interface in comparison with estimations based on the
classical solvent models with the dielectric constant of the
solvent ~80. In other words, the EI energy between the point
charge in the solute and interface (or IP) is significantly less
than the corresponding energy estimated using the classical
approach. For example, the direct estimation of AGy; for
Zo=rion~2.5 A in the classical model using Eq. (9) (e,=4,
eg=e*=78.3) and data for W(Z,) shown in Fig. 2 gives:

AGg = AGAB — (AG* + AG®) =28 kgT—2(-12.6 kgT)
=-28 kgT,

while numerical calculation carried out using NL approxima-
tion Eq. (9) (g,=4, e*=6, £,=78.3, L=5 A) (see Fig. 2)
gives substantially larger value of AGg;:

AGg = AG*® - (AG* + AG®) =~ 28 kgT-2(-6.6 kgT)
== 15 kBT

Therefore, we have shown that taking into account the
reduced effective permittivity of the solvent on the interface
strongly affects the electrostatic contribution to the binding
energy of proteins. Using the simple idealized model system
of the two interacted proteins, we have shown that the elec-
trostatic free energy of binding (AGg;) can be remarkably
larger than that estimated by the classical approach. Thus, the
analysis of protein binding should include the NL solvent
effects together with the microstructure of the solvent sur-
rounding proteins. Our results clearly suggest that the elec-
trostatic component of the protein binding is an important
factor to compensate for the unfavorable desolvation effects
in the formation of the protein complex, contrary to the find-
ings of the continuum classical electrostatic model for the
aqueous solvent.

IV. CONCLUSIONS

We adopted a recently developed NL electrostatic ap-
proach, which was designed to evaluate the pairwise EI in
protein at the protein-solvent interface [38], to estimate the
electrostatic free energy of two proteinlike particles in un-
bound (AGA+AGP) states. These energies were considered
as IP acting on the charges immersed in the proteinlike me-
dium at the interface. The binding energy (AGy) is evaluated
as the difference between the electrostatic free energy of the
system in bound (AGAP) and those in unbound (AG*
+AGP®) states.

Results of the present study suggest that the charge placed
in a protein (solute) near the solvent interface experiences
relatively moderate effective electrostatic binding to the in-
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terface in comparison to the significantly larger electrostatic
binding estimated by the classical solvent models. Conse-
quently, the electrostatic contribution to the protein binding
is found to be significantly stronger than that estimated by
the classical solvent model. We stress that this contribution is
an important factor to compensate for the unfavorable desol-
vation effects in the formation of the protein complex.

Asymptotic and numerical analysis of the image potential
points to the occurrence of the effective low-dielectric layer
of water on the protein surface, which is consistent with our
previous results [38,47]. It should be noted that the boundary
water layer appears naturally in the framework of the NL
approach, without consideration of the specific interactions
of the water molecules with the protein surface.

Overall, our results vigorously suggest that the above in-
terfacial solvent layer (the partially structured water layer on
the protein surface), called “dynamically ordered water”
[40], can be a major factor determining the possible compen-
sation for the unfavorable desolvation effects in the forma-
tion of the protein complexes. Similar conclusions can be
made about the desolvation effects during the formation of
protein adhesion on the inorganic artificial (implant) surfaces
where planar approximation used in the present study could
be applied directly.
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APPENDIX: CALCULATION OF IMAGE POTENTIAL

Using Egs. (4) and (6), one can rewrite Eq. (5) for the IP
potential W(Z) in the form of:

W(Zy) = (Q*12m) f dKK{g,(K.Z,)

- 2[22(K.Z)g5(K.Z) /[ g5(K, Zy = 0) + g4(K) ]},
(A1)

where

+00

81(K.,Zy) =f dK; exp(i2K;Z,)/[k*e,(k)],
+o0

82(K,Z,) =f dKy COS(KZZO)/[kZSZ(k)]’

+00
83(K.Zy) =f dK; exp(iK;Z,)/[K*e,(k)],
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+00

84(K) = dK/[k*e,(k)].

-0

All integrals from g,(K,Z,) to g,(K) in Eq. (A1) were cal-
culated by the method of complex contour integration on the
complex plane K,. The dielectric functions e,(k) and &,(k)
inserted in corresponding integral expressions in the form
k?e,(k) and k’e,(k) determine appearance of the first-order
poles on the imaginary axis of the complex plane. The inte-
grals are analytical everywhere, except these singular points.
This allows one to substitute the integrals on the real axis K,
by those in the corresponding contours on the complex plane
and to integrate the integrals over the variable K

81(K,Zp) = [/(g,K)Jexp(- 2KZ,),
8:(K,Zy) = [7/(e,K)Jexp(- KZ,),
83(K.Zy) = g,(K.Z,),

g4(K) = (m/K){1/eg+ (1/g = — 1/eg)/[ 1 + (KL)™>]"}.

The following insertion of the calculated integrals to Eq.
(A1) allows us to write W(Z;,) as the integral function of
variable K:
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W(Zy) = (Q°28,) f v dK exp(-2KZy){1 - (2/e,)/F(K)}
0 (A2)
where
F(K)=1/g,+ leg+ (1/e % = 1/eg)/[1 + (KL)™]"2.

The simple transformation of the variable (2KZ,=x) in Egq.
(A2) allows one to obtain the compact expression for W(Z;):

W(Z,) = (Q%/4¢,Z,) f (:x dxS(x, pexp(-x),  (A3)
where
S(x,m) = [D(x, 7) = 1/e,J[D(x, m) + 1/g,],
D(x,m) = (1/eg) + (1/g * = 1/gg)[1 + (xn) =272
and

7]:L/220
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