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Phase-field study of solidification in three-dimensional channels
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Three-dimensional solidification of a pure material with isotropic properties of the solid phase is studied in
cylindrical capillaries of various cross sections (circular, hexagonal, and square). As the undercooling is
increased, we find, depending on the width of the capillary, a number of different growth modes and dynamical
behaviors, including stationary symmetric single fingers, stationary asymmetric fingers, and oscillating double
and quadruple fingers. Chaotic states are also observed, some of them in unexpected parameter regions. Our
simulations suggest that the bifurcation from symmetric to asymmetric fingers is supercritical. We discuss the
nature of the oscillatory states, one of which is chirality breaking, and the origin of the unexpected chaotic
finger. Bifurcation diagrams are given comparing three different ratios of capillary length to channel width in
the hexagonal channel as well as the three different geometries.
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I. INTRODUCTION

Stationary solidification patterns of a pure undercooled
melt in a two-dimensional (2D) channel are known to result
from the competition between confinement effects and the
interfacial properties of the material, in particular their ori-
entational dependence. Theoretical results [1,2] obtained for
low Péclet numbers show that confinement dominates in the
weak anisotropy regime. Symmetric fingerlike patterns are
then obtained at low undercooling, which become asymmet-
ric at higher undercooling. At high Péclet numbers, interface
effects dominate, and the patterns are qualitatively similar to
free dendrites or, if anisotropy is small, structures that have
been termed seaweed [3]. These theoretical findings were
complemented by various numerical studies. The Green’s
function method [4—6] and finite-difference simulations of
the full diffusion problem [7,8] were used to study the one-
sided model (assuming the absence of diffusion in the solid).
On the other hand, the symmetric two-sided model (assum-
ing equal diffusion coefficients in the two phases) was inves-
tigated by analytical methods [1,9] and phase-field calcula-
tions [10,11]. Results obtained from 2D phase-field
simulations [12] are well understood theoretically [13]. More
recently, phase-field simulations have been extended to the
one-sided case as well [14].

In three dimensions, no analytical theory is available, the
only exception being the free dendrite [15,16] that corre-
sponds to the limit of large channel width in the presence of
surface tension anisotropy. Efforts to produce quantitative
numerical results have remained very limited so far. This is
not so surprising because the starting point of the 2D theory
is the Saffman-Taylor finger [17], which has no direct physi-
cal equivalent in three dimensions since flows in homog-
enous environments are no longer governed by Darcy’s law.
Instead, a three-dimensional (3D) physical analog of the
Saffman-Taylor finger exists for flow through porous media
only [18]. In two dimensions, Saffman-Taylor fingers are
known to be always symmetric [19] (in the standard setup,
i.e., in the absence of asymmetric forcing [20]), and although
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there is no analogous proof for three-dimensional viscous
fingering, only axisymmetric growth has been considered in
this system so far [18]. Crystal growth is different in two
dimensions already due to nonzero Péclet number effects;
hence, asymmetric growth modes exist, even for isotropic
surface tension; in three dimensions, asymmetric growth has
been found as well [21].

Quantitative 3D simulations are still extremely time con-
suming. In a pioneering work, Abel er al. [21] performed
several 3D simulations of a qualitative phase-field model
(based on sharp-interface asymptotics). This study was fo-
cused on isotropic materials and neither the undercooling nor
the reduced capillary length (ratio of capillary length to the
system width) was varied. A central result was the observa-
tion of multiplets (quadruplets and triplets) of asymmetric
patterns, depending on the size of the system and the nature
of the imposed boundary conditions (mirror vs periodic).
Both parameters were discussed to have a direct influence on
pattern selection at larger scales. Quantitative phase-field
simulations of three-dimensional directional solidification
structures based on a generalization of Karma and Rappel’s
thin-interface asymptotics [22] to the case of the one-sided
model have been recently performed by Gurevich et al. [23].

In the present paper, we use the original quantitative
phase-field model for symmetric diffusion [22] (which is
more accurate than its one-sided counterpart [24]) to explore
similarities and differences of crystal growth in a 3D channel
in comparison with the two-dimensional setup. In particular,
we investigate the roles of the imposed undercooling, of the
reduced capillary length, and the influence of the channel
geometry on solidification patterns of isotropic materials. In-
deed, an important step when passing from two to three di-
mensions is to decide how to choose the channel geometry.
In two dimensions, the channel is a rectangle, the long edges
of which form two parallel lines, with the only characteristic
feature being their distance. A straightforward extension to
three dimensions would be an elongated cylinder of constant
cross section, but there are other possibilities. In the present
study, we consider circular, square, and hexagonal channels
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to explore the specificity of 3D geometric effects of the prob-
lem.

The purpose of this paper is twofold. On the one hand,
symmetric and asymmetric fingers are expected to exist in
three dimensions, too. Their numerical computation will pro-
vide quantitative input to a possible extension of selection
theory [1,2,9] for crystal growth in a channel or more gen-
erally, for the growth of structures beyond the dendrite, to
three dimensions. On the other hand, we would like to ex-
plore what else there is in three dimensions beyond these
simple generalizations of 2D patterns. A much richer variety
of dynamical states is anticipated.

The paper is organized as follows. In Sec. II, we give the
equations of the underlying moving-boundary continuum
model and collect a few simple analytical conclusions on
stationary growth following from the basic conservation law.
Section III contains the phase-field reformulation of the
equations of motion as well as their nondimensionalization
and briefly discusses a nonlinear transformation allowing us
to simulate larger systems. In Sec. IV, we present simulation
results ranging from pattern variety to selected dynamical
features, and we summarize our results and some implica-
tions in Sec. V. The Appendix describes details of the nu-
merical discretization.

II. BASIC CONSIDERATIONS

It is easy to arrive at a few analytical conclusions high-
lighting some of the differences between the two- and three-
dimensional cases, thus shedding light on a possible influ-
ence of the channel shape on growth modes. We consider a
model problem that involves a few simplifications, believed
not to affect the physics of the system in any essential way.
These are the assumptions of equal mass densities and spe-
cific heat capacities of the liquid and solid phases, as well as
equality of the thermal conductivities in both phases. The
first assumption allows us to neglect fluid flow and consider
a purely diffusion-controlled situation. Together with the sec-
ond, it implies that in a two-dimensional steady state the
fractional width of the growing finger must be equal to the
nondimensional undercooling A. The third assumption
means that we are dealing with the so-called symmetric
model of diffusion-limited growth. It can be most easily re-
laxed and both the one-sided limit [25] as well as all inter-
mediate cases have been considered [26], without qualitative
change in the phenomena.

Let us briefly recapitulate the model equations describing
the physical problem; the approximating phase-field descrip-
tion will be given in the next section. The bulk field equa-
tion, valid in both phases, is the diffusion equation

du=DV?u, (1)

where u=(T-Ty)/(Ly/C,) is the nondimensional tempera-
ture, Ty, is the melting temperature, and Ly and C, are the
latent heat and heat capacity (at fixed pressure), each referred
to a unit volume. D is the thermal diffusion coefficient. Far
ahead of the growing structure, a temperature 7..<T), is
imposed, leading to u=-A with A=(Ty~-T.)/(Ly/C,),
which is the nondimensional undercooling.
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The motion of the liquid-solid phase boundary is gov-
erned by two equations, one of which is the Stefan condition

Red (2)

with n being the normal vector on the interface, pointing
from the solid into the liquid. v, is the normal velocity of the
interface and the subscripts refer to its liquid and solid sides
on which the gradient is to be taken. This equation describes
energy conservation at the interface and can be derived from
Eq. (1) via integration over a Gaussian pillbox about the
two-phase boundary. The second interface equation is the
(generalized) Gibbs-Thomson condition, describing capillary
(and possibly kinetic) effects on the interface temperature,

up=- A,u[g] - an’ (3)

where {(x,y,1) is the interface position and the subscript i
simply means interface. We do not have to distinguish be-
tween its liquid and solid sides here since u is continuous
across the phase boundary. The first term on the right-hand
side is given by

s3]
A,L[é]——l’i?[&(wae% +R2 7+aa§ Y

v,=—Dn-Vu|;+Dn-Vu

Herein, R and R, are the local principal radii of curvature of
the interface and 6, and 6, are the angles between the normal
on the interface and two directions determined by the prin-
cipal curvatures. vy is the surface energy. In general, applica-
tion of the 3D Gibbs-Thomson condition requires knowledge
of the two principal curvatures separately. However, since
this study is devoted to the case of isotropic surface tension,
the derivatives with respect to the two orientation angles
vanish and we obtain the much simpler result

u;=—dok = Bov,,- (5)

Here, d, and B, are the capillary length and kinetic coeffi-
cient, respectively. The capillary length is given by d,
:'yC,,TM/L%I, and k=1/R;+1/R, is the mean curvature,
taken as positive for a locally convex solid. Often local equi-
librium can be assumed, in which case By=0. This is the
situation we are interested in here.

Now we will consider some consequences of energy con-
servation as described by Eq. (1) for steady-state growth. We
place ourselves in a frame of reference where the tip of the
crystal growing at constant velocity v is at rest. If we choose
as the zero point of the internal energy the state of the solid
at the melting temperature 7, a volume element AV of lig-
uid far ahead of the tip will have energy [Ly+C,(T.
—Ty)]AV. Hence, the energy flux through the cross section A
of the channel toward the tip is given by —vA[Ly+C,(T.
—-T))]=—vALy(1-A). Far behind the tip, there will be a
two-phase state at thermal equilibrium, with a volume frac-
tion x of the solid and a volume fraction 1-x of the liquid.
From the Gibbs-Thomson condition (5) we may immediately
conclude that in this state the mean curvature of the interface
has to be constant as the temperature is constant. If we as-
sume translational invariance of the crystal shaft along the
growth direction to hold locally, then one of the principal
radii of curvature must be infinite and the cross section of the
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crystal must be circular (remember that we assume isotropic
surface tension). Hence, the equilibrium condition is e,
=-dy/R, where R is the radius of the cylindrical solid. In
dimensional form it reads Toq=T),(1—7y/LyR), and the total
energy flux through the cross section A is given by
= VAQXC)(Teq = Ty) + (1 =)Ly + C\(Teq = Ti) I}
=—vALy[-xdy/R+ (1 —x)(1 —=dy/R)].
Equating the two energy fluxes and solving for x, we find

do
R

x=A (6)
to be compared with x=A in the two-dimensional case. In
fact, the two-dimensional result is contained in Eq. (6). If we
change our channel geometry into two parallel plates, then
plate-shaped crystals may grow, meaning that we have solu-
tions that are independent of one of the (appropriately cho-
sen) spatial coordinates, i.e., solutions to the two-
dimensional problem. R becomes infinite and we recover the
well-known 2D relation.

Equation (6) implies that in the 3D case, we may have a
finger solution for unit undercooling in a cylindrical channel,
besides the traditional family of planar front solutions.
Whether this solution has any dynamical implications is a
question about its stability which cannot be answered at this
point.

Another consequence of Eq. (6) is that the size of the
cross section of the growing crystal is not as simply related
to the channel width as in the 2D case. We obviously have

wR2=<A—@)A, (7)
R

which is a cubic equation for R. For dy/R<<1, it is easy to
solve this equation approximately.

It is interesting to meditate on a shape effect of 3D chan-
nels that has no analog in two dimensions. Essentially, we
have argued that the (presumably metastable) equilibrium
shape of the crystal shaft in the confined geometry is a cir-
cular cylinder [27]. However, such a steady-state solution is
impossible for purely geometrical reasons in some geom-
etries, as soon as A is large enough that the cross-sectional
area required by Eq. (6) would produce a circle, the radius of
which exceeds that of the incircle of the channel cross sec-
tion. Clearly, for a cylindrical channel (with radius R.y),
there is no restriction—a circle satisfying Eq. (7) will fit into
the cylinder for all values of A=1 because Aszgyl. For a
square channel with edge ag and dy/ag<<1, we find that if
A=m/4=0.785, a cylindrical crystal shaft will nor fit into
the channel anymore [the precise relationship is A= 7/4
+d,/R, from which the exact value of A(d,,as) would have
to be determined iteratively, as R depends on A]. For a regu-
lar hexagonal channel, the limiting value of undercooling is
A= 7/2y3=0.907, a value where steady-state structures are
difficult to find—at least symmetric ones. From this point of
view, a very interesting case would be a channel with a cross
section shaped as an equilateral triangle, because there the
critical value is A=m/3\/3=0.60, a value for which we ob-
serve steady-state symmetric fingers in sufficiently narrow
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channels. So far, we have not yet developed a discretization
for this geometry.

In realistic physical systems, one will have to consider
contact angles in discussing equilibrium as soon as a wall is
touched by the crystal. Then the cross section of the equilib-
rium shape should be composed of several circular arcs hav-
ing the same radius and touching the walls at an angle deter-
mined by Young’s equation. Since the radius can be varied to
accommodate the angle, this should be satisfiable for arbi-
trary undercooling. In our simulations, we impose no-flux
boundary conditions on the phase field at the channel walls,
which means that interfaces of constant phase are locally
orthogonal to the wall. While our phase-field model is not
designed to ascertain a fixed trijunction angle at a mesos-
copic scale, we expect these boundary conditions to approxi-
mate a contact angle of 90°.

III. SIMILARITY PHASE-FIELD EQUATIONS
A. Basic model

The problem considered here is solidification of a pure
melt in three dimensions. To model this dynamical process,
we use the isothermal nonvariational formulation of the thin-
interface phase-field model (TIPM) introduced by Karma
and Rappel [22] which has been shown to converge to the
sharp-interface equations (1), (2), and (5) [or Eq. (3)]. In this
model, the temperature and phase fields are both functions of
time and space. The phase field ¢ is a nondimensional vari-
able which takes a value of +1 in the solid phase and —1 in
the liquid phase far from the solid-liquid interface and which
varies continuously across the interface. The TIPM gives the
time evolution of both the temperature and phase fields
through two coupled partial differential equations, which
take particularly simple forms for an isotropic material:

du=DVu+ 3o, ()
700, = F(@,\u) + W(Z)Vch, 9)

with
F(eu) =[@—\u(l - ¢3)](1 - ¢°). (10)

It is worth noting that the thermal diffusion coefficient D in
the first equation still is a dimensional constant. On the other
hand, N is the nondimensional coefficient coupling the tem-
perature and phase fields. Two more dimensional constants
appear in these equations: 7, represents a relaxation time
while W, is the interface width. The asymptotic analysis of
the above phase-field equations shows that the dimensional
kinetic coefficient and capillary length are related to the
model variables and diffusion coefficient through

ay  aaWy

ﬁo_)\W() D s (11)

do=—Wo, (12)
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where a,=512/8 and a,=47/75 [22]. In isotropic materials,
the solid-liquid interface is expected to be rough, so that the
kinetic effects described by S, should be negligible. In the
present study, we set the kinetic coefficient equal to zero by
imposing

_1Dm

= . 13
e (13)

The physical constants d, and D are related to the model
parameters W, and 7, by introducing the similarity parameter
&=Wy/d,, so that

Wo = &d,. (14)
From the previous equations, one then obtains &=MN/a,
=(DTO)/W%/(a1a2), so that

_dy
To= D“ﬂzf- (15)

Essentially, Eq. (13) describes the only nondimensional com-
bination of W, and 7, occurring; hence, the evolution equa-
tions depend on the single similarity parameter & Accord-
ingly, after the time scale 7 is set, all the combinations of d,
and D corresponding to the same value of ¢ are modeled by
a unique pair of normalized equations. To see this directly,
we define the normalized space and time variables

. I=—, (16)

5=DW02=ala2§. (17)

Substituting the regular variables by the normalized ones, we
finally arrive at the two similarity equations:

D =a,a,EV%u + %?9,(,0, (18)

3¢ = F(@,a,éu) + V2. (19)

B. Nonlinear transformation

The efficiency of simple nonlinear transformations has
been recently demonstrated in the general context of diffuse
interface systems [28]. Motivated by the idea to reduce nu-
merical artifacts such as pinning effects, they permit the use
of coarser numerical grids to perform reasonably accurate
simulations with significantly reduced numerical effort. In
the present model, the one-dimensional steady-state solution
of the phase-field equation simply reads

®0 = — tanh(F/12) (20)

in the frame of reference of the interface. Although very
appealing by its simplicity, such a profile is not easy to re-
produce numerically because meaningful variations of the
phase field are restricted to a very narrow spatial interval.
According to this observation, the following change of vari-
able is proposed in [28]:

PHYSICAL REVIEW E 82, 021606 (2010)

=2 tanh™!(g). (21)

This preconditioning of the phase variable transforms the
sharp variation of ¢ across the interface into a quasilinear
variation for the new phase variable ¢, which considerably
increases the numerical accuracy (of the interface location,
for instance). In the vicinity of the phase boundary, /(x,?)
essentially is a signed distance function indicating both on
which side of the interface and how far away from it its
argument x is located. A similar preconditioning could be
performed also for the temperature field u (see [28]) but
because the temperature field varies more slowly across the
interface, linearizing u would be less beneficial.

With the new phase variable, the evolution equations read

~ — 1 ~
du = a,a,EV*u + —=(1 - ©*)d,, (22)
242
d= \"EG(algu,w) + 621,0— V’E(pﬁ(ﬁz, (23)
where
Glaéu, @) = ¢—a,u(l - ¢*). (24)

This change of variable is made for square and hexagonal
domains where we use Cartesian coordinates but not for cir-
cular domains where polar coordinates are employed. In the
following, we constantly work with the nondimensional ver-
sion of the model, so that we may systematically omit the
tildes above the nondimensional variables and differential
operators.

IV. SIMULATION
A. General aspects

All simulations are performed with the same similarity
parameter £=2.5. A reasonable convergence of the phase-
field results is obtained for this value. The parameters varied
in this exploratory study of isotropic systems are the under-
cooling A and the reduced capillary length d,,/ L. The channel
width L is defined as the diameter of the incircle fit into the
channel cross section, which is a quantity with a simple geo-
metric interpretation. Therefore, L=2R, ag, and \3ay for a
circle with radius R, a square with edge length ag, and a
regular hexagon with edge length ay, respectively. Our intro-
ductory considerations would suggest to choose the length
scale L equal to the square root of the channel sectional area
A, because then crystals growing at the same undercooling in
different geometries with the same L would have equili-
brated shafts of the same diameter. On the other hand, such a
definition would differ by 13% at maximum from the more
intuitive one assumed here.

No-flux boundary conditions are used on the lateral
boundaries of the channel while at its top the fields are al-
ways kept at ¢=—1 and u=—A. When preconditioning is
used, we impose d,iy=—1/W, instead of the condition for ¢.

A downward shift of the fields is regularly performed to
ensure that the top of the interface remains at roughly con-
stant distance dy from the far channel boundary in the liquid.
That is, every time the distance of the topmost point of the
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structure from the top of the channel becomes smaller than
dy, we move the whole interior of the system by a fixed small
number of mesh spacings toward smaller z values, discarding
parts of the tail of the structure in the process and filling up
the emptied region near the top of the channel with liquid at
temperature —A. The distance d; turns out to be an important
characteristic quantity of the finite numerical system, as it
determines the minimal velocity of a planar front.

It is well known that in an infinite system Egs. (1), (2),
and (5) admit a planar front similarity solution for A <1, the
velocity of which continuously diminishes, being inversely
proportional to the square root of time, whereas for unit un-
dercooling, there is a continuous family of constant-velocity
planar front solutions. In a channel of finite length, none of
the latter solutions survives, but for undercoolings smaller
than 1, a constant-velocity solution arises and its velocity is
well defined.

To see this, consider the steady-state version of Eq. (1) in
a frame of reference moving at velocity v (parallel to the z
axis) and assume u to be independent of the coordinates
perpendicular to the velocity vector:

—vu,=Du,,. (25)

This is a linear first-order equation for u,, the general solu-
tion of which is u.=a exp(-vz/D), which can be integrated
once more to yield the general solution for u. Using the two
boundary conditions (2) and (5) (with B,=0) together with
the requirement that # remains bounded for large negative z,
and choosing zero as the z coordinate of the interface, one
obtains the well-known

0 for z<0

) = 26
u(2) exp(— %z)—l for z=0, (26)

with undetermined velocity v. In our finite system, we have
the additional boundary condition u(dy)=-A. It is immedi-
ately clear that, for A=1, expression (26) is not a solution
anymore, because the exponential term cannot become zero;
it can become an arbitrarily small positive number at best.
The family of solutions (26) is destroyed by the finiteness of
the system. On the other hand, for A €[0,1), the boundary
condition is satisfiable and selects the velocity of the planar
front:

D
v="—In .
dp 1-A

27)

In a large system, a planar front initialized at homogeneous
undercooling will first, after a transient, approach the simi-
larity solution as an intermediate asymptotic state, i.e., its
velocity will decrease, but it will not become zero; instead it
will approach the limit (27).

Clearly, if finite-size effects can stabilize a planar front at
a finite velocity, they might as well stabilize finger solutions
at a too high velocity. Therefore, it is essential in the simu-
lations to ascertain a sufficient height of the channel, for
example, by increasing this height, once a steady-state finger
has been obtained, to make sure that this does not change its
velocity anymore. In particular, this is mandatory when the
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FIG. 1. Hexagonal channel and reflected images.

final speed of the finger is not far above the lower-velocity
limit (27). We use this procedure in determining the transi-
tion from a single symmetric finger toward the planar front,
when the undercooling is decreased.

It may be useful to point out a peculiarity regarding the
interpretation of simulation results. Any solution obtained in
a quadratic or even merely rectangular channel with reflect-
ing boundary conditions can be interpreted as a possible dy-
namical state of a laterally infinite periodic array, obtained by
repeatedly reflecting the solution at the rectangular bound-
aries until the plane is filled. The periodicity units of this
infinite system will normally be twice the side lengths of the
original rectangle (for an exception, see Fig. 5). Of course,
this periodic system may be unstable with respect to nonpe-
riodic perturbations or perturbations of a wavelength that
exceeds the size of the original rectangle. But a steady-state
finger will correspond to an existing solution consisting of an
infinite array of fingers—existence is guaranteed, stability is
not. Obviously, no such statement can be made for the cylin-
drical geometry as the basic equations of motion are not
invariant with respect to inversion at a circle.

It may be surprising, however, that even solutions in the
hexagonal channel cannot be unconditionally extended to the
whole plane in general. This is depicted in Fig. 1.

Hexagon 1, with vertices ABCDEF, symbolizes a cross
section through the hexagonal channel, the hatched area that
of a growing (asymmetric) finger (near its tip). Hexagons 2
and 3 are images, obtained by reflection at DE and CD, re-
spectively, and a and b are the corresponding images of the
finger. But a is not obtained by reflecting b along DE’, which
rather produces c. Therefore, the pattern cannot be extended
to tile the plane. An interpretation of a finger near a wall as
part of a pattern with threefold symmetry in a bigger channel
(with nonconvex cross section) is only possible if the finger
is symmetric with respect to a main diagonal (here, AD) of
the original hexagon. For an extension of the pattern to a
periodic array, we must have symmetry with respect to all
three principal diagonals of the hexagon.

Typical simulations start from an initial condition in
which a small solid body with a simple shape is prescribed
via initialization of the phase field. We use shapes such as a
spherical cap, often a full hemisphere, a cap on top of a
cylinder, or—in the case of the hexagonal system—an ar-
rangement of six overlapping caps in order to promote tip
splitting. The temperature field is set equal to zero inside the
solid and equal to —A outside or it is even set equal to —A
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TABLE I. Discretization parameters used in the simulations. M
is fixed for given dy/L but N, changes according to the chosen
channel height H.

Cross section Mesh size Grid points

Square hy=h,=h,=0.5 Ny XNy XN,
161 X161 X401

Circular h,=h.=0.5 Ny XNg XN,
0.5<h,<1 82X256 X483

Hexagonal [BM(M+1)+1]XN,

M N,
dy=0.005L: a=0.7963, h=0.6897 58 697
dy=0.007L: a=0.7855, h=0.6803 42 505
dy=0.010L: a=0.7698, h=0.6667 30 721

everywhere. This leads to fast initial growth and a subse-
quent slowdown of the dynamics.

Arising steady-state structures are normally independent
of the initial condition. At low undercoolings, we often use a
converged steady finger obtained at higher undercooling as
initial condition for the simulation, in order to have faster
convergence to the final state.

B. Pattern variety

Details of the discretization procedures for the three ge-
ometries considered are given in the Appendix. A few typical
sets of numerical grid parameters are gathered in Table I. In
the rectangular grid, we denote the mesh spacings by h,, &,
and &, and in the cylinder, where polar coordinates are used
predominantly, by hp, hg, and h,, with obvious meaning. hg
is variable and constrained between two values; for its pre-
cise determination see the Appendix. The discretization of
the hexagonal geometry does not have an underlying Carte-
sian structure, as the hexagonal planes are discretized using a
triangular mesh, so we have just two grid parameters: a and
h (=h,).

In the following, structures and dynamics as obtained in
the hexagonal channel will be discussed in some detail,
whereas we will just comment on their counterparts in the
other geometries, where appropriate. We consider three ratios
of the capillary length and channel width: dy/L=0.01, dy/L
=0.007, and d,/L=0.005, corresponding to situations rang-
ing from strong to intermediate confinement. For each of
these, a number of undercoolings A are realized, starting at
low values for which only the planar front exists and going
up to A=0.8 or higher. We measure the growth velocity of
each pattern and the position of its tip as a function of time
as well as other geometric characteristics of the patterns.

Besides the capillary length setting the length unit, the
problem involves two natural length scales: the diffusion
length

t=—, (28)
where V is the tip velocity, and the diameter L of the channel.

Both can be used to define a diffusion time. The first of these
is given by
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) (29)

and the second simply by

L2
Ty = B . (30)

Here, 7, indicates the time scale on which diffusive transport
travels the typical length scale established by the dynamics
of the system itself, whereas 7, describes the time needed for
significant diffusive transport across the whole channel. The
latter time is a constant for a given system, whereas the
former varies with the undercooling. Therefore, for short ref-
erence, we will call 7, the dynamic and 7, the static diffusion
time. The values of the static diffusion times corresponding
to the three system sizes considered are 7,=1155.4 for L
=100d,, 7,=2358.1 for L=142.8d,, and 7,=4621.8 for L
=200d,.

To characterize the solidification dynamics at different un-
dercoolings we use the Péclet number,

P=—=—V, 31
=D (31)

as a nondimensional velocity measure that is independent of
whether we use the nondimensional or dimensional versions
of L, D, and V. We have the simple relationship 7,=P?7,.
Whenever the system does not approach a steady state, we
use the time average of the Péclet number (after transients of
the dynamics have decayed) to label the state.

1. Steady-state fingers

In all geometries and for all channel sizes, we find as
basic structures, besides the planar front, cylindrically sym-
metric fingers growing at constant velocity and constant-
velocity asymmetric fingers. Symmetric fingers exist at suf-
ficiently low undercoolings, above a threshold that depends
on the reduced capillary length d,/L, and asymmetric fingers
appear at higher undercoolings. Details of the bifurcation
scenario will be discussed below. Figure 2 visualizes ex-
amples of these two kinds. Note that asymmetric refers to the
loss of cylindrical symmetry and that asymmetric fingers still
possess a symmetry plane (as will be demonstrated below).

At undercoolings slightly above the symmetry-breaking
bifurcation, the resulting asymmetric fingers do not touch the
system walls, but as the undercooling becomes larger, their
tips move farther off center, until their tail eventually makes
contact with a wall. The horizontal cross section of non-
touching asymmetric fingers is expected to become circular
toward the bottom, too, provided the channel is long enough
to permit equilibration. This allows us to check on the qual-
ity of our numerics by determining the cross sections for
both symmetric and asymmetric fingers and fitting them with
circles. Fit parameters are the radius and center coordinates
of the circle, which yields an additional means to distinguish
between symmetric and asymmetric fingers (originally done
by checking whether the tip coordinate is on the center line
of the channel or not).
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FIG. 2. dy/L=0.005. Left: symmetric finger in hexagonal chan-
nel. A=0.55. Right: asymmetric finger in hexagonal channel. Its tip
distance from the wall is 1.8¢. A=0.65.

Table II compares the theoretical volume fraction x, ac-
cording to Egs. (6) and (7) with the measured one Xy
obtained by cutting the finger horizontally a few (normally
10) lattice units above the system bottom and calculating the
area inside. The aspect ratio, defined as H/L, where H is the
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system height and L is its diameter, was 12 for the lowest
undercooling at d,/ L=0.005 and 6 otherwise for this channel
size; it varied between 10 and 4 for the system with dy/L
=0.007, with lower values corresponding to higher under-
coolings, and it was equal to 12 in all the instances of the
table given for dy/L=0.01. The system height was larger
than 10€ in all cases. Moreover, we calculate the equilibrium
radius R, of the finger shaft expected from Eq. (7) and com-
pare it with the fitted radius Ry, giving the relative error
AR=|Rg;—R,y| in percent of the equilibrium radius.

In the largest system (L=200d,), where the radius of the
crystal is biggest, the relative error is below a tenth of a
percent in all cases. When the size becomes smaller, the ratio
of interface thickness and radius increases, and so does the
error with respect to the sharp-interface limit, but it stays
below half a percent in all simulations.

For the narrowest system, the first asymmetric finger ap-
pearing at A=0.7 touched the wall already (see Fig. 3). In
order to have at least one instance of an asymmetric finger in
the table for dy/L=0.01, we measured the radius above the
highest point of contact with the wall in this case, where the
cross section was still circular.

While visualizations of the three-dimensional structure
give an impression of its overall shape, quantitative informa-
tion about positional aspects and symmetries are more easily
gathered from contour plots. Figure 4 shows a sequence of
horizontal cuts through the finger from Fig. 3 and a second
finger grown for the same parameters but starting from a
different initial condition.

TABLE II. Comparison of radii and cross-sectional areas of simulated fingers with analytical prediction.
Undercoolings labeled by an asterisk lead to asymmetric fingers (see also Fig. 20).

A Xeq Xmeas Req Ryt AR/Req (%)
dy/ L=0.005
0.50 0.48634 0.48768 29.29221 29.31990 0.094533
0.55 0.53700 0.53628 30.78004 30.75758 0.072967
0.57 0.55724 0.55658 31.35468 31.33079 0.076197
0.60* 0.58758 0.58697 32.19677 32.17605 0.064345
0.62* 0.60778 0.60737 32.74576 32.74205 0.011325
0.65* 0.63808 0.63758 33.55190 33.56715 0.045446
doy/L=0.007
0.54 0.52154 0.51990 21.66684 21.63170 0.162202
0.55 0.53172 0.52982 21.87723 21.84318 0.155606
0.60 0.58253 0.58131 22.89877 22.86496 0.147673
0.62 0.60283 0.60300 23.29427 23.26439 0.128290
0.65% 0.63325 0.63219 23.87473 23.84368 0.130048
0.67* 0.65351 0.65244 24.25368 24.23939 0.058927
dy/L=0.010
0.58 0.55442 0.55208 15.63760 15.58945 0.307899
0.60 0.57488 0.56971 15.92352 15.87612 0.297661
0.65 0.62593 0.62204 16.61544 16.57015 0.272568
0.68 0.65649 0.65323 17.01631 16.97350 0.251595
0.69 0.66667 0.66317 17.14774 17.10614 0.242630
0.70* 0.67685 0.67399 17.27812 17.24837 0.172188
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FIG. 3.
A=0.70.

Steady-state asymmetric finger at dy/L=0.01,

These are two different kinds of asymmetric fingers, dis-
tinguished by their symmetry properties relative to those of
the channel. Both have a single vertical symmetry plane. For
the first kind this plane bisects the base hexagon along a
main diameter, and for the second it divides the hexagon
bisecting two opposite edges. That is, if we now switch to a
three-dimensional point of view, the first finger nestles up
against an edge and the second against a side face of the
channel. The second kind of finger is extremely rare; almost
all of the asymmetric fingers we observe are of the first kind.
Nevertheless, the second kind seems to be stable for the pa-
rameter set indicated (and stays so on increasing the aspect
ratio from 12 to 16).

By reflecting the channel with respect to the two faces
adjacent to the edge, to which the first finger clings, one
would obtain a triple finger pattern in a bigger channel with
a nonconvex cross section, but a pattern that cannot, as dis-
cussed above, be periodically continued across the entire
base plane. The distance between the finger tip and its re-
flected image is 4.4 diffusion lengths. Thle and Miiller-
Krumbhaar [7] discussed an unbinding transition of a dou-
blon into two asymmetric dendrites and, in the particular
example they gave, fingers are considered unbound at a dis-
tance of 3.9 diffusion lengths and bound at roughly 1.5 dif-
fusion lengths. Their definition of a diffusion length differs
from ours by a factor of 2. Hence, in their terms, the tips of
our three-finger pattern are only 2.2 diffusion lengths apart
and the pattern might just qualify as a triplon. Moreover, the
triplet finger presented in [21] as a prototype of a triplon
seems to have a much larger tip distance; a rough estimate
from the figure and the given numerical data yields about 6
diffusion lengths (12 in our terminology). Similarly, the sec-
ond finger in Fig. 4 can be extended, by reflecting it with
respect to a side face of the channel, to a double-finger pat-
tern.

A look at the corresponding structures in the square chan-
nel may be useful. Figure 5 gives an example.
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FIG. 4. dy/L=0.01, A=0.70. Contour lines for two steady-state
finger solutions. Left: finger from Fig. 3, drawing near a channel
edge; its tip distance from the wall is 2.2€. Right: finger approach-
ing a channel face; its tip distance from the wall is 2.2¢.

Here, we have a four-finger structure that can be periodi-
cally extended into all of space along two orthogonal direc-
tions. Because the basic pattern is symmetric with respect to
two bisectors of the square edges, the periodicity length is
not twice the box width but just a single box width. At each
corner of the square we have (after inclusion of the reflected
images) four fingers growing side by side. These patterns are
stable with respect to perturbations that have the basic peri-
odicity but may be unstable to perturbations with a larger
period or to aperiodic ones.

To complete this discussion of morphological aspects of
steady-state fingers, we may mention that also the conclu-
sions of Sec. II about the behavior of the cross section of a
finger touching the system walls are borne out by simula-
tions, assuming a contact angle of 90°. When a finger occu-
pies a sufficient volume fraction of the channel to touch two
opposite walls, then the radius of curvature of a circular
piece of free boundary between these becomes infinite, i.e.,
the interface tends to become planar as equilibrium is ap-
proached. Such a situation is depicted in Fig. 6, where a
cross section of the growing finger has an almost straight free
boundary. Clearly, the system is not yet long enough for
equilibrium to be fully established. At equilibrium, the tem-
perature near the channel bottom will be equal to the bulk
melting temperature without Gibbs-Thomson correction.

At even higher undercooling, an asymmetric finger may
touch six walls of the channel (see Fig. 7), requiring the
small piece of free boundary remaining to become circular
again; more precisely, it will become cylindrical. According
to our sign convention for curvature, the radius of curvature
must be counted negative in this case, which means that the
equilibrium temperature is above the bulk melting tempera-
ture; the solid is overheated. We have not included a fit of the
free boundary piece to a circle in the figure, because the
drawn circle would cover the boundary, being indistinguish-
able from it within the line thickness [29].

In a real system, we would expect nucleation of liquid to
take place in the solid once overheating becomes too large.
Of course, the phase-field model cannot automatically pro-
duce appropriate nucleation events, so the simulation ac-
quires some less realistic features at these high undercool-
ings.

2. Oscillatory patterns

In the narrowest channel investigated (L=100d,), we
found asymmetric steady-state fingers up to the largest un-
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FIG. 5. Stationary solid-liquid interface in a 80.0 X 80.0 square
channel, at undercooling A=0.75, dy/L=0.005.

dercoolings considered (A=0.91). To see other patterns with
comparatively simple dynamics, we had to study wider chan-
nels.

In the channels with L= 142.8d, and L=200d,,, the asym-
metric fingers were followed by oscillatory structures beyond
a certain undercooling. These patterns are generic; they ap-
pear in the square and cylindrical channels as well, with
minor modifications.

The most general aspect of these patterns is that of a
double finger. Figure 8 gives two instances and exemplifies
the increased level of irregularity of structures at higher un-
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FIG. 6. dy/L=0.01, A=0.77. Asymmetric stationary finger. The
right picture shows a horizontal section of the finger slightly above
the system bottom. The finger touches four walls (occupying more
than half the hexagon), so its remaining free boundary is almost
straight; the finger tail in the left panel has an almost planar surface.
To expose the free interface part of its tail, the finger has been
rotated in the left panel.
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FIG. 7. dy/L=0.01, A=0.91. Asymmetric stationary finger. On
the right, a horizontal section of the finger slightly above the system
bottom is given. The finger touches the wall almost everywhere
except at a circular boundary piece. To expose the free interface part
of its tail, the finger has been rotated in the left panel.

dercooling. The subfingers are not equal and there is no sym-
metry plane anymore. As we shall see, the patterns for
dy/L=0.007 can be described as chirality-symmetry break-
ing, and this is partly visible in the screwlike conformation
of the trench between the two fingers in the left panel of the
figure. In the larger system (d,/L=0.005), the trench is S
shaped, and we shall see that this difference has its corre-
spondence in different dynamics of the two systems.

Oscillations were first detected by measuring the growth
velocity of patterns, defined as the velocity of vertical mo-
tion of the highest tip of the structure. To obtain a velocity,
the tip position of the structure at two successive times has to
be determined. This is done by first identifying the lattice
position in the base plane above which the interface is high-
est and then finding the zero (with maximal z value) of the
phase field along this line (x,y)=const. By this method, we
obtain the tip position with an accuracy that is better than
one mesh spacing in the z direction, but only up to a mesh
spacing in the lateral directions. The tip velocity is then cal-
culated by dividing the tip z coordinate of two successive
time steps by the corresponding time interval. Of course,
when there is more than one tip, an exchange of the maxi-
mum position will give an inaccurate velocity for the time
interval in which the switchover happened. In addition to the
so-defined tip velocity we keep track of the lateral tip posi-
tion at all times.

An example time signal obtained for the tip velocity in an
oscillatory system is given in Fig. 9. This run was started
from a hemispherical initial condition for the solid and went
through different dynamical stages, including a transient
steady state and irregular behavior, before becoming periodic
after =10 000 (i.e., after 4.27,, in which time the system
grew by about 1025 diffusion lengths or 22 times the length
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FIG. 8. Oscillating double fingers. Left: dy/L=0.007, A=0.80.
Right: dy/L=0.005, A=0.77.

of the channel). The first maximum in the figure is slightly
higher than the maxima of the following periodic stage, so
periodicity has not yet fully set in at the beginning of the
shown time interval. The oscillations are highly nonlinear
and have a complex wave form. We measure frequencies by
cutting the signal at appropriately chosen heights and deter-
mining the temporal distance between every nth pair of cuts
where n is the (even) number of cuts within a period, a
number that is normally found by visual inspection. The fre-
quency v plotted below, in Fig. 12, is the inverse of the
period At,,.

It is interesting to relate the oscillation period to the dif-
ferent natural time scales of the problem. Given that 7
=2358.1 for dy/L=0.007, we find the periodicity of the tip
velocity in Fig. 9 to be slightly below one third of the static
diffusion time. Since the Péclet number for this system is
15.5 (compare Fig. 20 below) the period is long in compari-
son with the dynamic diffusion time (7,=9.8), which renders
the rich substructure of an oscillation plausible, but also
shows that these oscillations are very sluggish in terms of the
intrinsic dynamic time scale. A clearer picture about the na-
ture of the oscillatory state arises from a look at the tip po-
sition in the xy plane, which is given in Fig. 10 as a function
of time, for the same simulation.

We note that the periodicity of this motion is longer than
that of the tip velocity by a factor of 6, and Fig. 11 reveals
why. The oscillation is in fact coupled to a rotating motion of
the finger, during which the tip moves along a hexagonal
path in the xy plane, and since the tip encounters the same
conditions along each of the six sides of its path, the period-
icity unit of its vertical motion is six times smaller than that
of its lateral motion.
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FIG. 9. Oscillations of the vertical component of the tip veloc-
ity. dy/L=0.007, A=0.79. Period Az,=722. To get rid of high-
frequency noise, the signal was smoothed five times with a fourth-
order 11-point Savitzky-Golay filter [30].

The same kind of chirality-symmetry breaking dynamics
is observed for A=0.77 and A=0.80. However, in the latter
case, another instability threshold has been passed; the six
oscillations of the tip velocity during one traversal of the
hexagonal tip path become unequal, so that nominally the tip
frequency reduces to one sixth, although the sixfold period-
icity is still visible in the temporal plot of the oscillations
(not shown).

Figure 12 displays the frequencies measured for the ob-
served oscillatory states. Vertical motion refers to the mea-
sured tip velocity, while lateral motion refers to the in-plane
movement of the tip. Points corresponding to similar dy-
namical states are connected by lines to guide the eye. The
frequency of vertical motion is found to be related to that of
the lateral one by a factor of 6, 2, or 1.

The factor of 6, valid for the data points at A=0.77 and
A=0.79 for d,/L=0.007, and the factor of 1 for A=0.80
have already been explained. Oscillation periods for lateral
motion vary from Az,=2994 to Az,=5260 for these three
systems (i.e., from one to two static diffusion times).

The data points at A=0.78 for dy,/L=0.007 (both at the
same position) correspond to a pattern of different appear-
ance and dynamics. Here, we have the rare case of a single
oscillating finger. Vertical motion oscillates at a much shorter
period (Az,=203) than in the double-finger cases. Laterally,
the tip moves back and forth by just one lattice unit in the x
direction and stays at the same position along the y axis.

L 1 L 1 L 1 L 1 L
10000 12000 14000 ; 16000 18000 20000

FIG. 10. Oscillations of the x and y components of the (on-
lattice) tip position. Solid line: x; dashed line: y. dy/L=0.007, A
=0.79. Period: Az,=4333.
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FIG. 11. Path of the tip in the xy plane traversed during growth.
dy/L=0.007, A=0.79. From Fig. 10, we gather that motion is coun-
terclockwise. The tip distance from the wall is 2.5 diffusion lengths.

On the other hand, the data for A=0.85 and d,/L=0.007
correspond to a dynamical state that is very similar to the
majority of oscillatory states observed for d,/L=0.005 and
described by the connected points from A=0.72 through A
=0.80. Here, the factor between the vertical and lateral os-
cillation frequencies is 2 and this is quickly understood by
looking at the in-plane tip trajectory, presented in Fig. 13.

The tip moves back and forth between two next-nearest-
neighbor corners of the hexagon. At first sight, one might
think that there should be a factor of 4 between the frequen-
cies, but the four pieces of the trajectory are not equivalent.
On the way from its leftmost and bottom-most position x
=-16.7, y=-29.0, the tip first moves parallel to the x axis
until and a little around the corner of the trajectory (see also
Fig. 14). Then both x and y jump, within a single time step,
to x=33.4 and y=0, which is the other extremity of the path.
Afterward x and y both decrease slowly until x has decreased
below the corner value of x=16.7. At approximately x=4.8,
the x position makes a downward jump to its minimum value
of x=—16.7, while y remains constant (we are on the bottom
edge of the path). These jumps are visible as vertical lines in
the time signal of x(¢) and y(z), given in Fig. 14. What hap-
pens here is obvious: we have two tips that alternately get
ahead, and the numerical algorithm always finds the topmost
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FIG. 12. Frequency v=1/At, measured for various undercool-
ings and different oscillatory states. Points for vertical and lateral
motions, respectively, correspond to the same simulations. Note that
starlike symbols are in fact superpositions of triangles arising when
the periodicities of the vertical and the lateral motions are the same.
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FIG. 13. Path of the tip(s) in the xy plane traversed during

growth. dy/L=0.005, A=0.77. The tip distance from the wall is 2.5
diffusion lengths.

of these. Therefore, only two pieces of the path are equiva-
lent: the way covered by the first tip until the second takes
over and the symmetric but opposite way of the second tip,
hence only a factor of 2 between the frequencies of vertical
and lateral motions.

Qualitatively, the appearance of these two major dynami-
cal states can be easily understood. In the smaller channel,
there is no room for both tips of the double finger to grow to
the same size, so one of them always stays ahead and guides
the finger on its merry-go-round tour along the channel wall.
In the larger channel, the leading finger tip also seeks its way
along the channel wall, but there is now enough room for the
trailing finger to catch up. It passes the other finger, blocking
it from further continuation of its path and trying to establish
motion in the opposite direction, which succeeds only to a
certain degree, because the other finger “counterstrikes,” and
the game starts over again. This kind of dynamics also ap-
pears in the smaller channel once the driving force gets large
enough (at A=0.85).

It should be mentioned that similar oscillatory dynamics
are observed in the square channel, although we have not
investigated their detailed lateral motion. However, we have
done so for a few parameter sets in the cylinder geometry,
where a dynamical state exists that is quite similar to what
has been described for the hexagonal channel. The tip trajec-
tory travels along the cylinder wall and makes sudden jumps

FIG. 14. Oscillations of the x and y components of the (on-
lattice) tip position. Solid line: x; dashed line: y. dy/L=0.005, A
=0.77. Period: Az,=2739.
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FIG. 15. Left: double finger before tip splitting in the circular
channel. dy/L=0.005, A=0.70. Right: trajectory of the leading tip
(dashed line). The tip distance from the wall (solid line) varies
between 2.8 and 3.2 diffusion lengths.

to the opposite side of the cylinder, when the second tip
moves ahead. In the case shown in Fig. 15, where A is at the
lower end of the region of oscillatory double fingers, there is
in addition an alternation between a single asymmetric finger
and double fingers, appearing via sequences of tip splitting
and the falling behind of one finger.

Finally, let us discuss the two outliers at A=0.7 and A
=0.79, dy/ L=0.005, for which the vertical and lateral oscil-
lation frequencies agree and are above those of the other
undercoolings. Here, the dynamics are entirely different. At
A=0.70, we have two fingers, not side by side as in Fig. 8
but on opposite sides of the channel (see Fig. 16). They do
not move much sideways (there is no motion in the y direc-
tion and the x coordinate of the tip oscillates between two
neighboring lattice sites), but the vertical velocity oscillates
by *£6% about its mean value. The oscillation wave form is
simple, far from the complexity of Fig. 9. In the case A
=0.79, the pattern has two double fingers; the velocity oscil-
lation amplitude is below half a percent of the mean value,
and two of the four tips alternately get ahead. Note that also
at A=0.8 the pattern has four fingers, but it is dominated
by two of them and the dynamics is largely the same as in
the main series of undercoolings between 0.72 and 0.78.
It appears that the three patterns having higher oscillation
frequencies in Fig. 12 represent situations where the size
of the channel suits an almost stationary configuration; they
seem to correspond to resonance effects and preferentially
appear near the boundary between two types of patterns
(see Fig. 20).

An interesting feature of Fig. 12 is that for dy/L=0.007
the frequency of the oscillations decreases with increasing
A after the first appearance of oscillatory states, whereas in
the case dy/L=0.005 it increases first and becomes roughly
constant then. While we do not have a clear-cut explana-
tion for this behavior, it demonstrates explicitly that the bi-
furcation to oscillations must be of Hopf type in the case
dy/L=0.007 at least.

3. Complex dynamics

As mentioned before, for d,/L=0.010, we find stationary
asymmetric fingers up to the highest undercooling consid-
ered (A=0.91). This does not mean, however, that all struc-
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FIG. 16. Top views of the three exceptional oscillatory states.
Left: single finger at dy/L=0.007, A=0.78. Middle: double finger at
dy/L=0.005, A=0.70. Right: quadruple finger at d,/L=0.005,
A=0.79.

tures observed in this system are steady states. In fact, in-
creasing the undercooling from a symmetric finger
configuration to A=0.75 (a relatively large jump in under-
cooling), we obtain a chaotic velocity signal that remains
chaotic for long as we care to continue the simulation (well
beyond hundred static diffusion times). Decreasing the un-
dercooling of an asymmetric finger from 0.76 to 0.75 pro-
duces an ordinary stationary asymmetric finger instead.
These two structures coexist, with the average Péclet number
of the chaotic finger about 1.5% lower than that of the steady
state.

More interestingly, at A=0.74, only a chaotic state seems
to exist, whether we take as initial condition a steady-state
finger at A=0.75 and decrease the undercooling or a steady-
state finger at A=0.73 and increase it—or choose a different
initial condition. The velocity for one of several simulations
with these parameters is given in Fig. 17—all of them exhibit
the same behavior. Chaotic behavior also appears, not unex-
pectedly, in the bigger systems, at very high undercooling,
but a window of chaotic states inside the interval, where
asymmetric stationary fingers dominate, seems to be unique
to our smallest system.

A preliminary understanding of this chaotic window may
be obtained by comparing the morphologies of steady states
appearing below it, at A=0.73 and at its upper edge, viz.,
A=0.75, shown in Fig. 18. These fingers have been turned so
that the contact line with the walls is seen from a similar
view angle. It is tempting to interpret the motion of this line
as the steady state of a two-dimensional crystal growth prob-
lem. If we assume the contacting wall to be parallel to the xz
plane (which is the case for one of the walls in the right
panel of Fig. 18), the pertinent “bulk” equation becomes

—Vu,—D(u,,+u,.)=Du (32)

yy?

where the right-hand side may be interpreted as an imposed
inhomogeneity. Because the normal on the contact line lies
inside the channel wall, the Stefan condition (2) reduces to
its 2D analog. Of course, the Gibbs-Thomson condition (5)
retains a contribution from the curvature orthogonal to the
wall, so the two-dimensional analogy fails at this point, un-
less this second radius of curvature is roughly constant. In
the limit of small velocities, the bulk equation does not re-
duce to a Laplace equation as in 2D channel growth, but to a
Poisson equation.

The important point to note is that we have just two
finger-shaped contact lines at the smaller undercooling and
four at the higher one. On the increase of the undercooling,
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FIG. 17. Typical tip velocity behavior at dy/L=0.010, A=0.74
during an extended time interval.

there must be a transition from the first case to the second,
and the continuing existence of one symmetry plane (through
a channel edge) bisecting the asymmetric finger disallows
the appearance of contact line patterns containing an odd
number of 2D fingers. In the left panel of Fig. 19, we show
the result of this dilemma for the pattern at A=0.74.

There is a second 2D finger growing out of the first, but
this is not a stable configuration. The other side of the 3D
structure is shown in the right panel, and there we see that
only one of two 2D fingers has advanced close to the tip,
while the other has fallen behind. Moreover, we note that the
flat part of the tail of the full three-dimensional finger is
roughly orthogonal to its back part near the tip. So the tip of
the finger rotates with respect to its tail, similar to the oscil-
latory screwlike motion of the intermediate-size system dis-
cussed in the preceding section, except that in the smaller
system the structure never finds a regular state of motion due
to the stronger confinement. Hence, chaotic motion inside
the existence interval of stationary asymmetric fingers is due
to a quantization condition precluding steady-state solutions
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FIG. 18. Stationary fingers at dy/L=0.010. Left: A=0.73; right:
A=0.75. These patterns bracket the chaotic states for A in between.
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FIG. 19. Chaotic pattern at d,/L=0.010, A=0.74. Left: from a
similar view angle as the patterns in Fig. 18. Right: view of the
same finger from the back of its tip.

with an odd number of boundary fingers, at least, as long as
the pattern still has a symmetry plane.

For the two larger systems considered, the asymmetric
finger suffers its bulk instability leading to oscillatory pat-
terns before a third boundary finger could arise besides the
two symmetrically arranged ones; hence, there are no chaotic
states inside the existence interval of asymmetric steady
states.

So far, we have not made an extensive analysis of the
chaotic states in the larger systems at undercoolings around
and above 0.9. We postpone this to future work.

C. Selected velocities

After having described the major patterns observed, let us
now consider the bifurcation structure of the system. To this
end, we plot in Fig. 20 the selected Péclet number (or its
time average) of a pattern as a function of the imposed
undercooling. The scaling of this velocity measure with
the system size via Eq. (31) allows us to distinguish
confinement-dominated growth (which should lead to a data
collapse) from other growth modes. To calculate the Péclet
number in Fig. 20, we take an average of the tip velocities
over the last 2000 data points, and we verify that taking the
last 10 000 points instead does not affect the result beyond
the subpercent range. (The spacing between successive data
points is Ar=0.5 or Ar=1.)

Two transitions that are present in all systems are the
bifurcation from a planar front to a symmetric finger and the
bifurcation from a symmetric finger to an asymmetric one. In
the two bigger systems, this is followed by a transition to
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FIG. 20. Bifurcation diagram. Solid black symbols: dy/L
=0.005; white symbols: dy/L=0.007; gray symbols: dy/L=0.010.

oscillatory states and transitions to more complex oscilla-
tions and chaos.

The points describing symmetric fingers all lie roughly on
a straight line. This means that doubling the channel width at
a given undercooling will lead to halving the growth velocity
of a symmetric finger, provided it exists and is stable in the
bigger channel, too. Finger patterns at higher undercooling
show no data collapse in this plot, but they do so if the
velocity scale for nondimensionalization is taken indepen-
dent of the system size (e.g., W,/ 7; see the inset of Fig. 21).
Hence, asymmetric patterns at higher undercoolings grow at
a speed that is essentially independent of the channel width
and their dynamics is governed by the tip curvature, whereas
symmetric fingers grow only because of the confinement
(they do not exist in an infinite system), and hence slow
down when confinement becomes weaker.

To determine the lower existence boundary of symmetric
fingers, we take converged patterns as initial conditions for a
run with a lower undercooling (increasing the system height
as necessary). Initially, the growth rate at the new undercool-
ing decreases, then, if there is a stationary finger solution, the
velocity levels out to a new constant value. If there is no
steady-state solution anymore, the finger gets thicker and
continues to slow down; eventually it hits the system wall. At
this point, much latent heat is released and the tip of the
structure temporarily reverses its direction, melting back. Af-
ter that, a planar front grows at a constant velocity, in agree-
ment with Eq. (27). Once a finger starts thickening, it is not
really necessary to wait whether it will become a planar
front—there seems to be no way for it to avoid this fate.

Because computations at low undercoolings are very time
consuming, we have not tried to detect hysteretic behavior
by crossing the transition from the planar front to the sym-
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FIG. 21. Comparison of the different geometries; dy/L=0.005.
Solid black symbols correspond to the hexagonal channel and ap-
pear in Fig. 20 already. Gray symbols: square channel; white sym-
bols: circular channel. New data points have been assigned 50%
larger symbols for better distinction. The inset gives the velocity
data of Fig. 20 (for A=0.7) in unscaled form (i.e., in units of
W()/ T 0).

metric finger from below, e.g., starting from a slightly per-
turbed planar front. In view of the fact that there is no
steady-state solution below the symmetric finger in an infi-
nitely long channel, any observable hysteresis might as well
be a finite-size effect. In any case, it is to be expected that the
weakly nonlinear analysis of planar fronts in free or direc-
tional growth [31] carries over to this system without major
modifications, which would mean that the bifurcation is su-
percritical [32,33], because we are dealing with the symmet-
ric model (and, formally, unit segregation coefficient).
Clearly, there is a velocity jump on going from the planar
front to the symmetric finger, but whether this makes the
transition first order or not depends on whether the velocity
is the analog of a thermodynamic potential or of a response
function (that can jump in second-order transitions).

The larger the system, the lower the transition point A,
from a symmetric finger to a planar front. Since we find a
stationary finger solution at L=200d, for A=0.5, it seems
very unlikely that this undercooling constitutes a lower limit
to steady-state growth in the three-dimensional system as it
does in the two-dimensional isotropic case. Rather, we ex-
pect A, to become even smaller when the channel width is
increased further. The cylindrically symmetric version of the
equations of motion does not reduce to the two-dimensional
stationary diffusion equation [V2=(9,2)+(1/ p)d,+ 85, which is
not a Laplacian in the pz plane], so there is no reason to
believe that the value A=1/2 has any particular significance
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in the 3D problem. In any case, a limiting width of 2R
=0.5L in a 2D cut of the system would suggest that the
lowest possible undercooling for symmetric fingers with iso-
tropic surface tension in three dimensions is A=1/4, if any,
rather than 1/2. To check this is beyond our possibilities for
the time being.

The bifurcation from the symmetric finger to the asym-
metric one happens between A=0.58 and A=0.59 for d,/L
=0.005, between A=0.62 and A=0.63 for d,/L=0.005, and
between A=0.69 and A=0.70 for dy,/L=0.010. As expected,
the Péclet number, up to which symmetric fingers exist, de-
creases with increasing system size; it is P=4.9 for L
=100dy, P~=3.9 for L=142.8d,, and P~=3.0 for L=200d,,.

For this transition, we have crossed the bifurcation point
both ways and tried to find parameters for which both mor-
phologies coexist. At first sight this appears possible, but
running the simulations long enough (i.e., for 25-50 static
diffusion times), both the structures obtained by decreasing
the undercooling (from an asymmetric solution) and increas-
ing it (from a symmetric solution) systematically become the
same. So far, there is just a single case (A=0.58,d,/L
=0.005) where we have not yet obtained identity of the two
structures initialized differently. We find a well-converged
symmetric finger rather fast after increasing the undercooling
from A=0.57. On the other hand, after decreasing it from
A=0.59 (using a converged asymmetric finger as initial con-
dition), we find an asymmetric finger, the velocity of which
is still decreasing after t=280 000 (=60 static diffusion
times), while its tip approaches the channel center in steps
(due to requiring it to be on a lattice position). At the time of
this writing, it is still two lattice units from the center and the
time lags between steps by 1 unit toward the center are in-
creasing, with the last two being 27 600 and 107 500 time
units, respectively. We expect this finger to become symmet-
ric after another 200 000—400 000 time steps (corresponding
to 1.5-3 months worth of computer time).

In conclusion, although there are definitely long tran-
sients, we have seen no hysteresis nor does there seem to be
coexistence at steady state. This is unexpected, as the analo-
gous bifurcation from dendrites to doublons is discontinuous
[3,7] and the same is true for the transition between a sym-
metric finger and an asymmetric finger in a two-dimensional
channel under variation of the anisotropy of surface tension
[7]. Our simulations suggest the transition to be supercritical
in three dimensions. Since the transients on switchover from
one type of finger to the other become extremely long in the
vicinity of the bifurcation point, it is easy to mistake a not
yet final unstable morphology for metastable. In fact, this
slowing down of dynamical changes also speaks in favor of
a second-order transition.

There is not necessarily a contradiction here. First, the
character of the transition can be different in the cases of
isotropic and anisotropic surface tensions; in fact, this is
even likely in view of how the nature of a phase transition
can be changed by the presence of an external field. Second,
while intuitively the transition from dendritic needle crystals
to doublon structures must be discontinuous, because it is
connected with a topology change, the change from a sym-
metric to an asymmetric finger in a channel can be easily
conceived as a continuous process. Moreover, the first tran-
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sition cannot happen, unless surface tension anisotropy is
present (otherwise, dendrites do not exist), whereas the sec-
ond is perfectly possible also in the isotropic case. We con-
clude that the transition is probably continuous for isotropic
surface tension and becomes discontinuous, as soon as there
is a finite level of anisotropy. Of course, we cannot com-
pletely exclude a discontinuous transition—the window of
hysteretic behavior could be much smaller than our tested
resolution in A. On the other hand, the transition to chaos in
the system with L=100d,, is discontinuous, at least on the
high A side, as we have coexistence of chaotic and steady
structures.

As to the transitions to oscillatory states, we have not
attempted a detailed verification yet concerning their sub-
critical or supercritical nature due to the presence of nor-
mally two different oscillatory states near the beginning of
their existence interval. Results for the square and circular
channels are similar in the parameter ranges where we com-
pared the three geometries. For reasons of computational
cost, we did not investigate very low undercoolings in these
systems.

In Fig. 21, we compare data for one size, L=200d,, but
three channel shapes. The data for the hexagonal channel are
identical to those of Fig. 20.

Note that the Péclet numbers agree for the different ge-
ometries, although the patterns do not quite do so. That pat-
terns still remain stationary in the square channel while they
are already oscillatory in the hexagonal one is most likely
due to the fact that in these simulations the square channel
accommodated four fingers, which means that its patterns
would fit as a single finger into a channel with d,/L=0.01. A
comparison of the patterns with those of the lowermost curve
in Fig. 20 shows pretty good agreement: symmetric fingers
exist in the square channel up to A=0.7, in the hexagonal
one up to A=0.69, and asymmetric fingers exist at higher
undercoolings. That the Péclet numbers agree so well indi-
cates that beyond A=0.7, the average velocities in units of
W,/ 7y are almost the same in all three channels and for all
three sizes. Indeed, if the curves in Fig. 20 are rescaled with
a factor that is inversely proportional to the linear system
size, they exhibit an approximate data collapse for A>0.7,
as shown in the inset of Fig. 21.

Finally, the patterns in the circular channel given in Fig.
21 are all asymmetric double fingers. For short simulation
times, they look as if they were steady states (this is true also
in the hexagonal channel), but those, for which the simula-
tion is taken to long enough times, become oscillatory, which
agrees with the behavior in a hexagonal channel. We just are
not able to extend the simulations to very long times in all
cases since this system is suboptimally suited to precondi-
tioning, and hence simulations take much longer times.

V. DISCUSSION AND CONCLUSIONS

A major motivation of this work is to encourage theoret-
ical attempts at an extension of selection theory (on the basis
of microscopic solvability or via simpler approaches) to
three-dimensional growth in channels. This may be con-
trasted with the work by Gurevich et al. [23] on three-
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dimensional directional solidification, which aims at a direct
comparison with experiments. Unfortunately, similar experi-
ments are lacking for the situation considered here. At least
we are not aware of any systematic experimental studies on
(isothermal) crystal growth in very thin capillaries.

Due to their more direct link with experiments, the au-
thors of [23] gave the results of their calculations in physical
units, whereas we work in a nondimensional (and hence scal-
able) setting. Nevertheless, it is interesting to relate the non-
dimensional time unit used here to experimental time scales.
The length and time units by which we have rendered equa-
tions dimensionless are W, and 7, respectively. 7, is related
to physical times via Eq. (15), and the factor a,a,& arising
there has the fixed value of 8.654 69. The physical time unit
is d%/ D and it is about one order of magnitude smaller than
the numerical one. To get a feeling for typical values, we use
material parameters for succinonitrile (SCN) given in [34],
dy=13x1072 um, D=10° um?/s, and obtain d2/D
=0.169 ws, which makes our numerical time unit corre-
spond to 1.46 wus. Accordingly, the spacing of our numerical
mesh would be 3.25X 1072 um. For our intermediate size
system, the channel width would be 1.86 um, and the peri-
odicity of At,=722, presented in Fig. 9, would correspond to
1.06 ms. We have taken the solutal capillary length and dif-
fusivity in this example, whereas our model has symmetric
diffusivities, rather describing purely thermal growth. A cal-
culation using the material parameters for SCN given in
[35,36] reveals that the thermal capillary length is smaller
than the solutal one by almost an order of magnitude,
whereas the thermal diffusivity is about two orders of mag-
nitude larger, pushing the time scale down to molecular-
dynamics dimensions and turning our capillary into a nano-
tube. An attempt at modeling these scales with our simple
approach would be quite venturous.

On the other hand, the properties of liquid crystal systems
may offer much better options for experimental verification
of our numerical predictions, because these materials can
have large capillary lengths and the diffusivity contrast be-
tween the two phases is small, rendering the symmetric
model an appropriate description. In the late 1980s and early
1990s, these materials were used as model substances for
directional solidification [37] permitting access to dynamical
regimes that are difficult to reach or control in ordinary so-
lidification. For example, the workhorse 4-n-octylcyano-
biphenyl (8CB) has a capillary length of dy=0.3 um and a
solute diffusivity of D=400 um?/s [37], which translates to
a time unit of 7,=1.95 ms, a mesh spacing of 0.75 um, and
in the situation described in Fig. 9, an oscillation period of
1.4 s in a capillary with a diameter of 42.8 wm. Another way
to reach large capillary lengths is to make the miscibility gap
of alloys small by going to the extreme dilute limit.

Of course, we hope that this work which may be extended
easily enough to the study of systems with anisotropy and/or
solute diffusion (including asymmetric models) will stimu-
late experimental investigations to corroborate the basic
model assumptions as well as to improve our understanding
of the influence of confinement on growth modes. To sum-
marize, we have performed a reasonably extensive explora-
tion of parameter space for crystal growth with isotropic sur-
face tension in three-dimensional hexagonal, square, and

PHYSICAL REVIEW E 82, 021606 (2010)

circular channels. The anisotropic case is of strong interest,
too, but should be considered as the next step.

We find some expected structures—symmetric and asym-
metric fingers—and determine their range of existence as a
function of undercooling for several system sizes. From our
simulations, we see no reason to classify the bifurcation from
symmetric to asymmetric fingers as subcritical, but there is
some evidence for supercriticality. On the other hand, we do
not expect this characteristic to be structurally stable against
the introduction of anisotropy.

At undercoolings beyond the range of stability of steady-
state single fingers, we find double fingers with oscillatory
dynamics to be the predominant species. The nature of the
oscillations is strongly confinement dependent—for one sys-
tem size we find merry-go-round fingers over a certain inter-
val of undercoolings, which are chiral temporally periodic
structures. For larger system sizes, the two fingers compete,
which renders the time average of the state nonchiral again.
In the circular channel, similar periodic states exist, leading
to a drift motion of the tip along the wall; the wave form of
this oscillation is much more intricate than in the hexagonal
system and the phase relation between the x and y coordi-
nates of the tips is more variable. We did not find strong
evidence for triplons playing a significant role in the dynam-
ics, despite the fact that our hexagonal system was devised to
ease their appearance by the removal of all sources of four-
fold numerical anisotropy in the planes parallel to the chan-
nel base.

A number of reasons may be invoked for this result. Our
systems simply may have been too small for stationary trip-
lets to develop inside. Of course, we even see four-finger
structures, but they exist in a range of undercoolings, where
stationary states are not stable. It should be noted that there
was no lack of transient six-finger structures in the initial
dynamics of our simulations and that we even had a long-
living but nevertheless transient three-finger system, with
tips oscillating in the well-known mode with 120° phase
shifts [38—40]. Still, it seems that for the spatial dimensions
considered, double fingers were preferred over triple ones.
This is true for dynamic states at least. Concerning stationary
structures, it may be argued that the asymmetric fingers fit-
ting into the 120° wedge of the channel walls form in fact a
triplon with their reflected images, and here the observation
is that these triplons are much more frequent than their dou-
blonic analogs, consisting of fingers leaning against a single
side face of the channel. Since reflected images cannot fall
back or advance ahead of their original, the observation of
asymmetric fingers in a system with reflecting boundary con-
ditions does not tell us whether the triplon or doublon con-
structed from them is really stable. Hence, simulations with
sufficiently bigger channels (and periodic boundary condi-
tions) should be done to study the stability of triple fingers.

To compare more directly with the approach of Abel et al.
[21], we first note as an essential difference that in their case
the diffusion of the thermal field is slower than that of the
phase field, whereas in our case it is faster. As it turns out,
the noninteracting parts of the phase-field equations of the
two models can be mapped onto each other if the normalized

diffusion coefficient D is taken a factor of 3.1 (=1.5%a,a,&)
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smaller in the Abel model. Note that due to Eq. (17), we are
not free in the TIPM to choose the ratio of the two diffusion
coefficients, once the length and time scales and the similar-
ity parameter ¢ are set. To obtain the same ratio as in [21],
we would have to choose & by a factor of 3.1 smaller; hence,
the capillary length would have to become larger by this
factor for a given W, according to Eq. (14). The Péclet num-
ber for the triplon they present is 74.0 at A=0.8, to be con-
trasted with the maximum value of 22.9 in our biggest chan-
nel, with the ratio being 3.2, which suggests approximately
equal system sizes L, taking into account the factor between
the diffusion constants (and assuming similar velocities in
keeping with the results from the inset of Fig. 21). Requiring
the time scale of the two simulations to be the same, we may
infer from Eq. (15) that—if their kinetic coefficient were
zero—indeed the effective capillary length of the system
considered by Abel et al. would be larger by a factor of
~3.1, meaning that d,/L=0.0155 in their simulation. This
would render explicable why they get steady-state structures
in spite of the large undercooling. However, it is not unlikely
that kinetic effects influence their observed structures, as
their model is not devised to ascertain a vanishing kinetic
coefficient. Therefore, their simulation might realize a
smaller capillary length than estimated here, with the addi-
tional stabilization arising from an effectively positive ki-
netic coefficient.

From the few simulations with surface tension anisotropy
that we have done so far, we gather that steady-state struc-
tures have a larger range of stability in the presence of an-
isotropy. It is an interesting question for future research to
what extent oscillatory states will survive and whether or
how their character will change. In general, the question of
structural stability of chiral states that we have observed here
and which are a genuinely three-dimensional phenomenon
may be of some interest (even for applications).

We conclude that as expected there is a much richer struc-
tural and dynamical variety in the three-dimensional system
than in the two-dimensional one. Some dynamical observa-
tions are quite intriguing, such as the emergence of chirality-
symmetry breaking states as a realization of oscillations or
the appearance of chaos at relatively low undercooling in the
smallest system—in which otherwise steady-state growth
persists to the highest undercoolings.
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APPENDIX: DISCRETIZATION

In the numerical simulations, the phase-field equations
have to be discretized for three rather different geometries
(square, circle, and hexagon), so that a short comment should
be made about the specificities of each case. In all cases,
time integration is performed by a first-order Euler algorithm

PHYSICAL REVIEW E 82, 021606 (2010)

and spatial derivatives are calculated by finite-difference
schemes.

For the square geometry, Cartesian coordinates (x,y,z)
are used. A seven-point formula is applied to compute the
Laplacians and first-order spatial derivatives are obtained by
centered differences. This simple scheme is second-order ac-
curate in space. As a consequence, it is expected to generate
a small amount of spurious anisotropy.

Using more points in the discretization of differential op-
erators, one can either try to increase the order and, hence,
accuracy of the scheme, usually at the price of a less stable
code, or to make the error more isotropic. For example, it is
possible to write down a second-order accurate 19- or 15-
point formula exhibiting an isotropic error at lowest order.
That is, anisotropies appear only at fourth order. To derive
such a formula, one may start from the ansatz

1
Adfiji= 7{“ 2 fign+B 2 fain* Y 2 Feaimy
a | gD (i) igy

—(6a+ 128+ 87)f,-’j,,}, (A1)

where A, symbolizes the discrete Laplacian, a is the mesh
size of the numerical grid, and subscripts within angular
brackets mean nearest, next-to-nearest, and third-nearest
neighbors of the bracketed lattice site for one, two, and three
pairs of brackets, respectively. On the cubic lattice, the first
sum comprises six, the second 12, and the third eight terms,
so in general, this is a 27-point formula. To obtain appropri-
ate coefficients «, B, and vy, we apply the discrete Laplacian
to the discretized plane wave f; ; ;=e!*k@+hJakla) and require
the lowest-order result in k=(k,,k,,k,) to give the desired
continuum limit —k?f and the next order to contain only pre-
factors proportional to k4=(ki+k§+kf)2. This leads to the
two equations

a+4B+4y=1, B+2y-;=0.

Setting y=0, we obtain a 19-point formula with a=1/3, 8
=1/6, involving nearest neighbors and next-to-nearest neigh-
bors. Dropping instead of the third neighbor shell the second
one (i.e., taking B=0), we have a 15-point formula with «
=2/3, y=1/12, which has the advantage of reducing to the
two-dimensional “isotropic” Laplacian for functions that do
not depend on one of the three coordinates. When using the
isotropic Laplacian, we took the 19-point formula, which has
the smallest fourth-order error for non-negative .

In the nonpreconditioned version (8) and (9) of the model
equations, the Laplacian is the only spatial differential opera-
tor needed, whereas in the preconditioned version (22) and
(23), we also need a discretized gradient. This can be made
isotropic up to fourth order in the same spirit, using a ten-
point formula for each of the three arising derivatives, in
which the two nearest neighbors along the direction of the
derivative as well as the four next-to-nearest neighbors sur-
rounding each of those arise, the former with coefficients
*1/6a and the latter with coefficients =1/12a.

In the case of a circular channel, cylindrical coordinates
(p,@,z) are used, for which the Laplacian reads
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FIG. 22. Grid points used in the cylindrical geometry (black
dots). Only the three circles closest to the vertical z axis are shown
here. White dots represent intermediate grid points injected on the
circle of radius Ry=2h,: for these points, the fields are obtained by
angular interpolation.
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The spatial discretization is illustrated in Fig. 22. In the (x,y)
horizontal plane, one uses concentric circles, of increasing
radii, p;=ih, (i=0,1,...). The arclength Js between two
neighboring mesh points on the same circle increases with p.
In order to keep &8s smaller than some prescribed value (Js
=h,), the angular resolution is regularly increased at pre-
defined distances R, (n=1,2,...).

As a consequence, intermediate mesh points must be in-
jected on the circles of radius R,. For these points, the phase
and temperature fields are estimated by interpolation on the
whole circle. Thanks to the fact that the total number of
points involved is always an integer power of 2, and to an-
gular periodicity, this interpolation can be performed very
efficiently and accurately by means of two discrete fast Fou-
rier transforms. The same discretization is repeated at regular
mesh distances £, along the vertical axis z. The Laplacian
operator given in Eq. (A2) is not defined for p=0. It is thus
replaced with its Cartesian expression for all the grid points
along the z axis.

Our main reason to consider the hexagonal geometry be-
sides the cylindrical and square ones was that triple fingers,
conjectured to be the main building blocks of three-
dimensional structures arising from diffusion-limited growth
with isotropic surface tension [21], remained elusive in the
other two geometries. It is quite natural to suspect that in the
square geometry this is due to the residual fourfold aniso-
tropy of the discretization, favoring fourfold symmetry over
the threefold one. Neither do the basic symmetries of the
discretization point pattern in the cylinder seem favorable to
the appearance of threefold symmetry. On the other hand,
this symmetry would be natural in a hexagonal channel.
Nevertheless, we shall see that some care must be taken in
the discretization of gradients, in order not to inadvertently
reintroduce fourfold anisotropy.

The hexagonal channel is divided into a stack of equidis-
tant planes with spacing &, each of which is discretized using
the same triangular grid with lattice constant a. By choosing
two integer subscripts to enumerate them, the grid points are
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Numbering of grid points in the hexagonal

effectively mapped to a rectangular scheme (see Fig. 23).

But a rectangular matrix holding the field values of one
lattice plane would only be filled to three quarters. Therefore,
in order not to waste memory in the numerical computations,
we mapped the pair (i,;) of subscripts in a lattice plane to a
one-dimensional index r(i,j), so that all field values were
effectively stored in two-dimensional arrays, for example,
u(x,y,z)=u,;, where [ is the number of the lattice plane, and
x(i,j))=(i+j/2)a, y(i,j)=(V3/2)ja, and z(c)=Ih. The map-
pings (i,j)—r(i,j) and r—(i(r),j(r)) were kept in look-up
tables. Figure 24 visualizes the order, in which the label r
numbers lattice sites: starting at =1 in the center, the label
increases in steps of 1 along the indicated spiral. The spiral
arrangement has the advantage that the system boundary cor-
responds to contiguous r values. We realize periodic or no-
flux boundary conditions by adding a layer of lattice sites
outside the system walls and providing field values there;
this is facilitated by having a system boundary that corre-
sponds to a contiguous r sequence.

In discretizing the Laplacian on the numerical grid de-
scribed, we find that the standard formula

2 1

Adfiji= ;{2 Siija— 6fi,j,l} + =5 i g = 2fi0)
a | ip h

(A3)

where (i,j) denotes in-plane nearest neighbors of (i,j), has
already an error that is isotropic in the hexagonal planes, but
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.N O - -4
.5 - 4
10 b i
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i+j/2

FIG. 24. The mapping of grid point labels i,j to a one-
dimensional label. Details are given in the text.
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even taking into account the 12 next-to-nearest neighbors, it
cannot be made isotropic in the out-of-plane directions, un-
less h=+\3a/2. That is, for other values of & a 21-point for-
mula would be insufficient to make the error term isotropic
at lowest order. Therefore, we chose this value for A, but for
efficiency reasons we stuck to the nine-point formula (A3).
For simulations of the nonpreconditioned model we need not
go further. However, since the preconditioned model enables
simulations, at the same accuracy, with lattice spacings that
exceed those of the nonpreconditioned one by about a factor
of 2, which corresponds to a gain of a factor of 32 in com-
puting time in 3D systems, the effort of discretizing gradients
with isotropic in-plane error is worthwhile.

The point is that if we discretize d, and ¢, by simple
central differences, we will have to treat these two directions
differently, as x corresponds to a lattice direction but y does
not. We have tried this naive discretization and find that it
may lead to the growth of fourfold finger structures from a
spherical cap initial condition. A better approach is the fol-
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lowing: if we denote by d, (with n=1,...,3) the directional
derivatives in tile three symmetric lattice directions a,=e,,
a3=—e,/2*=y3e,, then it is easy to verify that any scalar
product of gradients (and they appear only in scalar products
in the equations) may be written as follows:

) 3
VA-VB= EE d, Ad, B+ 0.A)B.

n=1

(A4)

Using central differences for all of the appearing derivatives
le.g.. 9, A—(Aiyjs14=Ais1jo1)/2al, we obtain formulas
that know nothing about an x or y direction and indeed have
isotropic lowest-order error in the xy plane. Moreover, grow-
ing an unstable crystal finger starting from a spherical cap,
we now obtain tip splitting sequences leading to six or even
12 fingers, showing that the fourfold anisotropy has been
successfully eliminated. (Higher-order errors have sixfold
anisotropy.)
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