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Micropipette aspiration technique can be very useful for describing the shape transitions of lipid bilayer
vesicles with fluid phase coexistence modulated by the line tension and the bending rigidity. For example,
composition dependence of the line tension at the liquid-ordered and liquid-disordered phase interface has been
investigated using this technique. Recently, using a very simple mechanical model, the instabilities that occur
during suction and release experiments of aspirated vesicles have been discussed. Due to its simplicity the
model could not predict the influence of the bending rigidity. In this work, we incorporate the contributions
from Helfrich bending energy and the line energy in the vesicle free energy and investigate the shape transi-
tions in micropipette aspirated vesicles. We discuss how the critical aspiration pressure depends on the bending
moduli of the phases, the line tension at the interface, and the reduced volume of the vesicle. The ratio of the
bending moduli that we predict using the critical aspiration pressure data from recent experiments agrees with

the literature.
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I. INTRODUCTION

Lipid bilayer vesicles are formed when one or more types
of lipid molecules are exposed to aqueous environment. The
vesicles can have variety of shapes [1]. Theoretical models
and analysis of different shapes and their transitions [2-5]
were motivated by the early studies of red blood cells [6,7]
and the discovery that the lipid bilayer membrane of a bio-
logical cell is a homogeneous fluid matrix with proteins em-
bedded in it [8]. Subsequent finding that the membranes are
inhomogeneous and patchy [9] led to development of experi-
mental model systems of lipid bilayer vesicles with fluid
phase coexistence [10-14]. Such experimental studies were
also augmented by theoretical investigations of shapes and
their transitions of lipid bilayer vesicles with fluid phase co-
existence [15-19]. One of the key techniques employed to
experimentally investigate shape transitions of red blood
cells, liquid drops, and simple vesicles that preceded devel-
opment of theories was micropipette aspiration. It has long
been used to measure surface elastic, viscous, and ther-
moelastic properties of animal cells [6,7,20-26]. The tech-
nique has also been used in experimental studies of the for-
mation of a tether, which is a membrane tube with diameter
of few tens of nanometers, from a cell body or a vesicle
[20,27-32]. In tether pulling experiments, on micropipette
aspirated vesicles or cells, the aspirated part of the membrane
acts as a material reservoir during tether formation and, as
the length of the tether increases, the of length the vesicle
inside the micropipette (projection length) decreases [30].

In earlier theoretical studies of aspirated vesicles, either
the vesicle was assumed to have zero bending rigidity, or it
was taken to be a flat infinite membrane with nonzero bend-
ing rigidity [21,22,30]. Without the bending rigidity, aspira-
tion from a flat membrane gives a linear relationship between
aspiration pressure and projection length [21,22]. This does
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not agree with experiments, unless, aspiration pressure is too
large. Note that the analysis does not apply to bilayer
vesicles directly because a nonzero shear modulus was con-
sidered in [21,22] whereas due to the assumption of fluid
nature of the lipid bilayers shear modulus is zero. With bend-
ing rigidity a nonlinear relationship has been obtained, how-
ever, the analysis is only valid for thin discocytes and small
pipette radius when compared to the size of the vesicle [21].
In the earlier experiments of the micropipette aspiration of
cells or homogeneous vesicles the increment in the suction
pressure were large (0.5—1 Pa) [33,34], and it was difficult to
accurately resolve any instabilities in the process. Only re-
cently, it has been possible to obtain small steps size incre-
ment (0.1 Pa) in the suction pressure. Hochmuth [24] theo-
retically observes, at the onset of aspiration, a liquid drop
instability when the cell forms a hemispherical projection
inside the pipette, i.e., the projection length equals the pipette
radius. A similar instability has also been observed in the
aspiration of two-phase vesicle which we describe in detail
below.

Recently, there has been renewed interest in the applica-
tion of micropipette techniques to lipid bilayer vesicles with
liquid-ordered (I,) and liquid-disordered (I,) phase coexist-
ence [35,36]. The technique has been used to apply a con-
stant lateral tension in the experimental studies of sorting of
lipids and proteins in membrane tethers [37-40]. The ability
of the recent technique to apply suction pressure at small
increments also made it possible to conduct experiments at
low and controlled surface tension where bending rigidity
plays a more important role. Tian et al. [35] have shown that
the line tension at the domain interface can be directly mea-
sured as a function of the suction pressure and vesicle geom-
etry by micropipette aspiration using a zero bending rigidity
model for dumbbell shaped vesicles. Experimentally, they
observed a critical aspiration pressure at the onset of aspira-
tion. As the critical aspiration pressure is reached, the length
of the vesicle aspirated into the pipette jumps to a large non-
zero value within less than 1 s [35]. Moreover, they found
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that when the suction pressure is reduced from a large value,
the projection length decreases and below a certain suction
pressure the vesicle comes out of the pipette. This is the
critical release pressure and the projection length corre-
sponding to this pressure is the critical projection length.
They also observed that the critical aspiration and release
pressures are different, depending upon whether the /, or the
1, domain is aspirated. Subsequently, Das et al. [36] consid-
ered a very simple mechanical model involving only the line
energy as the vesicle free energy and discussed the instabili-
ties observed in the experiments. The model ignored contri-
bution from the nonzero bending rigidity to the free energy,
and accordingly, it was applicable for vesicles deformed into
limit shape of truncated spheres by large line tension [14].
The model in [36] was successful in describing the instabili-
ties and the variation of suction pressure with projection
length (length of aspirated vesicle inside the pipette) qualita-
tively. However, contrary to the experimental observations,
the critical pressures in this model was independent of the
aspirated phase. Furthermore, the influence of vesicle re-
duced volume, defined as

V,a=3VI(4TRY),

where the equivalent radius 1%0 is determined from the total
surface area A of the vesicle membrane via

Ry=VA/4m,

was investigated. It was shown that the vesicles with reduced
volume larger than a critical reduced volume for a given area
fraction of the liquid-disordered phase are stable. The area
fraction is defined as the ratio of the surface areas of the
liquid-disordered phase and the entire vesicle. However, ex-
perimental data for reduced volume was not accurate enough
to make the comparison.

In this work, we conduct a refined analysis of shape tran-
sitions of micropipette aspirated vesicles. We investigate the
aspiration of single- and two-phase vesicles using a model
that takes into account the elastic bending energy contribu-
tion to vesicle free energy. Here, we consider that the aspi-
ration occurs from a vesicle, rather than an infinite flat mem-
brane. This allows us to relax the assumption on the
smallness of the pipette and shape of the vesicle to be aspi-
rated considered in [21]. We discuss the influence of the
bending rigidity, the line tension, and the reduced volume on
the shape instabilities observed in micropipette aspirated
vesicles. We first investigate the aspiration of a homogeneous
(single phase) vesicle using the numerical solutions of the
shape equations. We observe, contrary to the zero bending
model, that the critical aspiration and release instabilities are
present for all reduced volumes. Subsequently, we study the
micropipette aspiration of a two-phase vesicle with nonzero
bending rigidity. For the two-phase vesicle aspiration we fo-
cus on the aspiration instability only. We show that critical
aspiration pressure depends significantly on the mechanical
vesicle parameters such as bending rigidity of the phase that
is aspirated and the line tension at the two-phase interface.
We propose that the bending rigidity of the aspirated phase
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FIG. 1. (Color online) Schematic of aspirated vesicles. (a) A
two-phase vesicle at the onset of aspiration when projection length
is small (i.e., less than the pipette radius). f| is the normal force on
the vesicle per unit circumferential length at the pipette mouth. (b)
A single-phase vesicle after significant amount of vesicle is sucked
into the pipette. f5 is the normal force per unit length where the cap
touches the pipette and p,,; is the pressure in the gap between the
pipette and the cylindricali region.

can be measured directly using the information about the
experimental value of the critical aspiration pressure.

II. MODEL

In Fig. 1, we show the schematic of a two-phase axisym-
metric vesicle that is aspirated within a micropipette of ra-
dius R,. The experimental images of a few aspirated vesicles
are shown in Fig. 2. The glass surface inside the pipette is
assumed frictionless and the adhesion between the mem-
brane and the micropipette has been omitted. Length of the
vesicle inside the pipette (projection length) is denoted by /,,,
¥ is the tangent angle measured from the r axis, and r is the
distance of a point on the membrane from the axis of sym-
metry (z axis). Suction pressure p; and the vesicle pressure p
are measured relative to the pressure outside of the vesicle

(a) (b)

FIG. 2. (Color online) Experimental images of two-phase
vesicles, that are axisymmetric, after aspiration. The images are
obtained via a confocal microscope and correspond to the equatorial
plane. (a) A vesicle with the [, domain (green/thin) aspirated. The
micropipette is schematically shown by two parallel lines. (b) A
vesicle with the /; domain (red/thick) aspirated. A gap between the
membrane surface and the inside wall of the pipette is observed
away from the aspirated tip.
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and positive values of p indicate inner excess pressure. At
the onset of aspiration, the projection length is small (Z,, less
than the pipette radius R,), pipette touches the vesicle at the
mouth only as shown in Fig. 1(a) and a force f; per unit
length acts normal to the vesicle membrane, because the
glass surface is assumed frictionless, at the pipette mouth.
Once significant amount of vesicle membrane is drawn
inside the pipette a cylindrical region is formed as shown in
Fig. 1(b). We assume that the membrane makes contact with
the pipette at two locations, namely, at the end of the tube
where a cap (aspirated tip) touches the pipette and at the
pipette mouth. The normal forces at the two locations are f,
and f;, respectively. A gap between the cylindrical membrane
region and the inner pipette wall is shown. The gap has also
been seen in the experimental images of micropipette aspi-
rated vesicles (see Fig. 2). We denote the pressure in this
region, relative to the pressure outside of the vesicle, by p,.
Through out the paper, we consider scaled quantities
where lengths are made dimensionless by the equivalent ra-

dius Iéo defined earlier, and forces are made dimensionless by
the ratio of mean curvature bending rigidity «;; of the liquid-

disordered phase and ﬁo. We assume that during the course
of the experiment the total surface area of the vesicle as well
as the surface areas of individual phases are conserved. Ac-
cordingly, total surface area of the vesicle is 4. From the
equilibrium of the entire vesicle, along z direction, we obtain

P1 Rg
f1= >
2 cos i,

where f| is the force per unit length exerted by the pipette
mouth on the vesicle and ¢, is the tangent angle of the
vesicle membrane at the pipette mouth. The values of ¢,
may be different for different vesicle shapes. The shape
equations and jump conditions at the /,—1; interface are ob-
tained by minimizing the energy functional with contribu-
tions from the total bending energy, the line energy at the
interface, the pressure difference across the vesicle mem-
brane at different regions (i.e., the cap and the cylindrical
portion inside the pipette and the region outside the pipette)
[5,15]. The shape equations and jump conditions can also be
obtained by balancing the forces and moments on an infini-
tesimal area element of the membrane [20,32,41]. The de-
tailed derivation of the shape equations are discussed in lit-
erature [5,15,18,20,32,41] and is not presented here. The
differential equations for transverse shear stress Q, and mean
curvature A, for an axisymmetric membrane, are

(Q,)" +(r'Q,) + 2h(d — eh®) — 2eh[2h(sin )/r + (sin® ¥)/r°]
+(p+p)=0 (1)

and
h'=-0Qe. (2)

In the above, the transverse shear stress per unit length Q;
acts perpendicular to the membrane surface and is different
from the in-plane shear which is zero in the membrane due to
its fluid nature. The prime denotes a derivative with respect
to deformed arc length s; p is the dimensionless inner excess
pressure inside the vesicle, d is a dimensionless constant as-
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sociated with the determination of the mean lateral tension.
The quantity p; is different for different region. It is the suc-
tion pressure p; for the cap region, pressure p.,; in the cy-
lindrical region between the inner pipette surface and the
vesicle surface of the tubular region inside the pipette, and
zero outside the pipette. The parameter &= k;,/ k;; for the
liquid-ordered phase, k;, being the bending rigidity of the
liquid-ordered phase and =1 for the liquid-disordered
phase. The assumption on the conservation of local surface
area during deformation [4] relates deformed arclength s and
the undeformed arclength S, which is the arclength parameter
of a unit reference sphere, through the relation (cos S)'=-r.
The other differential equations needed to complete the sys-
tem are ¢’ =—2h—(sin )/ r, r' =cos i, and z’' =sin . For the
present study we ignore the effects of spontaneous curvature
and Gaussian curvature rigidity. It has been shown in previ-
ous studies that these two parameters influence the location
of the I,—1; phase boundary by a small amount [15,18,42]
and they play important roles in discontinuous budding tran-
sitions [19]. In the present study vesicles shapes are signifi-
cantly away from budding transitions and the spontaneous
curvature and the Gaussian curvature rigidity should not play
any important role in the aspiration and release instabilities.

The jump conditions for the transverse force, moment,
and tangential force at the /,—[; interface, when the /, phase
is aspirated, are [18,15]

(Qs)ld_ (Qs)lg= (T(Sin ¢*)/r*7 hld_8h10=07 (3)
and
d,—d; - hlzd +eh? = o(cos ¢)/r", 4)

where ¢ is the line tension at the interface and " and r* are,
respectively, the tangent angle and radial distance at the in-
terface. When the [; phase is aspirated the first of jump con-
dition 3 and the condition 4 are modified as

(Qs)lo - (Qs)ld = O'(Sill l//*)/r*a (5)
and
d, —d; - sh,zo + h,zd = g(cos )/, (6)

The variables ¢, r, and z are continuous across the interface.
In the numerical solution strategy we consider cases in which
only one phase (say, [,) is inside the pipette and the 1,1,
interface is always outside the pipette. Furthermore, we con-
sider the domains outside and inside of the pipette as two
separate regions with appropriate shape equations. To ac-
count for the force f| per unit length at the pipette mouth and
impose that the vesicle touches the pipette we also need to
apply the following conditions.

(Qs)om - (Qs)in :fl and

where the superscripts out and in denote the values just out-
side and inside of the pipette, respectively. The other vari-
ables are related through continuity across the pipette mouth.
Once a significant amount of material is drawn inside the
pipette and the cylindrical region forms as shown in Fig.
1(b), we need to specify the conditions at the junction be-

r=R,, (7)
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tween the aspirated tip and the cylinder. The transverse shear
stresses at the junction are related by

Q)7 = (Q) " = f,. (8)

The conditions r=R,, and ¢=1/2 are imposed to ensure that
the aspirated tip touches the pipette wall and to avoid the
artificial penetration of membrane into the pipette wall. The
other variables including » and ¢ are continuous across the
junction. Following [15,43] the shape equations and jump
conditions can also be written in terms of the geometric
quantities » and . There is no significant advantage of using
one approach over the other. However, the jump conditions
are naturally expressed in terms of the jumps in forces and
moments which is manifested in the present approach. The
shape equations and jump conditions are obtained using the
so called spontaneous curvature (SC) model for the curvature
elasticity [2]. A more refined model, the area different elas-
ticity (ADE) model, that takes into account the area differ-
ence between the monolayers and the stretching of individual
monolayer areas [27,44,45] may also be employed. Further-
more, rapid displacement between the layers may take place
during deformation resulting in a viscous drag at the bilayer
midplane [20]. However, these models are most useful in the
analysis of long tether formation and budding of vesicles,
which involves regions of very high curvature and/or a rapid
increase of curvature in the order of 1000-fold [20]. In the
present mechanical stability analysis of the micropipette as-
pirated vesicles the ratio of the bilayer thickness to radius of
curvature is in the range of 1/200 or less and such deforma-
tions are negligible and the effect of the area different elas-
ticity has not been incorporated.

II1. ASPIRATION OF A SINGLE-PHASE VESICLE

We first consider the aspiration of a single-phase vesicle.
In the model, the two phases become indistinguishable if the
bending moduli «;, and k;; are equal and there is no line
tension acting at the /,—1; interface. Accordingly, in our nu-
merical solution procedure, we choose =1 for the /, phase
and the line tension o=0 for single-phase vesicle. We con-
sider two scenarios shown in Figs. 1(a) and 1(b) separately.
In the first scenario, the portion of the vesicle inside the
pipette does not have the cylindrical region. In this scenario
there are only two regions of the aspirated phase, namely, the
region out side the pipette and the aspirated tip. In the second
scenario, the portion inside the pipette consists of the aspi-
rated tip and a cylindrical region connecting the tip with the
region outside the pipette.

The first scenario posses a three-point boundary value
problem (BVP) as boundary and jump conditions are applied
where the tip touches the pipette, at the pipette mouth, and at
the points where the vesicle intersects the z axis. In the sec-
ond scenario we have a four-point BVP. In both the cases, we
reparameterize the arclength to reduce the equations into
two-point BVPs. The equations are then solved using MAT-
LAB boundary value problem solver “bvp4c” with relative
and absolute tolerance values of 107 and 1078, respectively.
The force f, mentioned in Eq. (8) is an independent param-
eter, positive values of f, signify that a portion of the vesicle
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FIG. 3. (Color online) Variation of aspiration pressure with pro-
jection length for different reduced volumes for a single-phase
vesicle and the pipette radius R,=0.1. (a) At the onset of aspiration
when [, is small (first scenario). The maximum in each curve cor-
responds to the critical aspiration pressure p{*’. (b) For large pro-
jection length [, (second scenario). The minimum corresponds to
the critical release pressure pﬁ.lr. The values of critical pressures and
their locations are provided in Table 1. The critical pressures are not
very sensitive to changes in reduced volume.

membrane inside the pipette is pressed against the pipette
wall, whereas negative values are unphysical. The tip just
touches the wall when f,=0 along with the conditions on r
and ¢ mentioned previously. In the numerical solution, we
assume f,=0. This allows us to determine the pressure p..,,.
Furthermore, we find that, due to this condition, the mem-
brane in the cylindrical region always stays within the pipette
(i.e., the distance r of a point in the membrane within the
pipette from z axis is less than the pipette radius R),). It is
also possible to determine p,,, by fixing the volume between
the membrane and the pipette, or specify p.,,=p;, or have
Dey Vary linearly from p; at the tip to O at the pipette mouth.
However, when the projection length changes the volume
also changes which precludes the first condition. In case of
the other two we find that r is greater than R, for one or more
regions of the membrane inside the pipette, which is not
physical. The first scenario allows the investigation of the
critical aspiration, whereas in the second scenario, the pres-
sure length curve for larger projection length is obtained and
critical release has been observed.

Variation of p; with [, is shown in Fig. 3 for different
reduced volumes, for small and large projection lengths. For
small projection lengths, in Fig. 3(a), a maximum is ob-
served in the p,—[, curve. The maximum corresponds to the
critical aspiration instability and the pressure is denoted as
critical aspiration pressure p{.>. For large projection lengths
(i.e., with the cylindrical region), in Fig. 3(b), the minimum
in the p,—1, curve corresponds to the critical release insta-
bility and the pressure is denoted as critical release pressure
P, Note that the locations at which the critical aspiration
instabilities occur are less than the pipette radius R, and they
do not change significantly when the reduced volume and
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TABLE I. Some exemplary values of the critical aspiration pres-
sures (p4*7), critical release pressures (p}.), and their locations for

the aspiration of single-phase vesicles.

rel

Red. vol. Py Location pror Location
0.75 2562.51 0.057 282.98 0.39
0.85 2595.20 0.057 285.16 0.38
0.95 2647.02 0.056 282.09 0.38

other parameters are varied (see Fig. 3 and Table I). The
incorporation of the membrane bending rigidity into the
model shows that the aspiration instability is different from
the liquid drop instability predicted in Ref. [24].

Variation of suction pressure with projection length for
large lp, as shown in Fig. 3(b), is similar to that observed in
Fig. 4c of Ref. [36] for the zero bending model for two-phase
vesicles when the nonaspirated part is near spherical. How-
ever, the presence of the negative slope in the p; -1, plot for
all the reduced volumes, along with the maxima in Fig. 3(a),
imply that there is always a critical aspiration pressure (ac-
cordingly, an aspiration instability) at the onset of aspiration.
Furthermore, the minimum in each of the p, -1/, curve in Fig.
3(b) corresponds to the critical release instability and the
pressure is denoted as critical release pressure p}“ . Note that
the shape corresponding to reduced volume of 0.95 is almost
spherical, yet the vesicle shows critical aspiration and release
instabilities. These instabilities are also observed for V,,,
=0.95 in the case of two-phase vesicle aspiration. This value
of the reduced volume has been found to be stable in the zero
bending model [36].

IV. ASPIRATION OF A TWO-PHASE VESICLE

We now discuss the micropipette aspiration of two-phase
vesicles. We focus on the onset of aspiration and the critical
aspiration instability only. In this case, the system is defined
by a four-point BVP which, like before, we reduce to a two-
point BVP and numerically solve it using bvp4c. We keep the
bending rigidity of the /, phase fixed, then an increase in € is
equivalent to having an [, phase with larger bending rigidity.
In experiment this can be achieved by choosing different /,
lipid molecules in the ternary lipid mixture [12,13]. In Fig. 4,
we show the variation of suction pressure p; with projection
length [, at the onset of aspiration, for two different values of
¢, line tension o, and reduced volumes. Existence of a maxi-
mum pressure in each plot, as in the case of the aspiration of
a single-phase vesicle, ensures that there is a critical aspira-
tion instability. The maximum suction pressure for =5 is
approximately three times as large as the maximum suction
pressure for e=1, with other parameters kept fixed. The criti-
cal pressure also depends on the line tension which we dis-
cuss below. The changes in critical pressure is less significant
when only the reduced volume is varied. The foregoing in-
dicates that the bending rigidity may be the most important
parameter in determining the critical aspiration pressure.

In Figs. 5(a) and 5(b), we present the variation of the

critical pressure with &, when the [, phase ((p{:?) ;) and the I/,
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FIG. 4. (Color online) Variation of aspiration pressure with pro-
jection length in the first scenario for two-phase vesicle. The liquid
ordered phase has been aspirated into the pipette. Pipette radius
R,=0.1 and the area fraction of the [, phase y=0.5. The values of
line tension o and e are as mentioned in the figure. Notice the
difference in maximum p; values (critical aspiration pressures) for
different values of ¢ and o.
phase ((p‘(f_’,)),d) are aspirated, respectively, for different re-
duced volumes and two different line tension o. We plot the
variation of the ratio of the two critical aspiration pressures
in Fig. 5(c). The changes in the vesicle reduced volume does
not influence the critical pressures significantly. During the
aspiration of the [, phase, the [, phase is away from the
pipette mouth. In this case, we observe from Fig. 5(b) that
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FIG. 5. (Color online) Variation of (a) critical aspiration pres-
sure (pf;)); for the aspiration of I, phase; (b) critical aspiration
pressure (pi7); for the aspiration of I, phase; and (c) the ratio of
the critical pressures (p{)); /(pi;);, with & for different reduced
volumes. Other parameters: R,=0.1, x=0.5, 0=10 (thin lines), o
=100 (thick lines). The critical pressure (p‘l‘fé’),d does not change
much with e. The critical pressures and their ratio are almost insen-
sitive to the vesicle reduced volume.
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FIG. 6. (Color online) Variation of the ratio of the critical pres-
sures (p$"™) ! (5™ 1, With o for different &. The other parameters:
R,=0.1, V,,;,=0.85, x=0.5 (solid lines), y=0.4 (dashed lines). The
critical pressures and their ratio are almost insensitive to the domain
area fraction y.

the sensitivity of critical aspiration pressure to increases in
the bending rigidity of the /, phase is low. Whereas the criti-
cal aspiration pressure during the aspiration of the /, phase
and the ratio of the critical pressures increase almost linearly
with the bending rigidity of the /, phase. In Fig. 6 we present
the variation of the critical pressure ratio with the line ten-
sion o for different values of €. Notice that the range of
change of the ratio with changes in o is higher for larger
values of €. This was also indicated by the increasing gap
between the thick (o=100) and thin (o=10) lines in Fig. 5.
The exemplary values of the ratio of the bending rigidities
and the line tension in Figs. 4 and 5 are chosen such that they
cover a broad range and are of the same order in magnitudes
with the observed values in literature [14,18,46].

We have also investigated the influence of the area frac-
tion y of the [, phase and observed that y does not play much
of a role in determining the critical pressures (please see Fig.
6). Figures 5 and 6 together establish the fact that the geo-
metric vesicle parameters such as reduced volume and do-
main area fraction do not play significant role in the quanti-
fication of the aspiration instability. An intuitive way of
explaining such insensitivity is that at the critical aspiration
instability it is necessary to induce a curvature at the pipette
mouth in a direction opposite to that of the vesicle curvature.
To a large extent this is local phenomena dominated by bend-
ing and the surface tension. A one-dimensional analog would
be bending of a pretensioned beam. For small and moderate
line tension considered here both the surface tension and its
dependence on the reduced volume are small and bending
dominates the critical aspiration instability. Furthermore, the
area fraction determines the location of the phase boundary
which is far enough from the pipette mouth to have any
influence on the instability. These observations will not be
valid if the line tension is large enough to induce a surface
tension that is significantly higher than the bending energy
and/or if the area fraction is such that the phase boundary is
close to the pipette mouth. In the former scenario the predic-
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tions of zero bending model of Ref. [36] will hold. However,
for the ranges of the line tension and the area fraction con-
sidered in the present study the critical aspiration pressures
and their ratio depend sensitively on the bending rigidity and
the line tension alone. This fact can be employed to measure
these mechanical parameters accurately using the micropi-
pette aspiration experiments which we briefly discuss below.
Somewhat similar approach of estimating the bending rigid-
ity of vesicle membranes via the critical suction pressure
data, has been used by Zhelev er al. [33]. However, the as-
piration technique involved holding the cell or single-phase
vesicle by a large diameter pipette and deforming the mem-
brane using a smaller diameter pipette. In the method de-
scribed below only one micropipette has been used to deform
a two-phase vesicle, and the accuracy of the measurement of
the bending rigidity depends only on the critical aspiration
data.

V. MEASUREMENT OF THE BENDING RIGIDITY

In [35], it was shown that the micropipette aspiration for
two-phase vesicles can be effectively used to determine the
line tension. The authors considered vesicles that were de-
formed into dumbbell shapes by the large line tension. In that
case, the zero bending model could be used and the estimates
of line tension varied from 0.5 to 3.3 pN depending on the
composition of the ternary lipid mixture used to prepare the
vesicles. Typical values of K, are of the order 1071° J
[47-49]. Experimental vesicles have sizes in the range
10 um. Using these information we find that the dimension-
less values of the line tension range from 50 to 330 which is
well within the range we have considered in the present
work. For the vesicles with molar composition of
0.34:0.28:0.38 (DOPC:Chol:ESM) Tian er al. [35] obtained
the ratio of the critical aspiration pressures for the aspiration
of [, and [, phases as 2.5 £ 0.23. The average line tension for
the same composition is 1.3pN (see Fig. 3 of Ref. [35]).
When made dimensionless the line tension becomes o=130.
Using the above information and from Fig. 6 we find that
should be 4 +0.4. This value is close to earlier measure-
ments [18,46]. The suction pressure in the experiments can
be measured with an accuracy of 0.1-0.2 Pa [35,36] (error is
less than 5%). Accordingly, an accurate and direct measure-
ment of & (hence the bending rigidity of the /, phase) is
possible using the micropipette aspiration technique. Further-
more, the present method provides an alternative to the ex-
isting methods [18,46]. It does not require fitting of vesicle
shapes and, hence, the error introduced by fitting procedure
is eliminated. A priori knowledge of line tension is needed
for such measurements, which can be obtained using the
methods proposed in Ref. [35] for large line tension. The line
tension is calculated from the suction pressure and the geo-
metric parameters at the phase boundary. For smaller line
tension the method of [35] would not be accurate. In that
case, estimate of the line tension can be obtained from the
thermal fluctuation measurements of the phase interface [50].

Note that in the present work the slope (or, the tangent
angle) has been assumed continuous across the [,—1; phase
boundary and we have not considered the presence of the
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contact angle or a slope discontinuity at the phase boundary.
Recent theoretical studies [51,52] predict such discontinuity,
which has been verified experimentally [53]. These studies
also discuss the influence of the contact angle on the line
tension at the domain boundary. A modification of the shape
equations and the formulation in the method presented here
is required to incorporate such effects. Another limitation of
the proposed method is that the line tension is provided as an
input as discussed above. However, the method can be ex-
tended to estimate the line tension and the bending rigidity
along with the contact angle at the domain boundary. The
critical aspiration pressure data for the aspiration of the [,
and /,; for a large number of two—phase vesicles with differ-
ent composition are required from experiments for such es-
timation. These enhancements will be discussed in future
work.

VI. DISCUSSION

In this paper, we discuss micropipette aspiration of lipid
bilayer vesicles with two fluid phases and study the influence
of the mechanical and geometrical vesicle parameters on the
instabilities observed during the aspiration. We find, by in-
corporating the bending rigidity in the model of micropipette

PHYSICAL REVIEW E 82, 021908 (2010)

aspiration, that critical aspiration and release instabilities are
present, unlike the zero bending model, for all possible re-
duced volumes. We show, for the aspiration of a two-phase
vesicle, that the critical suction pressure differs between the
aspiration of the /, and [; phases. We observe that the ratio of
the critical aspiration pressures depend on the mechanical
vesicle parameters such as line tension and the bending ri-
gidity of the aspirated phase. We also find that the ratio is not
strongly influenced by the domain area fraction and the
vesicle reduced volume. Furthermore, we present that the
observations can be used to determine the mechanical pa-
rameters accurately via experimental measurements. The ra-
tio of the bending moduli of the two phases determined using
our method agrees with that published in the literature.
Given that fact that the suction pressure can be measured
with high accuracy and fitting of vesicle shapes is not nec-
essary, the measurement of the mechanical parameters via
the method presented here, will also be also very accurate.
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