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Entanglements in a polymer network are like knots between the polymer chains, and they are at the root of
many phenomena observed in polymer systems. When a polymer glass is strained, cracklike deformations
called crazes may be formed and the study of these regions can reveal much about the nature of entanglements.
We have studied crazes in systems that are blends of long polymer chains diluted with chains of various small
molecular weights. The range of diluting chain lengths is such that a fraction of them have conformations
leading to entanglements. It has been found that a system with more short chains added acts like one in which
the entanglement density is smaller than that in an undiluted system. We propose a model that quantitatively
predicts the density of effective entanglements of a polydisperse system of polymer chains which is consistent
with our experimental data.
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I. INTRODUCTION

Much of what makes polymer systems distinct from other
forms of condensed matter can be traced to the fact that they
are composed of long, chainlike molecules whose backbones
cannot pass through one another �1�. In a melt of long poly-
mers, thermal fluctuations cause chain conformations to be
such that a given chain entangles with other chains in the
space that it explores. As a result of these interactions, the
mobility of the molecule is severely reduced as compared to
smaller molecules. Entanglements restrict the chain’s motion
perpendicular to its contour length and are affected by sev-
eral parameters including the volume occupied by the chain
and the pervaded volume—the volume explored by the chain
�1–4�.

In equilibrium, polymer chains in the melt state are con-
sidered ideal, that is, they take on conformations correspond-
ing to random walks �1�. While the volume taken up by a
chain scales simply as the molecular weight, Vc�M, the ac-
tual volume explored by the chain through its random path is
typically much larger. The pervaded volume of a polymer
chain, Vp, can be defined by a sphere whose radius is given
by the radius of gyration, R �the root-mean-square distance
of all monomers from the center of mass of the chain�. For
random walks R�M1/2 �1�. Since the pervaded volume in-
creases with the molecular weight as Vp�R3�M3/2, the ratio
Vc /Vp is decreasing with M: on average a longer chain in-
teracts with more other chains. As we will see, because the
pervaded volume of a chain is, on average, occupied by more
other chains as M increases, it is more likely for higher mo-
lecular weight chains to be entangled. Simply put, the more
chains a given polymer chain interacts with the more likely it
is to be entangled.

Of fundamental importance in polymer systems are the
questions of whether chains are entangled and the nature of
the spacing between entanglements. Rheological and glassy
state properties of polymers depend crucially on the answers
to these questions �5–7� and underpin polymer theory

�1,8–10�. The former of these questions receives significant
attention in the polymer literature �1,5,11–14�. There is
growing consensus in theoretical, computational, and experi-
mental studies that in a monodisperse system of sufficiently
long chains the average molecular weight of a segment be-
tween entanglements, Me, is constant �9,11–13�. In blends of
two or more weight fractions of the same polymer species,
however, the case is not so clear. Even when the molecular
weights of blend components are quite long compared to Me,
it is possible to describe Me as having been dilated. Recent
theoretical and experimental treatments have demonstrated
this dilation �10,14� for blends of a long component with
either a short or another long component �here “long” or
“short” is always in comparison to Me�.

The question of whether a chain is entangled has received
considerably less attention. Kavassalis and Noolandi have
addressed this question and propose a model which predicts
an abrupt transition from zero to finite probability of en-
tanglement as M passes through some critical molecular
weight �15�. Here we present a model that also has a low-M
region for which the probability of entangling with other
molecules is zero, while the transition to finite values is con-
tinuous. Our model is compared to measurements of the den-
sity of effective entanglements in blends of long- and short-
chain polymers shown schematically in Fig. 1�a�. The model
can be applied to systems with any number of molecular
weight components, so we have prepared ternary systems to
test the model beyond binary systems. Previous works have
focused on blends of long chains with the second component
either much shorter than �14,16,17� or significantly longer
than Me �10,14�. In contrast with these studies our work
focuses on the transition through Me where one cannot as-
sume that the short chains do not entangle. The questions we
seek to answer are, �1� what is the effect of swelling the
entanglements that connect a polymer network; and, �2� how
does the length of a polymer chain relate to the probability
that it will be entangled with other chains?

When a polymer glass is strained, microscopic cracklike
deformations called crazes may be formed �18–20�. Crazes
are composed of a load bearing, interconnected fibrillar
structure bridging a gap between undeformed material, and
they exist because polymers are entangled �18,19�. Previous*dalnoki@mcmaster.ca
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studies have focused on understanding the microscopic pro-
cesses that govern the nucleation, growth, and failure of
crazes as the strain increases �18–25�. Drawing on these
seminal studies, recent work used atomic force microscopy
�AFM� of crazes to probe the configurations of polymers in
confinement �26�. It is the aim of this work to continue the
use of crazing experiments to understand properties of mo-
lecular entanglement in equilibrium. We stress from the out-
set that the work presented here is done on glassy systems
which is in contrast to many dynamic studies of entangle-
ments �e.g., rheology, neutron spin echo�. However, since the
structure of a glass is inherited from that of the melt, en-
tanglement properties can be elucidated through the use of
crazing �18–25�. In this work, we find that there is a range of
molecular weights for which the entanglement density can be
interpreted as having been reduced from that of long chains.
The reduction in the entanglement density is even apparent
for chains with molecular weights well above Me.

In the thin films we study here, crazes are characterized
by the ratio of the deformation-induced neck height to the
height of the undeformed film, hc /h. A schematic of a craze
region is shown in Fig. 1�b�, while an AFM topography im-
age of a craze is seen in Fig. 2. The connection between the
essentially macroscopic quantity hc /h and the microscopic
Me was made some time ago in experiments by Donald and
Kramer �18,21,22�; simulations by Rottler and Robbins have
further verified the connection �20�. The average distance
between entanglements prior to crazing is d�Me

1/2 since
polymers in the melt are random walks. After crazing, the
random network of entanglements is expanded in the strain
direction. It was shown by Kramer and co-workers that after
straining le�Me �18,21,22�. Rottler and Robbins determined
the proportionality constant in this relationship using simu-
lations �20�. The lengths d and le are shown schematically in
Fig. 1�b� for the specific case of an entanglement strand
aligned along the strain direction �in a random network all
orientations are equally probable�. Since the deformation of
the chains is reflected in the macroscopic deformation of the
thin film, it is easy to show that hc /h�d / le�1 /Me

1/2.
A system of very long polymer chains whose molecular

weights M��Me will have a density of entanglements, �
�1 /Me, which is large compared to a system of chains
whose molecular weights are small. Just as a string must be

long enough to tie a knot, if the molecular weight of the short
chains is too small, then there can be no entanglements.
However, because of the random configurations of polymer
chains in the melt, an intermediate case also exists, where
some short chains are entangled and others are not. Here we
consider a blended system of very long chains to which one
adds some mass fraction, �, of short chains, see Fig. 1�a�.
The blending approach allows us to elucidate the importance
of the entanglement behavior of the shorter chains where this
would be much more difficult in monodisperse systems �for
example, in the work by Kramer and co-workers �27� it was
found that stable crazes could not be observed in monodis-
perse 37 and 50 kg/mol systems�. In a blended system we
can say that the entanglements of the large M system have
been swelled or diluted by the small M chains �14,16,17�. We
define a density of effective entanglements, �ef f �1 /Mef f, de-
pendent on the blend concentration, �, that will be interme-
diate to that of the long- and short-chain systems, 0
��ef f�����. Since hc /h�1 /Mef f

1/2, we have

�hc

h
�2

� �ef f . �1�

II. EXPERIMENT

Samples were prepared by blending long and short chains
of polystyrene �PS� with various mass fractions of the short
component, �, in toluene �all PS obtained from Polymer
Source Inc.�. The number averaged molecular weight of the
long chains was M�=734 kg /mol, and that of the short
chains was Ms=4.8 or 18.4 kg/mol. Ternary systems were
prepared in which the mass fraction of long chains with
M�=734 kg /mol is always 0.50. A mass fraction �, of
Ms

�1�=18.4 kg /mol chains was added while Ms
�2�

=64.0 kg /mol chains made up the rest of the system. The
polydispersity index for all PS was �1.07. Films approxi-
mately 110 nm thick were spincast from solution onto freshly
cleaved mica substrates and annealed for 12 h at 120 °C to
remove residual stress and solvent. Films were floated onto

FIG. 2. An atomic force microscope image of a crazed sample
showing the substrate, regions of the sample that have been de-
formed by crazing, and undeformed regions. The plot is a line pro-
file corresponding to the white line.

FIG. 1. �a� The entanglements that exist on the vertically ori-
ented chain are rendered ineffective when replaced by short seg-
ments. �b� Schematic of the crazed and uncrazed system before and
after straining, overlaid with a representation �not to scale� of one
polymer molecule, aligned along the strain direction, before and
after straining.
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the surface of a clean water bath �Milli Q� and picked up
across a 1.5 mm gap between two aluminum blocks with
sharp edges and allowed to dry. One of the blocks was fas-
tened to a single-axis translation stage �Newport MFA-CC,
SMC100CC�, and slowly pulled apart at room temperature
until crazes were formed. A constant strain rate of �̇=2
	10−4 s−1 was used and samples were strained to about
�=0.1.

Berger and Kramer �28� have performed crazing experi-
ments at temperatures approaching the glass transition. In
these experiments, they observe that an enhanced mobility as
the temperature is increased and Tg is approached affects the
crazing measurements. These same studies found that deep
in the glassy state �approximately 40 K below Tg� the results
were independent of temperature. Since the measurements
reported here were carried out approximately 80 K below Tg,
they are a robust probe of the entangled network in the melt
state.

The strained PS samples were transferred to a Si substrate
by placing them onto the Si surface and letting surface forces
pull the film into contact with the substrate �26�. A scratch
was made along the sample exposing the substrate, and the
heights hc and h were measured using AFM in tapping mode
�Veeco-Digital Instruments Multimode�, an example is
shown in Fig. 2. In the image one can see the substrate, the
craze, and the unstrained film simultaneously. As suggested
by Eq. �1�, we plot �hc /h�2 as a function of � in Fig. 3 �31�.

III. RESULTS AND DISCUSSION

Examining the data of Fig. 3�a�, we see that as the mass
fraction of short chains increases, a decrease in �ef f results.
Furthermore, the smaller molecular weight diluent shows
stronger attenuation of �ef f. These results can be interpreted

as follows: a crazed polymer system whose constituents are a
blend, with M��Me and other chains with Ms in the vicinity
of Me, acts like a system whose entanglement density is less
than the long chain � of the polymer.

To understand how adding short chains to the network
affects �ef f we first suggest how to find the probability that
an individual chain with molecular weight M is effectively
entangled, and then generalize to the case of a blend. The
model is an extension of the chain packing ideas presented
by Fetters et al. �2,3�: for a given chain to participate in the
entanglement network, it must share its pervaded volume
with a sufficient number of other chains. The average frac-
tion of interactions a specific chain has with other chains is
the same as the average amount of space in the pervaded
volume that is available to other chains:

a�M� = �1 −
Vc

Vp
� . �2�

Since Vc�M and Vp�R3�M3/2 on average, we find

a�M� = 1 −	


M
, �3�

where 
 is a constant that is proportional to Me.
A more rigorous derivation of Eq. �3� can be obtained by

averaging over all possible conformations of an ideal chain.
Since Vc=M /�n, where �n is the polymer’s molar mass den-
sity, all that remains to evaluate Eq. �2� is to obtain 
1 /Vp�
� 
1 /R3� as a function of M. For an ensemble of random
walks with a given number of steps �or molecular weight,
M�, Rudnick and Gaspari �30� have calculated an approxi-
mate probability distribution of their radii of gyration. They
obtain

P�R,M� � � R2

�M
�1/2

exp�−
3

2

R2

�M
� , �4�

where the proportionality constant is chosen such that 
R2�
=�M. Using this probability distribution, we can calculate

1 /R3� and thus find that 
Vc /Vp�� ��n

2�3M�−1/2. Having cal-
culated the second term in Eq. �2�, we obtain Eq. �3�, with

�1 /�n

2�3 a polymer specific constant that is proportional
to Me. The proportionality between 
 and Me is demon-
strated in Refs. �2,3� where Fetters and co-workers argue that
the onset of entanglement occurs when the molecular weight
of a chain in the melt is large enough such that Vc /Vp is
sufficiently small. These authors use the relations Vc=M /�n
and Vp� ��M�3/2 to obtain the result stated above: Me
�1 /�n

2�3�
.
As in the work by Si et al. �26�, we assume that the total

number of entanglements is given by the sum of the inter-
chain and self-entanglements in a system; a is the fraction of
interchain entanglements. Clearly a negative value of a is
unphysical and a=0 for M �
. The interpretation of the cut-
off, M =
, is physically intuitive: a chain must have some

FIG. 3. �a� A plot of �hc /h�2 as a function of � for the two
binary systems with M�=734 kg /mol and Ms=4.8 kg /mol ��� or
Ms=18.4 kg /mol ���. �b� A plot of �hc /h�2 as a function of � for
the ternary system with Ml=734 kg /mol, Ms

�1�=18.4 kg /mol, and
Ms

�2�=64.0 kg /mol. The solid lines in �a� and �b� are best fits of the
model obtained with 
=5.8 kg /mol. �c� The functions a�M� and
a�M�2 as given by Eq. �3� with 
=5.8 kg /mol for 0�M
�150 kg /mol.
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minimum length, 
, before it can entangle. Since there is a
distribution of entanglement lengths, with Me being the av-
erage, 
 must be less than and on the order of Me.

To determine the degree to which a network of polymer
chains with molecular weights M is entangled, we consider
that an entanglement is the result of an interaction between
two chains. In order for an entanglement to contribute to the
network integrity, both chains must be entangled. Above we
have calculated a�M� which is the probability of having an
interchain entanglement. As is implicit in the chain packing
models �2,3� and discussed in the work of Si et al. �26�, we
also assume that the effective entanglements, those that con-
tribute to the network integrity, are with other chains. Since
the probability of having an interchain entanglement is a�M�,
the probability that the interaction between two chains con-
tributes to the network is a2. Hence, the density of effective
entanglements in a network is given by �ef f =�a2, where � is
the entanglement density of a system composed of infinitely
long chains �a=1�.

The previous analysis is easily extended to polydisperse
systems. The bimodal blend is made up of long and short
chains with molecular weights M� and Ms. There are three
distinct entanglements between the chains: those between
like chains �M�-M� and Ms-Ms� as well as those between
unlike chains �M�-Ms�. The probability that any one en-
tanglement in a system involves a short or long chain is
given by the mass fraction of that type of chain in the sys-
tem, � or 1−�, respectively. The probability that a short
chain in a binary system is effectively entangled is then the
product as�, where as=a�Ms� is given by Eq. �3�. Further-
more, the probability that an entanglement between two short
chains is effective is as

2�2. If we take into account the other
two types of interactions, we can write down an expression
for the effective entanglement density of the system as the
sum of contributions from distinct types of entanglements:
�ef f =��as

2�2+2asa���1−��+a�
2�1−��2� �32�. This analysis

is not limited to binary systems, since one only needs to
account for all possible types of interactions between chains
in a polymer blend to model the expected entanglement be-
havior. Taking all interactions into account one obtains

�ef f = ��

i=1

k

ai�i�2

, �5�

where ai is given by Eq. �3�, �i is the volume fraction of the
Mi molecular weight component, and k is the number of
components in the blend.

The data in Fig. 3�a� were fit using Eqs. �1�, �3�, and �5�,
with the only free parameters being 
 and a prefactor �taking
the place of � in Eq. �5��. The best fit was obtained with 

=5.8
0.8 kg /mol. Given this value of 
, we show a plot of
a�M� and a�M�2 for PS in Fig. 3�c�. Using the parameters
obtained for the two binary systems, one can easily extend to
the ternary blends shown in Fig. 3�b�. The fit of the model
with only two free parameters for three distinct blend sys-
tems �two binary systems and a ternary system� is excellent.
Furthermore the value obtained for 
 is less than and on the
order of Me for PS as expected �Me�13.5 kg /mol �3��. In-
deed we find that 
�Me /2.

The boundary set by 
=5.8 kg /mol indicates that as=0
for chains with Ms�
. Indeed, for Ms=4.8 kg /mol, the
smallest value of Ms used in this study, as=0 is a good de-
scription of the data for the binary blend. Blends of PS
chains where the short chains are much less than Me have
been studied in similar experiments by Kramer and co-
workers �16�. The molecular weight of the diluting chains
used in their study was approximately 2 kg/mol which cor-
responds to as=0. Our simple model, with as set to 0 in Eq.
�5�, results in �ef f � �1−��2 which gives a satisfying descrip-
tion of the data obtained in �16�.

In the blending experiments presented we have been able
to probe not only the case where the small chain diluent can
be assumed to be entirely nonentangling �i.e., a=0�, but also
the intermediate case where 0�a�1. Because the binary
blends with the short-chain diluent Ms=18.4 kg /mol show a
change in the effective entanglement density that is not
equivalent to that of Ms=4.8 kg /mol, we must conclude that
a�0 �see Fig. 3�a��. The data with Ms=18.4 kg /mol indi-
cate that there is some range of molecular weights for which
0�a�1. Hence, there is a range of molecular weights for
which 0��ef f ��; this is in contrast to the often assumed
idea that polymers are unentangled below Me and entangled
above Me. Since the 18.4 kg/mol chains have M which is
similar to Me, it may be remarked that this result is not
surprising. However, the ternary data shown in Fig. 3�b� pro-
vides us with strong evidence that even for a blend with
molecular weights considerably above Me the network is di-
luted. In particular for the case of the ternary blend with �
=0, the high molecular weight is diluted with only 64.0 kg/
mol chains and �ef f is reduced from that of a pure high mo-
lecular weight system. To reiterate, even though Ms
=64 kg /mol chains are well above Me, we must conclude
that some of these chains are diluting the entanglements of
the very high molecular weight network. The degree to
which a specific molecular weight will contribute to the en-
tanglement network is given by a�M� in Fig. 3�c�.

IV. CONCLUSIONS

Polystyrene blends have been prepared and their thin
films have been crazed and measured using AFM. We ob-
serve that systems with lower overall molecular weight show
crazing behavior consistent with a system that has a lower
entanglement density. As in the chain packing models �2,3�
and the work of Si et al. �26�, a model that assumes the
effective entanglements are those with other chains in the
system is proposed. We assume that the fraction of space in a
chain’s pervaded volume occupied by other chains in the
system is equal to the probability of interchain entangle-
ments. The density of effective entanglements that are pre-
dicted by this model are quantitatively consistent with our
measurements for two binary blend systems and a ternary
blend with only two fitting parameters. Furthermore, the
model is easily extended to the broad molecular weight dis-
tributions found in many industrial polymers. The parameter

 is physically significant and represents the length a chain
must have before it is even possible to entangle. This cutoff
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1982chain length is found to be approximately one half of
the entanglement molecular weight. Our model predicts a
continuous change in the entanglement density as a function
of molecular weight. The polymer melt is not unentangled
below Me and entangled above Me, as is often assumed.
Rather, we find that low molecular weight chains �M �
�
have zero probability to be found in the entangled state, but
for

M �
 the probability rises continuously from zero and as-
ymptotes to unity for infinitely long chains.
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