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We combine the principle of gauge invariance with extrinsic string geometry to develop a lattice model that
can be employed to theoretically describe properties of chiral, unbranched homopolymers. We find that in its
low temperature phase the model is in the same universality class with proteins that are deposited in the Protein
Data Bank, in the sense of the compactness index. We apply the model to analyze various statistical aspects of
folded proteins. Curiously we find that it can produce results that are a very good good match to the data in the
Protein Data Bank.
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I. INTRODUCTION

Effective field theory models are often employed and
sometimes even with great success, to address complicated
problems when the exact theoretical principles are either un-
known, or have a structure that is far too complex for ana-
lytic or numerical treatments. Familiar examples of powerful
and predictive effective field theory models include the
Ginzburg-Landau approach to superconductivity �1� and the
Skyrme model of atomic nuclei �2�.

In polymer physics field theory techniques became popu-
lar after de Gennes �3,4�, showed that the self-avoiding ran-
dom walk and the N→0 limit of the O�N� symmetric ��2�2

scalar field theory are in the same universality class in the
sense of the compactness index. The ensuing field theory
approach is very powerful in characterizing critical proper-
ties of homopolymers. However, to our knowledge there are
no effective field theory models that allow for a detailed
description of the geometry of collapsed, chiral homopoly-
mers. The goal of the present article is to develop such a
model, in the case of unbranched single-strand homopoly-
mers.

II. COMPACTNESS INDEX

We start by recalling the compactness index � that de-
scribes how the radius of gyration Rg scales in the degree of
polymerization N

Rg =
1

N
�1

2�
i,j

�ri − r j�2 � LN�. �1�

The value of � is a universal quantity, in the limit of large N
�4�. Here ri�i=1,2 , . . . ,N� are the locations of the monomers
and L is a form factor that characterizes an effective distance
between monomers, it is not a universal quantity. At high

temperatures we expect that � quite universally approaches
the Flory value �4� ��3 /5 that corresponds to the universal-
ity class of self-avoiding random walk; Monte Carlo esti-
mates refine this to ��0.588. . . �5�. On the other hand, for
collapsed polymers we expect to find ��1 /3. Since � coin-
cides with the inverse Hausdorff dimension of the polymer,
this means that a collapsed polymer is as compact as ordi-
nary matter. Finally, between the self-avoiding random walk
phase and the collapsed phase we expect to have the �-point
that describes the universality class of a fully flexible chain.
At the �-point we expect ��1 /2.

III. MODEL

We have found that the scaling law ��1 /3 of collapsed
polymers can be computed by the low temperature free en-
ergy of a discrete version of the two dimensional Abelian
Higgs model with an O�2��U�1� symmetric Higgs field. In
its three space dimensional version this model was originally
introduced to describe superconductivity �1� and it has also
found applications in high energy physics, for example in the
description of cosmic strings. We first motivate this model in
the present context by considering the continuum limit,
where the polymer is approximated by a continuous one-
dimensional string. The string is described by the position
vector r�s� where the parameter s� �0,L� measures the dis-
tance along the string that has a total length L. The unit
tangent vector of the string is

t =
dr

ds
.

Together with the unit normal vector n and the unit binormal
vector b= t�n we have an orthonormal Frenet frame at each
point along the string. In terms of the complex combination

eF
� = n � ib

these three vectors are subject to the Frenet equations �6�.
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dt

ds
=

1

2
��eF

+ + eF
−� and

deF
�

ds
= − �t � i	eF

�.

Here ��s� is the extrinsic curvature and 	�s� is the torsion.
They specify the extrinsic geometry of the string: Once ��s�
and 	�s� are known the shape of the string can be constructed
by solving the Frenet equations. The solution is defined
uniquely in R3 up to rigid Galilean motions.

The concept of gauge invariance emerges from the fol-
lowing simple observation �7�: the vectors n and b span the
normal plane of the string. But any physical property of the
string must be independent of the choice of basis on the
normal plane, and instead of eF

� we could introduce another
frame which is related to the Frenet frame by a rotation with
an angle 
�s� on the normal plane,

eF
+ → ei
eF

+ 	 e

+.

When we substitute this the Frenet equation we conclude that
the U�1� rotation redefines

� → ei
� 	 �
,

	 → 	 + �s
 	 	
. �2�

In the relations �3� we identify the gauge transformation
structure of two dimensional Abelian Higgs multiplet �� ,Ai�.
The frame rotation corresponds to a static U�1� gauge trans-
formation, �
 corresponds to the complex scalar field �
��
, and 	
 corresponds to the spatial component A1�	
 of
the U�1� gauge field.

Since the physical properties of the string are independent
of the choice of a local frame, they must remain invariant
under the U�1� transformation �Eq. �2��. In particular, any
effective Landau-Ginzburg energy functional that describes a
homopolymer and involves the multiplet ��
 ,	
���� ,A1�
must be U�1� gauge invariant.

The following variant of the Abelian Higgs model Hamil-
tonian �1� is the natural choice for a gauge invariant �inter-
nal� Landau-Ginzburg energy functional,

F = 

0

L

ds����s − iA1���2 + c����2 − �2�2
 + d

0

L

dsA1.

�3�

Here the first term is the conventional energy functional of
the Abelian Higgs model including a gauge invariant kinetic
and potential terms. For simplicity we choose the Higgs po-
tential so that it has the canonical quartic functional form.
When ��0 and real valued we have a spontaneous symme-
try breaking with the ensuing Higgs effect, and the ground
state of the string acquires a nonvanishing local curvature.
The last term is the one-dimensional version of the Chern-
Simons functional �8�. We shall find that its presence pro-
vides a very simple explanation of homochirality, with a
negative �positive� parameter � giving rise to right-handed
�left-handed� chirality.

We determine the thermodynamical properties of Eq. �3�
from the canonical partition function, defined in the usual
manner by integrating over the fields � and A1

Z =
 �d���dA1�exp�− 

0




d	F��,A1�� .

We take the measure to be the canonical measure in the
�� ,A1� space �with appropriate gauge fixing�. Alternatively
we could also introduce the canonical �Polyakov� measure in
the coordinate space r, and the two measures differ by a
Jacobian factor J�� ,A� that appears as a correction to the
free energy �3�,

F → F + 

0

L

ds ln�J� .

The Jacobian is in general a nonlocal functional of ��s� and
A1�s� and we do not have its general form at our disposal.
But we can expand it in power of the derivatives of these
variables: since the Jacobian is gauge invariant, by general
arguments of gauge invariance to lowest nontrivial order in
� and A1 the result must have the same functional as the
terms that we have already included in Eq. �3�. Consequently
at the present level of approximation we strongly suspect that
the only effect of the Jacobian would be to renormalize the
parameters that already appear in Eq. �3�. It would be very
interesting to study this issue in more detail.

IV. DISCRETIZATION

We now proceed to the discrete lattice version of Eq. �3�
that we use in our actual computations. We first eliminate the
explicit gauge dependence by implementing the invertible
change of variables

� ↔ �ei�

J ↔
1

2i���2
�2iA1���2 − ���s� + c.c.
 ,

where the gauge invariant variable J is called the supercur-
rent in the context of superconductivity. The Jacobian for this
change of variables is �. With the identifications �→� and
J→	 we then arrive at the following discrete version of the
free energy �Eq. �3�� to describe the properties of general
chiral polymers,

F = �
i,j=1

N

aij�1 − cos��ij��i − � j��


+ �
i=1

N

�bi�i
2	i

2 + ci · ��i
2 − �i

2�2
 + �
i=i

N

di	i. �4�

The i , j=1, . . . ,N label the monomers, and aij, �ij, and bij are
parameters that we have normalized to unity in Eq. �3� but
now included for completeness; note that as we write it, there
is a superfluous overall scale in Eq. �4�. The first term de-
scribes long-distance correlations, it is the discrete analog of
the derivative term of the Higgs field in the continuum limit.
We have introduced the cosine function to tame excessive
fluctuations in �i. The middle term describes the interaction
between �i and 	i, and the symmetry breaking self-
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�interaction of �i. Finally, the last term is a discretized one-
dimensional version of the Chern-Simons functional �8� that
is the origin of homochirality.

In addition, one could also add the Jacobian that emerges
from the supercurrent change of variables. We have tested
our model with this Jacobian included and we have found
that it has no essential qualitative consequences, thus it will
be excluded from the present analysis.

We relate the dynamical variables ��i ,	i� in Eq. �4� to the
polymer geometry as follows: the modulus of the Higgs field
�i we identify with the signed Frenet curvature of the back-
bone at the site i, and 	i is the corresponding Frenet torsion.
Once the numerical values of �i and 	i are known, the geo-
metric shape of the polymer in the three dimensional space
R3 is obtained by integrating a discretized version of the
Frenet equations. This integration also introduces parameters
�i, the average finite distance between the monomers.

For a general polymer the quantities �aij ,�ij ,bi ,ci ,�i ,di�
are a priori free site-dependent parameters, and different val-
ues of these parameters can be used to describe different kind
of monomer structures. Here we shall be interested in the
limiting case of homopolymers, where we restrict ourselves
to only the nearest neighbor interactions with

aij = �a · ��i,i+1 + �i,i−1� �i = 2, . . . ,N − 1�
a �i = 1, j = 2� and �i = N − 1, j = N��

�5�

and we also select all the remaining parameters to be inde-
pendent of the site index i.

V. NUMERICAL SIMULATIONS

We have employed Eq. �4� to study polymer collapse at
low temperatures using Monte Carlo free energy minimiza-
tion, in the limiting case of a homopolymer where all the
parameters are site independent; see Eq. �5�. At each iteration
step of the numerical energy minimization procedure we first
generate a new set of values for the curvature and torsion
��i ,	i� using the Metropolis algorithm �9� with a finite Me-
tropolis temperaturelike parameter TM. We then construct a
new polymer configuration by solving the discrete Frenet
equations with a fixed and uniform distance between mono-
mers �,

�r�si� − r�si−1�� = � i = 2, . . . ,N . �6�

Finally, before accepting the new configuration we exclude
steric clashes by demanding that the distance between any
two monomers in the new configuration satisfies the bound

�r�si� − r�sj�� � z for �i − j� � 2. �7�

Our simulations start from an initial configuration with
�i=	i=0. This corresponds to a straight, untwisted polymer.
Since the initial Metropolis step is determined randomly, es-
sentially by a thermal fluctuation, our starting point has a
large conformational entropy. Consequently we expect that
statistically our final conformations cover a substantial por-
tion of the landscape of collapsed polymers.

Depending on application we can derive restrictions on
the parameters, for example by comparing the results of our

simulations to the properties of actual polymers. In the bio-
logically interesting case where the model is used to describe
statistical properties of folded structures in the Protein Data
Bank �PDB� �10�, we would impose the constraint that in a
full 2� �-helix turn there are on average about 3.6 mono-
mers �central � carbons�.

We have made extensive numerical simulations using
configurations where the number N of monomers lies in the
range 75�N�1000. For these configurations we typically
arrive at a stable collapsed state after around 1 000 000
steps. The folding process takes no more than a few tens of
seconds in a MacPro desktop computer, even for the large
values of N. But in order to ensure the stability of our final
configurations we have extended our simulations to
22 000 000 steps. Besides thermal fluctuations, we observe
no essential change in the collapsed structures after the initial
1 000 000 steps which confirms that we have reached a na-
tive state.

VI. COMPARISON WITH PROTEINS

We have compared the predictions of the homogeneous
limit of the model �4� to the statistical properties of protein
structures that have been deposited in the Protein Data Bank.
The protein backbones all have an identical homogeneous
structure. But we recognize that the detailed fold of a given
protein is presumed to be strongly influenced by the specifics
of the interactions that involve its unique amino acid se-
quence. These include hydrophobic, hydrophilic, long-range
Coulomb, van der Waals, saturating hydrogen bonds etc. in-
teractions. Consequently a given protein should not be ap-
proximated by a homopolymer model. However, one can ar-
gue that when one asks questions that relate to the common
statistical properties of all proteins that are stored in the PDB
one can expect that the inhomogeneities that are due to the
different amino acid structures become less relevant and sta-
tistically, in average, these proteins behave very much like a
homopolymer. We find it interesting to try and see whether
this kind of argumentation is indeed correct.

In Fig. 1 we have placed all single-stranded proteins that

FIG. 1. �Color online� Least square linear fit to the compactness
index � computed in our model ���0.379�0.0081� compared with
that describing all single-strand proteins currently deposited at the
Protein Data Bank ��PDB�0.378�0.0017�. The error bars describe
standard deviation from the average, and it can be viewed as a
measure of conformational entropy in our configurations.
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can be presently harvested from the Protein Data Bank, with
the number N of central carbons in the range of 75�N
�1000. Using a least square linear fit to the data we find for
the compactness index the value �PDB�0.378�0.0017,
which is in line with the results previously reported in the
literature �11,12�. In Fig. 1 we also show how the compact-
ness index � in our model depends on N when 75�N
�1000, using a statistical sample of 80 runs for each value
of N. When we apply a least square linear fit to our results
we find for the compactness index the estimate �
�0.379�0.0081, a somewhat surprisingly excellent agree-
ment with the value obtained from the Protein Data Bank.
Since � is a universal quantity, this agreement implies that in
the sense of the compactness index our model resides in the
same universality class with proteins in PDB.

From the data in Fig. 1 we find that our model predicts for
the form factor L in Eq. �1� the numerical value L
�2.656�0.049 �Å�. This compares well with the average
value LPDB�2.254�0.021 �Å� that we obtain using a least
square fit to the Protein Data Bank data displayed in Fig. 1.

We note that unlike the compactness index �, the value of
L is not a universal quantity and its value can be influenced
by varying the parameters. The explicit parameter values that
we have used in our simulations are a=4, �=4.25, b
=0.0005488, c=0.5, �=24.7, d=−20, and �=3.8, z=3.7 and
we have selected these parameter values by trial-and-error to
produce a value for L that is as close as possible to the
experimental value. We have verified that by changing the
parameter values � remains in the vicinity of ��0.38 while
L can change substantially.

We observe from Fig. 1 that the standard deviation dis-
played by our final conformations is comparable in size to
the actual spreading of PDB proteins around their experi-
mentally determined average values. Since this standard de-
viation is a measure of conformational entropy, we conclude
that at each value of N our initial configuration appears to
have enough conformational entropy to cover the entire land-
scape of native state protein folds in PDB.

We have verified that in our model the value of � is tem-
perature independent for a wide range of temperatures: the
value of � is insensitive to an increase in the Metropolis
temperature TM until TM reaches a critical value T1. At this
critical temperature there is an onset of a transition toward
the �-point, and at the �-point we estimate ��0.48–0.49 in
line with the expected value ��1 /2 that characterizes the
universality class of a random coil. In the limit of high tem-
peratures we find ��0.65 which is slightly above but in line
with the Flory value �=3 /5 for a self-avoiding random walk.

We have also studied the effect of the various operators in
Eq. �4� in determining the universality class:

We find indications that the value ��0.38 is driven by the
presence of the chirality breaking Chern-Simons term: When
we entirely remove the Chern-Simons term by setting di=0
while keeping all other parameters intact in Eq. �4�, we find
that the compactness index increases to ��0.488. . . which is
very close to the �-point value ��1 /2. This suggests that
according to our model there is some relation between chiral-
ity and the transition to the collapsed phase in the case of
homopolymers that deserves to be investigated in more de-
tail.

When we in addition remove the direct coupling between
torsion and curvature by setting bi=di=0 the compactness
index remains near its �-point value ��0.488. . ..

At a very high Metropolis temperature TM and when we
set bi=di=0 we find that the compactness index, as expected,
approaches the Flory value 3/5; we now get ��0.61. . ..

In Fig. 2 we show using an example with N=300, how the
compactness index � evolves as a function of the number of
iterations �“time”�, during the first 1 000 000 steps. In this
figure we also describe how the free energy �Eq. �4�� devel-
ops as a function of the iteration steps. We find that while �
generically approaches its asymptotic value ��0.38 very
rapidly, after only a few thousand iterations, the process of
energy minimization typically takes about two orders of
magnitude longer. The asymptotic behavior of the curves
confirms that the final state is highly stable. The stability is
further validated by a comparison with Fig. 1 where we re-
port on results after the iteration process has been continued
by 21 000 000 additional steps: for TM �T� we find no es-
sential change in the final conformations after N
�1 000 000 steps, beyond thermal fluctuations �Fig. 2�.

While we realize that our Monte Carlo simulation is not
designed to be a reliable method for describing the out-of-
equilibrium dynamical time evolution of polymer folding,
we still find it curious that according to Fig. 2 the process of
collapse as described by our model is very much like the
expected folding process of biological proteins: the initial
denatured state first rapidly collapses into a molten globule,
with a large decrease in conformational entropy but only a
very small change in the internal energy. After the initial
collapse to the molten globule with the ensuing formation of
secondary structures such as �-helices and 
-sheets, the pro-
cess continues with a relatively slow conformational rear-
rangement toward a locally stable conformation. The final
state has a substantially lower energy than the corresponding
molten globule state.

Finally, we have also compared the geometrical shape of
the collapsed configurations as computed in our model to
that of folded proteins using the hierarchical classification
scheme CATH �13�. We find that the geometry of the con-

FIG. 2. �Color online� The dotted line shows how the compact-
ness index � typically evolves as a function of the number of inter-
action steps �time� when computed as an average over statistical
samples and up to 1 000 000 steps. The continuous line shows simi-
larly how the average energy typically evolves as a function of the
number of interation steps.
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figurations computed using our model is in a very good cor-
respondence with this classification scheme, and they look
very much like actual folded proteins. In particular, our
model appears to produce all the major secondary structures
of proteins in PDB; see Fig. 3 for typical examples.

VII. SUMMARY

In summary, we have developed an effective field theory
model that describes the collapse of a homopolymer in its
low temperature phase. We have compared various proper-
ties of our model with the statistical, average properties of
folded proteins that are stored in the Protein Data Bank. We
have found that our model reproduces the statistical proper-
ties of the PDB proteins with surprisingly good accuracy. For
example, it computes accurately the compactness index � of
native state proteins and correctly describes the phenomenol-
ogy of protein collapse. Furthermore, since the folded states
obtained in our model are also in line with the CATH clas-
sification scheme, it appears that our model has promise for a
tool to analyze the statistical properties of folded proteins.
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tifs such as helicity-loop-helicity are clearly visible. On the right,
for comparison, are pictures of myoglobin 1mbn �above� and 1m6c
�below� backbones, constructed using data taken from Protein Data
Bank.
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