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We consider the Eigen quasispecies model with a dynamic environment. For an environment with sharp-
peak fitness in which the most-fit sequence moves by k spin-flips each period T we find an asymptotic
stationary state in which the quasispecies population changes regularly according to the regular environmental
change. From this stationary state we estimate the maximum and the minimum mutation rates for a quasispe-
cies to survive under the changing environment and calculate the optimum mutation rate that maximizes the
population growth. Interestingly we find that the optimum mutation rate in the Eigen model is lower than that
in the Crow-Kimura model, and at their optimum mutation rates the corresponding mean fitness in the eigen-
model is lower than that in the Crow-Kimura model, suggesting that the mutation process which occurs in
parallel to the replication process as in the Crow-Kimura model gives an adaptive advantage under changing
environment.
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I. INTRODUCTION

After the seminal work of Eigen’s quasispecies theory �1�,
the quasispecies models have been popular starting points for
the theoretical study of molecular evolution. Quasispecies
models describe the evolution of a population of sequences
whose dynamics is driven by error-prone replication and se-
lection. Two most widely applied quasispecies models are
the Eigen model �1� and the Crow-Kimura model �2�. In the
Eigen model, the sequences are subjected to point mutations
only during the process of replication, so that the mutation
process is connected with the selection process. For this rea-
son the Eigen model is called a connected mutation-selection
scheme. On the other hand, in the Crow-Kimura model, mu-
tation and selection are two independent processes and the
Crow-Kimura model is called a parallel mutation-selection
�ParaMuSe� scheme �3�. Both schemes of mutation-selection
are relevant to biology as in DNA-based organisms muta-
tions can occur both during replication and postreplication.
Which scheme is more appropriate to describe the evolution
in nature depends on whether real evolutionary rates are con-
stant per unit time �as in the Crow-Kimura model� or con-
stant per generation �as in the Eigen model� which is an
important topic in current genetics �4�. Moreover, recent the-
oretical work has shown that the population relaxation rates
for two mutation-selection schemes are significantly different
�5,6�. Thus it is interesting to compare the dynamic charac-
teristics of two models and make relevant connection to the
real evolutionary process.

Studies of the static and dynamic characteristics of qua-
sispecies models until now have focused on static environ-
ments �3,7–11�. There have been relatively few studies of
quasispecies models with dynamic environments �12–16�.
However, real organisms undoubtedly live in changing envi-
ronments and rate of environmental change has been cited as
a key factor in determining the organism’s mutation rate
�17�. Hence the effort of understanding of the influence of
dynamic environments is necessary for more realistic de-
scription of evolution.

In our previous work �18�, we analyzed the dynamics of
the ParaMuSe model with a changing environment. For a

dynamic environment with the sharp-peak fitness landscape,
we found an asymptotic stationary state and estimated the
maximum and the minimum mutation rates for which a qua-
sispecies can survive, and the optimum mutation rate that
gives the highest mean fitness. In this paper, we investigate
the dynamics of the Eigen model under a changing environ-
ment. For a dynamic environment with the sharp-peak fitness
function in which the most-fit sequence changes by k spin
flips every period T, we find an asymptotic stationary state.
By analyzing the stationary state, we obtain the maximum
and the minimum mutation rates for a quasispecies to survive
and the optimum mutation rate that maximizes the popula-
tion growth. We also calculate the mean fitness of the Eigen
model to compare the result with that of the ParaMuSe
model, and show that at their optimum mutation rates the
ParaMuSe model outperforms the Eigen model, implying
that the parallel mutation-selection scheme gives an adaptive
advantage under the changing environment considered in this
description.

The paper is organized as follows. In Sec. II we introduce
the Eigen quasispecies model and the theoretical methods we
use. In Sec. III we describe the regularly changing dynamic
environment and find the long-time behavior of the popula-
tion. In Sec. IV we analyze the long-time behavior of the
population and estimate the maximum and the minimum mu-
tation rate thresholds for formation of a quasispecies, as well
as the optimum mutation rate. Finally in Sec. V we compare
the results for the Eigen model to those of the ParaMuSe
model and discuss the significance of these results.

II. EIGEN MODEL

The Eigen model describes the evolution of a population
of sequences subject to mutation and selection. A sequence
can be represented as a chain of spins Si= �si

1 , . . . ,si
N� with

si
n= �1 for 1� i�2N and 1�n�N. Each sequence in the

population represents a different individual and the spins in a
sequence represent base pairs in the genome. The number of
possible configurations or genotypes is 2N for a sequence of
length N. The probability for a randomly selected sequence
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to be in a given configuration i, 1� i�2N, at time t is de-
noted as xi�t� and satisfies the Eigen model dynamics

dxi�t�
dt

= ��
j

Wijf�Sj�xj�t�� − xi�t��
j

f�Sj�xj�t� . �1�

Here f�Si� is the replication rate at which the sequence Si
produces offspring, known as the fitness, and the mutation
matrix Wij is the probability that an offspring produced by a
sequence of type Sj is mutated into a sequence of type Si.
Since we are dealing with asexual reproduction each off-
spring has only one parent. In a dynamic environment the
fitness f�Si� is time-dependent. The nonlinear term in Eq. �1�
serves to enforce the conservation of probability, �ixi�t�=1.
Equation �1� can be linearized by a transformation �3�

pi�t� = xi�t�exp��
0

t

�
j

f�Sj�xj�s�ds� �2�

leading to a linear system of equations

dpi�t�
dt

= �
j

Wijf�Sj�pj�t� . �3�

Introducing the copying fidelity q with which the mono-
mer is copied without error, the probability of any spin being
mutated during replication is �1−q� and the mutation matrix
Wij can be written as

Wij = qN−d�i,j��1 − q�d�i,j� �4�

with d�i , j�= �N−�lsi
lsj

l� /2 being the Hamming distance be-
tween Si and Sj, which measures the number of different
spins in the two sequences.

Mapping to a quantum system

The linearized Eigen equation can be mapped onto a
quantum spin system with introduction of the state vector

	��t�
 = �
j

pj�t�	Sj
 , �5�

where 	Sj
 is the state vector for the spin configuration Sj.
Each sequence corresponds to a spin configuration by the
mapping +1�↑, −1�↓, and the spin configuration 	Sj
 is
given the amplitude pj in the population state vector 	�
.
Equation �3� is equivalent to the evolution of the quantum
mechanical spin system described by the imaginary time
Schrödinger equation

d

dt
	��t�
 = − H	��t�
 �6�

with the Hamiltonian

H = �
l=0

N

qN−l�1 − q�l �
1�i1�i2¯�il�N

�i1
x
¯ �il

x f��1
z , . . . ,�N

z � ,

�7�

where �i are the Pauli spin operators acting on the ith spin in
the sequence. When they act on the spins, �x flips the spins

↑�↓ and ↓�↑ describing the mutation process, and �z

picks up the spin value +1 for ↑ and −1 for ↓ giving the
fitness as a function of the spin configuration. The Hamil-
tonian describes that the mutation process is connected with
the replication process.

We use the sharp-peak fitness function, in which all se-
quences except one �say S0� have the same fitness value of 1
and S0 has higher fitness value of A,

f�Si� = �A for Si = S0

1 else.
� �8�

The sequence S0 is referred to as the “most-fit sequence”
which is the sequence with the highest replication rate. In a
static environment of this kind, there exists a phase transition
at the error threshold point qc=A−1/N. If q�qc, a quasispe-
cies is formed around the most-fit sequence, whereas for q
�qc stability of a quasispecies breaks down and no effective
selection can occur.

In Ref. �5�, Saakian and Hu calculated the transition ma-
trix elements between two configurations in the static envi-
ronment of the sharp-peak fitness function. To analyze the
evolution of the Eigen model under the changing environ-
ment, we will use these results, which we summarize below.

If Si and Sj are a Hamming distance k apart and neither is
the most-fit sequence, then the transition matrix element is


Si	e−Ht	Sj
 = exp�N��t,k,	�� , �9�

with

��t,k,	� =
k

N
ln

	k

N
−

k

N
+ ln cosh

	e−	t

N

+
z�1 − ln z�

	
tanh

	e−	t

N
+

e−	t

N


�ez�1 − z ln z� − z�1 − ln z� − 1� , �10�

where z satisfies the transcendental equation

z��ez − 1�e−	t +
N

	
tanh

	e−	t

N
� = k . �11�

For Si a Hamming distance k from S0, the transition matrix
element is found to be


Si	e−Ht	S0
 = 
S0	e−Ht	Si
 = exp�N��t0,k,	��
S0	e−H�t−t0�	S0
 ,

�12�

where t0� t is determined by the saddle-point condition

− Ae−	 + N
d�

dt
�t0� = 0. �13�

Finally, the transition matrix element 
Si	e−Ht	Sj
 for Si=Sj
=S0 is


S0	e−Ht	S0
 = exp�Ae−	t� , �14�

where e−	=qN is the probability of an offspring having no
mutations.
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III. DYNAMIC ENVIRONMENT

We consider a regularly changing dynamic environment
with the sharp-peak fitness function, Eq. �5�, in which the
most-fit sequence changes by k spin-flips, after each period
of time T. The k=1 case of the Eigen model in which the
most-fit sequence changes by one spin flip at each period T
has been studied by Nilsson and Snoad �17�. An equivalent
dynamic environment with the ParaMuSe model has been
analyzed by exactly up to order of 1 /N by the authors �18�.
The analysis for the Eigen model follows much the same
route as that for the ParaMuSe model. We present here the
main steps in the derivation, referring the reader to Ref. �18�
for more details.

A. Time-scale comparison

In the environment considered, the most-fit sequence
changes by k spin flips each period T. Suppose at a certain
time all the population is situated at a sequence of a Ham-
ming distance k from the most-fit sequence. The relaxation
period, the time taken for a quasispecies to form around the
most-fit sequence, is found to be �5�

� = k

ln� eN ln�A + 1�
k	

�
Ae−	 − 1

. �15�

If T�� then the time scale of the environmental change is
much longer than the time taken for the population to relax
to the most-fit sequence, and the quasispecies has more than
enough time to relax to the new most-fit sequence between
each environmental change. Therefore we expect the most-fit
sequence population to remain a significant fraction of the
total population after many environmental changes. How-
ever, if T
� then the environmental change is too rapid for
the population to adapt, in which case we expect no qua-
sispecies can be formed. Thus we are interested in the non-
trivial intermediate case, T��. In this regime, to ensure � /T
tends to a finite nonzero value in the limit of N→�, we
choose the scaling of the fitness value

A = a ln N , �16�

and assume a and 	 do not scale with N.

B. Definition of the regularly changing solution

In a regularly changing environment, the asymptotic so-
lution to the Eigen model equation, Eq. �3�, is the population
distribution that changes regularly with the same period as
the environmental change.

In the environment considered here the master sequence
changes by k spin flips every period T. We assume these k
spins are chosen randomly, and independently of which spins
were flipped in the previous environmental changes. Denot-
ing the nth master sequence by Sn, the distance from Sn to
Sn−2 can be anywhere from 0 to 2k �less than 2k if the same
spin is flipped twice in successive environmental changes�.
For this reason our environment is regularly changing – the
distance from the master sequence Sn to Sn−1, Sn−2 , . . . need

not be the same as the distance from the master sequence
Sn+1 to Sn, Sn−1 , . . .. However, if k
N then the chance of the
same spin being flipped twice is very small. More precisely,
it is shown in Appendix of Ref. �18� that for m=N1/3, the
probability that all of the mk spins flipped in m environmen-
tal changes are distinct tends to 1 as N→�. Thus for large
enough N we can assume that the distance from Sn to any Sp
with n− p�N1/3 is the same as the distance from Sn+1 to Sp+1,
so that in the large N limit the environment is approximately
regularly changing. Hence we look for a regularly changing
asymptotic solution to the Eigen model in the large N limit.

Let P�t� and pm�t� denote the total population and the
population of the most-fit sequence at time t, respectively. In
the regularly changing solution we have

pm�t + T�
P�t + T�

=
pm�t�
P�t�

. �17�

In the Eigen model with sharp-peak fitness, the rate of
change of total population is given by

dP�t�
dt

= �
j

f�Sj�pj�t� = P�t� + �A − 1�pm�t� . �18�

From Eqs. �17� and �18� it can be checked that in a regularly
changing solution

d

dt
�P�t + T�

P�t�
� = 0 �19�

In other words, both P�t� and pm�t� increase by the same
constant factor over the period T. We denote this factor by
the growth constant B,

P�t + T�
P�t�

=
pm�t + T�

pm�t�
= const ¬ B . �20�

Hence, in the regularly changing solution the total and the
most-fit sequence populations follows a geometric series

P�t + nT� = BnP�t�, pm�t + nT� = Bnpm�t� , �21�

and calculating the growth constant B is enough to find the
time-averaged mean fitness over the period T. A larger value
of B implies the population is better adapted to the environ-
ment.

C. Calculation of B

Suppose that at some time t there is a significant fraction
of the population at a sequence Si. To find the fraction of
population at another sequence Sj some time t� later, we need
to evaluate the transition matrix element 
Sj	U�t� , t�	Si
,
where U�t� , t� is the time-ordered evolution operator

Te−�t
t�H�s�ds with the time dependent Hamiltonian H�t� given

by Eq. �7�. In principle, to evaluate this matrix element we
must take a sum over all possible intermediate configurations
Si , . . . ,Sk ,Sl , . . . ,Sj, and for each interval �Sk ,Sl� evaluate the
matrix element 
Sk	U	Sl
 by using Eqs. �14� and �9�, or �12�,
depending on whether neither, one, or both of �Sk ,Sl� are the
most-fit sequence for that time period.

For the calculation of pm�t� in the regularly changing so-
lution only one path gives a significant contribution—
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namely, the path which remains at each successive most-fit
sequence for a time �T− t0�, before traveling from one most-
fit sequence to the next in time t0, where t0 is the saddle-
point time defined by Eq. �13�. See Fig. 1 for an illustration
of this path. The proof that only the contribution from this
path is significant is rather involved and can be found in the
Appendix.

We use this path to calculate the change in the most-fit
sequence population over one period,

pm��n + 1�T − ��
pm�nT − ��

= B , �22�

where � is a positive infinitesimal. Over the time period from
nT to �n+1�T the path travels from the nth most-fit sequence,
Sn, to the �n+1�-th most fit sequence, Sn+1 in time t0, and
then remains at Sn+1 for a time T− t0. Thus,

pm��n + 1�T − �� = pm�nT − ��
Sn+1	eH�T−t0�	Sn+1




Sn+1	eHt0	Sn


= pm�nT − ��exp�Ae−	�T − t0��


exp�N��t0,k,	�� . �23�

To obtain the growth constant B, we need to find the saddle-
point time t0. The saddle-point condition Eq. �13� gives

− A + 	 tanh�	e−	t0

N
� + z cosh−2�	e−	t0

N
� + ez − z − 1 = 0,

�24�

where it should be remembered that z has an implicit time
dependence given by Eq. �11�. Since we assume t0
N in the
large N limit as we will see later, this equation simplifies to

ez � A + 1 � A . �25�

Substituting this into Eq. �11�, we have

ln A�Ae−	t0 +
N

	
tanh�	e−	t0

N
�� = k , �26�

which gives the saddle-point time

t0 �
k

Ae−	 ln A
. �27�

From this we see that t0� 1
ln N 
N, as assumed.

Putting the saddle-point time t0 into Eq. �10� and dis-
counting terms of order N−2 and smaller gives

��t0,k,	� =
k

N
�ln

	k

N
− 1 +

1

ln A
− ln ln A −

1 − ln ln A

A

−
1

A ln A
� . �28�

The growth constant B is obtained from Eq. �23� with Eqs.
�27� and �28�,

B =
pm��n + 1�T − ��

pm�nT − ��

= exp��ae−	T − k�ln N − k�ln ln A − ln 	k + 1

−
ln ln A − 1 − 1/ln A

A
�� . �29�

IV. ANALYSIS OF THE REGULARLY-CHANGING
SOLUTION

When the environmental change is too severe and a stable
quasispecies cannot be formed, pm=0 and we have B=eT. If
pm�0, then B�eT and a stable quasispecies is formed. Thus
the transition between the two regimes occurs when Be−T

=1. This gives the criterion for the transition

�ae−	T − k�ln N + k


�ln ln A − ln 	k + 1 −
ln ln A − 1 − 1/ln A

A
� − T = 0.

�30�

Figure 2 gives a phase diagram showing this transition be-
tween selection and nonselection of the quasispecies in the
phase space of the parameters k /aT and e−	.

FIG. 1. �Color online� A diagrammatic representation of the sig-
nificant path for the calculation of pm�t��, representing the matrix
element 
S5	U�t , t��	S0
. The horizontal sections of the path corre-
spond to the time spent at the most-fit sequence at a given period,
and the slanting sections correspond to the time taken for transitions
between most-fit sequences of two neighboring periods.

FIG. 2. A phase diagram showing the transition between selec-
tion and nonselection of the quasispecies �B�1 and B=1, respec-
tively�, as a function of the parameters k /aT and e−	. The solid line
is the approximate result for k=10, A=10, and N=106. The dashed
line shows the phase transition in the N→� limit.
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For large enough N, we keep only terms of order ln N in
Eq. �30�, giving the upper bound for the mutation rate 	,

	max = ln
aT

k
, �31�

beyond which the quasispecies cannot be formed. Further-
more, since 	=N ln q−1�0�q�1�, the quasispecies is never
selected in the changing environments with k /aT�1.

In the N→� limit, there is no minimal mutation rate
threshold - the quasispecies survives for any 0�	�	max.
However, for finite N we can give an estimate of the mini-
mum mutation rate threshold by assuming the scaling 	min
�N−�. From Eq. �30�, the minimum mutation rate threshold
occurs when

�k�1 + �� − aT�ln N = 0, �32�

which gives the minimum mutation rate threshold

	min � N−�aT/k−1�. �33�

We now compute the optimum mutation rate, 	opt, which
maximizes the mean fitness, that is, the growth in population
over a period. From the relation between the mean fitness
and B, the expression for the mean fitness averaged over a
period is found to be


 f̄
 =
1

T
ln B = Ae−	 −

k

T
�ln N + ln ln A − ln 	k + 1

−
ln ln A − 1 − 1/ln A

A
� . �34�

The first term is the mean fitness of the steady state in the
corresponding static environment. Maximizing the mean fit-
ness, we find the optimum mutation rate

	opt =
k

aT ln N
. �35�

Nilsson and Snoad gave approximate results for the same
changing environment with k=1. Our findings, Eqs. �31�,
�32�, and �35�, are consistent with Nilsson and Snoad’s re-
sults with k=1 in the large N limit. Figure 3 shows the time-

averaged mean fitness as a function of e−	 for three values of
the environmental severity parameter k /T.

V. DISCUSSION

We investigated the Eigen model under changing environ-
ment and found the maximum, minimum, and optimum mu-
tation rates for the given environmental change. In our pre-
vious work �18�, we examined an equivalent dynamic
environment for the Crow-Kimura model �the ParaMuSe
model�. In our previous findings, the minimum, maximum
and optimum mutation rates only depended on the param-
eters k and T in the combination k /T, suggesting that this
parameter was therefore appropriate to describe the “sever-
ity” of the environmental changes. For the Eigen model we
also find that 	min, 	max, and 	opt all contain k and T in the
combination k /T only.

In order to make a more direct comparison with the Para-
MuSe model we construct a mapping between the param-
eters of the two models. In Ref. �18� we chose the sharp-peak
fitness function,

f�Si� = �JN for Si = S0

0 else.
� �36�

The dynamics of the Crow-Kimura model are invariant un-
der change of the fitness function by a constant f�Si�
→ f�Si�+c. Taking c=1 and comparing Eq. �36� to Eq. �8�
we find that the Eigen and ParaMuSe fitness functions are
equivalent when A=JN+1�JN.

For the mutation rates, � in the ParaMuSe model is a
mutation rate per unit time, whereas N�1−q��	 in the Eigen
model is a mutation rate per replication. To calculate the
mutation rate per unit time in the Eigen model we multiply 	
by the time-averaged mean fitness Eq. �34�, which is the
average number of replications per unit time in the popula-
tion. Thus we equate

� � �1 − q�
 f̄
 . �37�

At the maximum and minimum mutation rate thresholds

we have 
 f̄
=1 since the most-fit sequence population is zero
at the threshold. Writing “ParaMuSe” for the ParaMuSe
model and using � to denote mutation rate per unit time, we
find

�max�ParaMuSe� = J −
k ln N

T
,

�max�Eigen� =
1

N
−

k ln N

NAT
�

1

A
�max�ParaMuSe� . �38�

For the minimum mutation rate we find,

�min�ParaMuSe� � N−jT/k ln N ,

�min�Eigen� � N−aT/k �
1

ln N
�min�ParaMuSe� . �39�

Hence the mutation rate per unit time at the thresholds is
smaller by a factor 1 / ln N in the Eigen model.

FIG. 3. Time-averaged mean fitness as a function of e−	 for
three values of the environmental severity parameter k /T. The fixed
parameters are a=1, T=20 and N=106.
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For the optimal mutation rate,

�opt�ParaMuSe� =
k

NT
,

�opt�Eigen� =
k

NT
�1 −

k

aT
� = �opt�ParaMuSe��1 −

k

aT
� .

�40�

Thus the optimum mutation rate in the Eigen model is lower,
particularly for more severe environments. This result is sur-
prising, since it was shown in Ref. �6� that the relaxation rate
for the ParaMuSe model with sharp-peak fitness function is
faster than the Eigen model with an equivalent environment.
The shorter relaxation time of the ParaMuSe model naively
suggest lower optimal mutation rate in comparison with the
equivalent Eigen model.

It is also interesting to compare the time-averaged mean
fitness at the optimal mutation rate in the two models. Sub-
stituting Eq. �35� into Eq. �34� we find the expression for a
fitness function in the Eigen model


 f̄
 = Ae−k/AT −
k

T
�ln N + ln ln A − ln

k2

AT
+ 1

−
ln ln A − 1 − 1/ln A

A
�

� A −
k

T
�ln N + ln ln A − ln

k2

AT
+ 2

−
ln ln A − 1 − 1/ln A

A
� . �41�

The equivalent expression in the ParaMuSe model is


 f̄
 = A −
k

T
�ln N − ln

k2

AT
+ 2� . �42�

For any values of the parameters A, k, T for which a qua-
sispecies can be formed, the ParaMuSe model gives a higher
time-averaged mean fitness, which implies that the Para-
MuSe quasispecies—with mutation occurring in parallel
with replication—adapts more effectively to the changing
environment at the optimal mutation rate. The difference in
mean fitnesses is most significant close to the threshold
k /aT=1 above which a quasispecies cannot be formed, and
the ratio of mean fitnesses approaches unity as k /aT de-
creases to zero. See Fig. 4 for an illustration.

In summary, we have studied the Eigen quasispecies
model with a dynamic environment. We have derived ana-
lytic expressions for the maximum, minimum and optimum
mutation rates which are exact in the large N limit. These
expressions are similar to equivalent expressions found for
the ParaMuSe model in Ref. �18�, however, the optimum
mutation rate in the Eigen model is lower than that of the
ParaMuSe model, especially at high environmental severity
k /T. We have shown that, in general, the ParaMuSe model
gives a higher time-averaged mean fitness at the optimal mu-
tation rate than the Eigen model. This means that a popula-
tion in which mutation and selection occur in parallel outper-

forms a population in which mutation occurs only at the
moment of reproduction, if the mutation rates are optimal.
These findings cast some light on the role of mutations in
adaptation to environmental change in asexually reproducing
organisms.
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APPENDIX: CALCULATION OF THE SIGNIFICANT PATH

We denote by Sn the most-fit sequence in the time period
nT� t� �n+1�T, and assume that at t=0 all of the population
is situated at the sequence S0. We will find an expression for
the population of the sequence Sn just after the nth environ-
ment change, i.e., for pm�t� where nT� t� �n+1�T. To do
this we consider the sum over all paths from S0 to Sn in time
nT.

Following Ref. �18�, for a given path we define the set
V� �0,1 ,2 , . . . ,n� such that m belongs to V if and only if the
path visits the sequence Sl in the time period lT� t� �l
+1�T. We discount paths which visit the sequence Sl more
than once in this period, since their contribution is small
compared to the path which remains at Sl during the inter-
vening time. Labeling the elements of V by vi, where 0=v1
�v2� ¯ �vm=n, we define �vi

as the time spent at most-fit
sequence Svi

, and tvivi+1
as the time between leaving the se-

quence Svi
and arriving at sequence Svi+1

. Due to the regular
changes of the environment we have the conditions

0 � �vi
� T , �A1�

�vi+1 − vi − 1�T � tvi,vi+1
� �vi+1 − vi + 1�T , �A2�

�
i=1

m

�vi
+ �

i=1

m−1

tvi,vi+1
= t . �A3�

Using the results of Sec. II, the contribution from this path to
pm�t� is

FIG. 4. Ratio of time-averaged mean fitness at the optimal mu-
tation rate in the Eigen and ParaMuSe models. Parameters are N
=106, k=15, T=20. Below a�0.85 no quasispecies can be formed
and both models have mean fitness 1.
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Svm
	exp�− H�vm

�	Svm


Svm

	exp�− Htvm−1,vm
�	Svm−1





 
Svm−1
	exp�− H�vm−1

�	Svm−1


Svm−1

	exp�− Htvm−2,vm−1
�


	Svm−2

 
 ¯ 
 
Sv2

	exp�− H�v2
�	Sv2



Sv2
	


exp�− Htv1,v2
�	Sv1


 
 
Sv1
	exp�− H�v1

�	Sv1



= exp�Ae−	t��
i=1

m−1

exp�− Ae−	tvivi+1
+ N��tvivi+1

,dvivi+1
,	�� .

�A4�

Here dvivi+1
is the distance between sequences Svi

and Svi+1
.

We approximate the sum over all paths with the same set
V by taking saddle-point values for the times tvivi+1

in the
above expression. If vi+1=vi+1 then the saddle-point time is
given by Eq. �27�. Otherwise we have from Eq. �24�

ez = A + z + 1 − 	 tanh�	e−	t0

N
� − z cosh−2�	e−	t0

N
� � A + 1

− 	 . �A5�

From the definition of z, Eq. �11�, we find

tvivi+1
=

dvivi+1

z�ez − 1�e−	 −
N

	
tanh

	e−	t

N

�
k�vi+1 − vi�

ln�A + 1 − 	��A − 	�e−	 . �A6�

Since A� ln N, for large enough N, the saddle-point time in
Eq. �A6� is less than the minimum allowable time specified
by condition Eq. �A2�. Therefore for vi+1−vi�1 instead of
the saddle-point time we take the minimum allowable time

tvivi+1
= �vi+1 − vi − 1�T . �A7�

Thus, from Eq. �A4�, our approximation for the population
of the master sequence at time t is

pm�t� = exp�Ae−	t�� �
V��0,. . .,n�

�
i=1

m−1

exp�− Ae−	tvi,vi+1
�

+ N��tvi,vi+1
,dvi,vi+1

,	�� , �A8�

where tvivi+1
is given by Eqs. �27� and �A7�. From Eq. �A8� it

follows that if nT� t1 , t2� �n+1�T then

pm�t2� = pm�t1�exp�Ae−	�t2 − t1�� . �A9�

We now consider the population of Sn just after the nth
environment change, i.e., pm�nT+��. We split the sum over V
in. Equation �A8� as in Ref. �18�. First we consider all paths
which visit Sn−1 �i.e., n−1�V�. These paths must leave Sn−1
at time �nT− t0�, where t0 is given by Eq. �27�. Second, we
consider paths which do not visit Sn−1 but do visit Sn−2 �i.e.,
n−1�V ,n−2�V�. We have tn−2,n=T, so these paths must
remain at Sn−2 until time �n−1�T. Continuing this argument
�next considering those paths which visit Sn−3 but not Sn−2 or
Sn−1, and so on�, we find

pm�nT + �� = exp�N��t0,k,	��pm�nT − t0�

+ �
m=2

n

exp�N���m − 1�T,dn−m,n,	��


pm��n − m + 1�T − �� . �A10�

We wish to show that only the first term in Eq. �A10� is
significant, since this is exactly the contribution from the
path displayed in Fig. 1. Combining Eqs. �27�, �A9�, and
�A10� we have

exp�− Ae−	T� = B−1e−k/ln A exp�N�� k

Ae−	 ln A
,k,	��

+ �
m=2

n

B−m exp�N���m − 1�T,dn−m,n,	�� .

�A11�

We can evaluate the first term using Eqs. �10� and �25�

e−k/ln A exp�N�� k

Ae−	 ln A
,k,	��

= exp�k�− ln N − ln ln A + ln 	k − 1�� , �A12�

where terms in the exponent �O� 1
ln N � have been discarded.

We now show that the sum over m in Eq. �A11� can be
discarded. As in Ref. �18�, we split the sum into two halves,
the first from m=2 to m=N1/3, the second over m�N1/3. For
m�N1/3 we have d=mk with probability tending to 1 as N
→� �see Ref. �18� for a proof�, and so

exp�N���m − 1�T,mk,	�� = exp�mk�− ln N + ln mk	 − 1�

+ e−	�m − 1�T�A�1 − �ln A�


�ln ln A�� − 1�� . �A13�

This is a decreasing function of m for m�N, and so we can
bound each term in the sum of Eq. �A11� by the term with
m=2. The ratio of the first N1/3 terms in the sum to the first
term in Eq. �A11� is

�
m=2

N1/3

B−m+1 exp�N���m − 1�T,mk,	��

exp�k�− ln N − ln ln A + ln 	k − 1��
�A14�

�
N1/3 exp�N��T,2k,	��

exp�k�− ln N − ln ln A + ln 	k − 1��
�A15�

=exp��− k +
1

3
− ae−	T��ln A��ln ln A� − 1��ln N

+ O�ln ln N�� �A16�

→
�N→��

0. �A17�

Hence the first N1/3 terms in the sum can be discarded in the
N→� limit.
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For the second half of the sum we have

�
m=N1/3+1

n

B−m+1 exp�N���m − 1�T,mk,	��

exp�k�− ln N − ln ln A + ln 	k − 1��
�A18�

�

�
N1/3+1

n

B−m+1

exp�k�− ln N − ln ln A + ln 	k − 1��
�A19�

�
B−N1/3

1 − B−1exp�k�ln N + ln ln A − ln 	k + 1�� �A20�

1

1 − B−1exp�− N1/3 ln B + k�ln N + ln ln A − ln 	k + 1��

�A21�

→
�N→��

0, �A22�

where we have used the fact that B�1 for a nonzero popu-
lation pm. Hence the second half of the sum can also be
discarded in the N→� limit, and therefore only the first term
in Eq. �A10� is significant, as claimed.
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