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The dynamics of phase field crystal �PFC� modeling is derived from dynamical density functional theory
�DDFT�, for both single-component and binary systems. The derivation is based on a truncation up to the
three-point direct correlation functions in DDFT, and the lowest order approximation using scale analysis. The
complete amplitude equation formalism for binary PFC is developed to describe the coupled dynamics of
slowly varying complex amplitudes of structural profile, zeroth-mode average atomic density, and system
concentration field. Effects of noise �corresponding to stochastic amplitude equations� and species-dependent
atomic mobilities are also incorporated in this formalism. Results of a sample application to the study of
surface segregation and interface intermixing in alloy heterostructures and strained layer growth are presented,
showing the effects of different atomic sizes and mobilities of alloy components. A phenomenon of composi-
tion overshooting at the interface is found, which can be connected to the surface segregation and enrichment
of one of the atomic components observed in recent experiments of alloying heterostructures.
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I. INTRODUCTION

Understanding the formation and dynamics of complex
spatial structures or patterns has been of continuing interest
due to the fundamental importance of predicting and control-
ling system properties and material functions. However, a
comprehensive understanding is hindered by the fact that the
processes involved are usually nonlinear, nonequilibrium,
can span a variety of length and time scales, and are highly
influenced by the complex coupling with materials growth
and processing conditions. Typical examples include the
growth of strained solid films and the formation of nano-
structures such as quantum dots or nanowires, which involve
the interplay among microscopic crystalline structure, meso-
scopic, or nanoscale surface pattern, topological defects �e.g.,
dislocations�, as well as various growth parameters such as
temperature, misfit strain, growth rate, and film thickness
�1–3�. The system dynamics and evolution are further com-
plicated in alloy samples, due to the additional coupling to
spatial/temporal variation of alloy composition particularly
in the case of phase separation �4,5�.

To address these complex phenomena a variety of theo-
retical modeling and simulation methods have been devel-
oped, which can be roughly characterized via the level of
description that they focus on. At the microscopic level cap-
turing crystalline details, atomistic modeling techniques such
as Monte Carlo �MC� or molecular dynamics �MD� have
been widely adopted. For example, nanostructure �e.g.,
islands/pits� formation during strained film epitaxy has been
studied via the kinetic MC method incorporating elastic in-
teraction and strain energy �6–8�, while detailed structure

and dynamics of crystal defects like grain boundaries and
dislocations have been simulated by MD �9,10�. However,
the limitation of small length and time scales addressed in
these atomistic methods leads to large computational de-
mands and hence the restriction of system size and evolution
time range that can be accessed. Such limitation can be over-
come via continuum modeling methods, including con-
tinuum elasticity theory used in strained film growth
�5,11–17� and the well-known phase field models that have
been applied to a wide range of areas such as crystal growth,
nucleation, phase separation, solidification, defect dynamics,
etc. �18–22�. These continuum approaches feature coarse-
grained, long-wavelength scales and diffusive time dynam-
ics, but are not formulated for the short-wavelength scales
associated with microscopic crystalline details.

To incorporate the advantages of these approaches and
hence be able to simultaneously model crystalline details on
length and time scales of experimental relevance, the phase
field crystal �PFC� �23–25� model and the related amplitude
representation �26–30� were developed recently. The PFC
model incorporates the small length scales of the crystalline
structure with diffusive time scales by describing the dynam-
ics of the atomic number density field �, a continuum field
variable that is spatially periodic at atomic length scales in
crystalline state �23,24�. To alleviate the limitation imposed
by the necessity of describing small length scales, an ampli-
tude representation was developed to describe slowly vary-
ing envelope or amplitude functions while maintaining the
basic features of crystalline states, particularly elasticity,
plasticity and multiple crystal orientations. Both the original
PFC and corresponding amplitude representation have been
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extended to binary alloys �25,31,32�. In the binary case the
amplitude representation describes the amplitude and phase
of the density field �26–28,30� and also the concentration
profile �32�, which is assumed to vary on “slow” scales com-
pared to atomic lattice spacing. A wide range of phenomena
has been studied via this PFC method for both pure and
binary material systems, including solidification �25,32,33�,
grain nucleation and growth �26,30,34,35�, phase segregation
�25,32�, quantum dot growth during epitaxy �3,32,36,37�,
surface energy anisotropy �38,39�, formation and melting of
dislocations and grain boundaries �40–43�, commensurate/
incommensurate transitions �44,45�, sliding friction �46,47�,
and glass formation �48�. In addition, recent work has been
conducted to extend the modeling to incorporate faster time
scales associated with mechanical relaxation �49,50�, and to
develop new efficient computational methods �28,51–53�.

The PFC model can be connected to microscopic theory
via classical density functional theory �DFT� of freezing
�25,33,54–56�. It has been found that the PFC free energy
functional can be derived from classical DFT for either pure
materials or binary mixtures �57–62�, by approximating the
two-point direct correlation function with a truncated Fourier
series and expanding the ideal-gas part of the DFT free en-
ergy functional in a power series of � and � �up to fourth
order� �25�. While this connection provides insight into the
parameters that enter PFC models, the approximations used
are quite drastic and the resulting model is a poor approxi-
mation of classical DFT �56�. A similar connection could be
made with the atomic density formulation of Jin and Kh-
achaturyan �63� which is similar in form to the classical
DFT, although the parameters that enter are given a different
physical interpretation.

The main difficulty in directly simulating classical DFT is
that the solutions for � are very sharply peaked around the
lattice positions �at least in metallic crystals�, while simple
PFC models predict very smooth sinusoidal profiles. This
difference makes numerical simulations of a simple PFC
model much simpler than classical DFT as the former mod-
el’s grid spacing can be a factor of ten larger than the latter’s,
so that in three dimensions a PFC model can simulate sys-
tems three orders of magnitudes larger than classical DFT
with the same memory requirements. In addition it has been
shown that a simple PFC can be adjusted to match many
material properties, such as surface energy and its anisotropy,
bulk moduli, and the miscibility gap in three-dimensional
�3D� bcc iron �56� and the velocity of liquid/solid fronts in
two-dimensional �2D� hexagonal crystal of colloids �33�.

Another benefit of PFC modeling is the ability to effi-
ciently simulate microstructure dynamics. At present, PFC
dynamics has been largely introduced phenomenologically
using time-dependent Ginzburg-Landau type dynamics
�23,25�. Recent progress includes the derivation of hydrody-
namic evolution equations for crystalline solids based on the
Poisson bracket formalism and the simplification to PFC
equations �54,55�. Very recently research has been conducted
to connect the PFC-type models with microscopic dynamics
�Smoluchowski equation� via dynamical density functional
theory �DDFT� �33�. These results were also based on the
truncation of DFT free energy up to two-point correlation
function, and for single-component systems.

In this paper we provide a systematic derivation of PFC
dynamics from DDFT, for both single-component and binary
systems that involve the evolution of atomic number density
and alloy concentration fields �see Sec. II�. Our derivation
includes contributions from three-point direct correlation
functions, which have been shown important for the DFT
calculations �64,65�. The original PFC models can be recov-
ered via the lowest order approximation of our DDFT results,
with the PFC parameters being connected to quantities of
DFT correlation functions. Our calculations can be directly
extended to incorporate fourth and higher-order correlation
functions in DFT.

To complete the PFC methodology for binary systems, the
full amplitude equation formalism is established for a 2D
system with hexagonal/triangular crystalline symmetry. It in-
corporates the effects of species-dependent atomic mobility
and average �zeroth-mode� atomic density that are usually
coupled with the dynamics of structural amplitudes and con-
centration field during system evolution but absent in previ-
ous studies of binary PFC. As shown in Sec. III, the standard
multiple-scale expansion is first applied to derive the lowest
order amplitude equations, followed by a hybrid approach
that we develop here to obtain the equations incorporating all
orders of expansion. Furthermore, stochastic amplitude equa-
tions are derived for both single-component and binary PFC
models, showing the corresponding noise dynamics as well
as its coupling due to different atomic mobilities of system
components �see Sec. IV�.

As has been discussed in previous research, the advantage
of the amplitude equation representation can be revealed via
its large increase of computational efficiency due to the large
length and time scales involved �26,27,30� and also its ame-
nability to advanced numerical schemes such as adaptive
mesh refinement method �28�. Furthermore, these amplitude
equations are more amenable to analytic calculations as
shown in recent studies of surface nanostructure formation in
strained epitaxial films �3,37� as well as in most recent re-
sults for establishing the correspondence between PFC type
models and traditional phase field approaches �32�. To fur-
ther illustrate these advantages, in Sec. V we present a
sample application of the derived binary PFC amplitude
equations to the phenomenon of surface segregation and al-
loy intermixing. This is of particular importance in material
growth �e.g., group VI or III-V semiconductor thin film epi-
taxy �66–73��, but rather limited information and understand-
ing is available to date. We focus on both liquid-
solid�crystal� coexistence profile and the coherent growth of
strained solid layers, and show the control of intra- and in-
terlayer diffusion by varying material parameters including
solute expansion coefficient �due to different atomic sizes�,
misfit strain in alloy layers, and the mobility difference be-
tween alloy components. This study provides an understand-
ing of mass transport mechanisms during material growth
and evolution. The dynamic processes of strained layer
growth as well as the associated composition overshooting
phenomenon are obtained in our calculations in Sec. V. The
results are compared to experimental findings of vertical
composition segregation or surface enrichment as widely en-
countered during the growth of various alloy heterostructure
systems such as InAs/GaAs, Ge/Si, GaAs/GaSb, InP/
InGaAs, etc. �66–73�.

HUANG, ELDER, AND PROVATAS PHYSICAL REVIEW E 82, 021605 �2010�

021605-2



II. DERIVATION OF PFC DYNAMICS VIA DYNAMICAL
DENSITY FUNCTIONAL THEORY

A. Single-component systems

We start from the DDFT equation governing the evolution
of a time-dependent local atomic number density field ��r , t�,

���r,t�
�t

= � · �M��r,t� �
�F
��
� , �1�

which was first proposed phenomenologically �74,75� and
was later derived by various groups via microscopic Brown-
ian dynamics �76–78� and Hamiltonian dynamics and hydro-
dynamics �79� �see Ref. �33� for a brief review�. The DDFT
equations for binary A/B systems are similar to Eq. �1�, with
��r , t� replaced by �i�r , t� �i=A ,B; see Sec. II B below�,
which has also been derived recently from Brownian dynam-
ics �the Smoluchowski equation� �80�. In Eq. �1� the mobility
is M =D /kBT, where D is the diffusion coefficient and T is
temperature.

In classical DFT the free energy functional F can be ex-
panded as �57,58�

F���
kBT

=� dr�� ln��/�l� − ���

−
1

2!
� dr1dr2���r1�C�2��r1,r2����r2�

−
1

3!
� dr1dr2dr3C�3��r1,r2,r3����r1����r2����r3�

+ ¯ , �2�

where �l is the reference liquid state density taken at liquid/
solid coexistence, ��=�−�l and C�n� is the n-point direct
correlation function of the liquid phase at �l. It is important
that the correlation functions are taken from the liquid state
to maintain rotational invariance. Details of the correlation
functions depend on the specific material systems studied
and are usually calculated via various approximations
�59,61,62�. Following the original PFC approach �25�, the

Fourier component of the two-point correlation function Ĉ�2�

is expanded as a power series of wavenumber q to fit up to
its first peak, i.e.,

Ĉ�2��q� = − Ĉ0 + Ĉ2q2 − Ĉ4q4 + ¯ , �3�

where Ĉ0, Ĉ2, and Ĉ4 are fitting parameters that can be con-
nected to material properties such as isothermal compress-
ibility of liquid phase, bulk modulus and lattice constant of
crystal state �25,56�. For the three-point correlation function
C3, its Fourier transform yields

C�3��r1,r2,r3� =
1

�2��6� dqdq�eiq·�r1−r2�eiq·�r2−r3�Ĉ�3��q,q�� .

The simplest approximation is to keep only the zero wave-
number mode, i.e.,

Ĉ�3��q,q�� � Ĉ�3��q = q� = 0� = − Ĉ0
�3�, �4�

as adopted in the DFT studies of hard spheres �64,81� and
Lennard-Jones mixtures �82�. This can be justified from the
previous results of hard-spheres DFT calculations that non-

zero wavenumber components of Ĉ�3� have been shown to
yield minor contributions �64,81� and that as order n in-

creases, the oscillation details of Ĉ�n� become less and less
relevant compared to the zero wavenumber mode �83�.

Defining the rescaled atomic density field n= ��−�l� /�l
and using the approximations �3� and �4�, the free energy
functional �2� becomes

�F/�lkBT =� dr��1 + n�ln�1 + n� +
1

2
Bxn�2R2�2 + R4�4�n

+
1

2
Bl�n

2 +
1

3
B̃n3� , �5�

where �F=F���−F��l�, and

Bl� = �lĈ0 = B� − 1, Bx = �lĈ2
2/4Ĉ4, R = 	2Ĉ4/Ĉ2,

B̃ = �l
2Ĉ0

�3�/2. �6�

Substituting Eq. �5� into the DDFT Eq. �1�, which can be
rewritten as

�n

�t
= M� � · ��1 + n� �

�F
�n
� �7�

�with M�=M /�l�, we find �84�

�n

�t
= D
�2�− �Bx − B��n + Bx�R2�2 + 1�2n + �n2 + vn3�

+ Bx � · �n � �R2�2 + 1�2n�� , �8�

where �=−�Bx−B�+1� /2+ B̃, v=2B̃ /3, and we have used the
relation M =D /kBT. Note that if only the two-point correla-
tion function in the DFT free energy �2� was used it would

yield B̃=v=0, and Eq. �8� reduces to a form equivalent to the
PFC1 model given in Ref. �33�. However, this would then be
a second-order dynamic equation due to the absence of n3

term, and as found in our numerical tests, is more difficult to
converge at long enough time compared to the full third-
order Eq. �8�.

It is convenient to rescale Eq. �8� via a length scale R, a
time scale R2 /DBx, and n→	v /Bxn, leading to

�n

�t
= �2�− �n + ��2 + q0

2�2n + g2n2 + n3� + g0 �

· �n � ��2 + q0
2�2n� , �9�

where

� = �Bx − B��/Bx, q0 = 1, g2 = �/	vBx, g0 = 	Bx/v .

�10�

The original PFC equation is recovered by considering that
�� · �n� ��2+q0

2�2n�� is of higher-order compared to term
�2��2+q0

2�2n. This can be obtained via a simple scale analy-
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sis: n�O��1/2� and ��2+q0
2�2n�O��3/2� �see also Sec. III A

for more detail of scale expansion�. Thus to lowest order
approximation, Eq. �9� can be reduced to the original PFC
model equation that has been widely used,

�n

�t
= �2�− �n + ��2 + q0

2�2n + g2n2 + n3� . �11�

This derivation procedure can be readily extended to in-
corporate higher-order direct correlation functions of DFT
�e.g., four-point, five-point, etc.� and thus to include higher-
order terms such as n4 , n5 , . . . , in the PFC model. Similarly,
these high-order correlation functions can be effectively ap-
proximated to lowest order via the zero wavenumber modes,
based on the recent DFT calculations �83�. For example, the
contribution F�4� of free energy functional from the four-
point correlation function is given by

F�4�/kBT = −
1

24
� dr1dr2dr3dr4C�4��r1,r2,r3,r4�

����r1����r2����r3����r4� . �12�

Assuming Ĉ�4��q ,q� ,q��� Ĉ�4��q=q�=q�=0�=−Ĉ0
�4�, the free

energy functional �5� is now

�F/�lkBT =� dr��1 + n�ln�1 + n� +
1

2
Bxn�2R2�2 + R4�4�n

+
1

2
Bl�n

2 +
1

3
B̃n3 +

1

4
B̃4n4� , �13�

where B̃4=�l
3Ĉ0

�4� /6. The dynamic equation for n would then
be

�n

�t
= D
�2�− �Bx − B��n + Bx�R2�2 + 1�2n + �n2 + vn3 + un4�

+ Bx � · �n�R2�2 + 1�2 � n�� , �14�

where v=2B̃ /3+ B̃4 and u=3B̃4 /4. Again the last term of Eq.
�14� is of higher order and can be neglected in the lowest
order approximation.

B. Binary systems

For a binary system with components A and B, the DDFT
equations describing the dynamics of the respective atomic
density fields �A and �B are given by �80�

��A

�t
= � · �MA�A �

�F
��A

�,
��B

�t
= � · �MB�B �

�F
��B

� ,

�15�

where MA�B� is the atomic mobility for specie A �B�. The
corresponding classical density functional free energy �here-
after referred to as “DFT” for short� is of the form �59–62�

F/kBT =� dr 

i=A,B

��i ln
�i

�l
i − ��i� − 


n=2

	
1

n!
� dr1 ¯ drn

� 

i,. . .,j=A,B

Ci. . .j
�n� �r1, ¯ ,rn���i�r1� ¯ �� j�rn� ,

�16�

where �l
i is the reference liquid state density of component i,

��i=�i−�l
i, and Ci. . .j

�n� refers to the n-point direct correlation
function between components i , . . . , j=A ,B. Up to three-
point correlation functions, we have

F/kBT =� dr��A ln��A/�l
A� − ��A + �B ln��B/�l

B� − ��B�

−
1

2
� dr1dr2���A�r1�CAA

�2��r1,r2���A�r2�

+ ��B�r1�CBB
�2��r1,r2���B�r2�

+ 2��A�r1�CAB
�2��r1,r2���B�r2��

−
1

6
� dr1dr2dr3�CAAA

�3� �r1,r2,r3���A�r1�

���A�r2���A�r3�

+ CBBB
�3� �r1,r2,r3���B�r1���B�r2���B�r3�

+ 3CAAB
�3� �r1,r2,r3���A�r1���A�r2���B�r3�

+ 3CABB
�3� �r1,r2,r3���A�r1���B�r2���B�r3�� . �17�

Similar to the single-component case discussed in Sec. II A,
the correlation functions Cij

�2��r1 ,r2� and Cijk
�3��r1 ,r2 ,r3�

�i , j ,k=A ,B� are expanded in Fourier space as

Ĉij
�2��q� = − Ĉ0

ij + Ĉ2
ijq2 − Ĉ4

ijq4 + ¯ ,

Ĉijk
�3��q,q�� � Ĉijk

�3��q = q� = 0� = − Ĉ0
ijk. �18�

As in the original binary PFC model, we introduce an
atomic density field n and a concentration field � via

n =
� − �l

�l
=

�A + �B − �l

�l
, � =

�A − �B

�
=

�A − �B

�A + �B
,

�19�

where �l=�l
A+�l

B, and hence

�A =
�l

2
�1 + n��1 + ��, �B =

�l

2
�1 + n��1 − �� . �20�

Substituting Eqs. �18�–�20� into Eq. �17�, we can express the
free energy functional in terms of n and �,

�F/�lkBT =� dr��1 + n�ln�1 + n� +
1

2
�1 + n���1 + ��ln�1

+ �� + �1 − ��ln�1 − ��� + 
���n +
1

2
Bl����n2

+
1

3
B̃���n3 +

1

2

2�2 +

1

3

3�3
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+
�1 + n�

2
�2Bx���R2�2 + Bx���R4�4�n

+
K

2
����1 + n����2 +

�

2
��2��1 + n����2� , �21�

where


��� = 
0� + 
1�2 + 
3�3 =
�l

4
��Ĉ0 +

�l
B − �l

A

2
�Ĉ0

�3���

+ �
2 +
�l

2

16
�Ĉ0

�3���2 +
�l

2

16
�Ĉ0

�3��3,

Bl���� = B���� − 1 = B0
� − 1 + B1

�� + B2
��2 + B3

��3

= �l�Ĉ̄0 +
�l

B − �l
A

8
Ĉ̃0

�3�� +
�l

2
��Ĉ0 +

�l
B − �l

A

2
�Ĉ0

�3�

+
�l

4
Ĉ̃0

�3��� +
�l

4
��Ĉ0 +

�l
B − �l

A

2
�Ĉ0

�3� + �l�Ĉ0
�3���2

+
�l

2

8
�Ĉ0

�3��3,

B̃��� =
�l

2

16
�8Ĉ̄0

�3� + 3Ĉ̃0
�3�� + 3�Ĉ0

�3��2 + �Ĉ0
�3��3�

= B̃0 + B̃1� + B̃2�2 + 
3�3,


2 =
�l

4
��Ĉ0 +

�l
B − �l

A

2
�Ĉ0

�3��,

�
 = 
1 − 
2 =
�l

2

16
�Ĉ0

�3�, B̃2 = 3�
 ,

B1
� = 2
0 +

2

3
B̃1, B2

� = 4
1 − 3
2, B3
� = 2
3,

Bx��� =
�l�Ĉ̄2 + �Ĉ2�/2�2

4�Ĉ̄4 + �Ĉ4�/2�

=
�lĈ̄2

2

4Ĉ̄4

�1 + � �Ĉ2

Ĉ̄2

−
�Ĉ4

2Ĉ̄4

�� + ¯�
= B0

x + B1
x� + ¯ ,

R =	2�Ĉ̄4 + �Ĉ4�/2�

Ĉ̄2 + �Ĉ2�/2

=	2Ĉ̄4

Ĉ̄2

�1 +
1

4� �Ĉ4

Ĉ̄4

−
�Ĉ2

Ĉ̄2

�� + ¯�
= R0 + R1� + ¯ ,

BxR2 =
�l

2
�Ĉ̄2 +

1

2
�Ĉ2�� = B0

xR0
2�1 + �2��, �2 = �Ĉ2/2Ĉ̄2,

BxR4 = �l�Ĉ̄4 +
1

2
�Ĉ4�� = B0

xR0
4�1 + �4��, �4 = �Ĉ4/2Ĉ̄4,

K = −
�l

4
�Ĉ2, � =

�l

4
�Ĉ4. �22�

In the above formulas, the following has been defined from
the correlation functions:

C̄ =
1

4
�CAA

�2� + CBB
�2� + 2CAB

�2�� ,

�C = CAA
�2� − CBB

�2� ,

�C = CAA
�2� + CBB

�2� − 2CAB
�2� ,

C̄�3� =
1

8
�CAAA

�3� + CBBB
�3� + 3CAAB

�3� + 3CABB
�3� � ,

C̃�3� = CAAA
�3� − CBBB

�3� + CAAB
�3� − CABB

�3� ,

�C�3� = CAAA
�3� + CBBB

�3� − CAAB
�3� − CABB

�3� , �23�

�C�3� = CAAA
�3� − CBBB

�3� − 3CAAB
�3� + 3CABB

�3� ,

and the “ˆ ” in Eq. �22� refer to the Fourier coefficients in the
expansions of Eq. �18� where the numerical subscripts on the
coefficients refer to the appropriate power of the expansion.
For binary alloys the lattice constant is often approximated
by Vegard’s law, i.e., R�R0+R1�=R0�1+���. In this ex-
pansion, near �=0 the solute expansion coefficient � is ex-
pressed as

� = R1/R0 =
1

2
��4 − �2� . �24�

�In the dilute limit �i.e., �� 
1� it would be simple to ex-
pand R around �� 
1 to obtain the solute expansion coef-
ficient as well.� Using the simplification adopted in the origi-
nal binary PFC �32�, it is assumed that Bx�B0

x and R2

�R0
2�1+2���, R4�R0

4�1+4��� via expansion, which corre-
sponds to the assumption of �2�2� and �4�4� as obtained
from Eqs. �22� and �24�.

In terms of the above definitions, the time derivatives of
the variables n and � defined in Eq. �19� are given by

�n

�t
=

1

�l
� ��A

�t
+

��B

�t
� ,

��

�t
=

1

�l�1 + n���1 − ��
��A

�t
− �1 + ��

��B

�t
� . �25�
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From the DDFT Eqs. �15�, the dynamics for n and � thus
become

�n/�t = M1D1 + M2D2,

��/�t =
1

1 + n
��M2 − M1��D1 + �M1 − M2��D2� , �26�

where

M1 =
1

2
kBT�MA + MB�, M2 =

1

2
kBT�MA − MB� , �27�

and

D1 =
1

�lkBT
�� · ��1 + n� �

�F
�n
� − � · �����

�F
��

�� ,

D2 =
1

�lkBT
�� · ��1 + n�� �

�F
�n
�

+ � · ��1 + n��1 − �2� � � 1

1 + n

�F
��

� − �� � ��
�F
��

�� .

�28�

Using the free energy functional �21� as well as Eq. �28�,
the results of D1 and D2 �keeping all the terms� are

D1 = �2�− �B0
x − B0

��n + �B1
�� + B2

��2�n + �− �B0
x − B0

� + 1�/2 + B̃0 + �B1
�/2 + B̃1�� + �B2

�/2 + B̃2��2�n2

+
2

3
�B̃0 + B̃1� + B̃2�2�n3 +

1

3
B3

��1 + n�3�3 + 
0� +
1

2
�
1 + �
��2 + B0

x�R0
2�2 + 1�2n + B0

x��2R0
2�2 +

�4

2
R0

4�4���1 + n����
+ � · �n � �B0

x�R0
2�2 + 1�2n + B0

x��2R0
2�2 +

�4

2
R0

4�4���1 + n����� + � · ��1 + n�� � �B0
x��2R0

2�2 +
�4

2
R0

4�4�n

+ �− K�2 + ��4���1 + n����� , �29�

D2 = �2�
0n + �
0/2 + B̃1/3�n2 +
2

9
B̃1n3 + �1 + 
2 + 2�
n��1 + n�� +

1

2
�
0 + B3

���1 + n�2�2 +
1

3
B̃1n2�2

+
2

3
�
�1 + n�3�3 + B0

x��2R0
2�2 +

�4

2
R0

4�4�n + �− K�2 + ��4���1 + n����
+ � · �n � ��1 + n��
2 + 2�
n�� + 
3�1 + n�2�2 + B0

x��2R0
2�2 +

�4

2
R0

4�4�n + �− K�2 + ��4���1 + n�����
+ � · �� � �2

3
B̃1n��� + � · ��1 + n�� � �− �B0

x − B0
� + 1�n + �B̃0 +

2

3
B̃1��n2 + B0

x�R0
2�2 + 1�2n

+ B0
x��2R0

2�2 +
�4

2
R0

4�4���1 + n����� . �30�

At this point in the derivation it should be noted that no
additional approximations beyond those going into the ex-
pansions of Eq. �18� have been introduced.

1. Nondimensional form of model

To simplify the results, the above binary PFC equations
can be rescaled via defining a length scale R0, a time scale
R0

2 /M1B0
x, n→	v /B0

xn, and �→	v /B0
x�, yielding

�n/�t = D1 + mD2, �31�

��/�t =
1

1 + g0n
��m − g0��D1 + �1 − mg0��D2� ,

where

m =
M2

M1
=

MA − MB

MA + MB
, g0 =	B0

x

v
, v =

2

3
B̃0 =

�l
2

3
Ĉ̄0

�3�.

�32�

If keeping only terms up to 3rd order quantities of n and �,
the results of D1 and D2 are rescaled as
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D1 = �2�− �n + ��2 + q0
2�2n + �g1� + g�2�n + �g2 + ḡ2��n2 + n3 + ḡ� + v1�2 + u1�3

+ ��2�
2 +

�4

2
�4���1 + g0n���

+ g0���2�
2 +

�4

2
�4�n� + g0 � · �n � ���2 + q0

2�2n + ��2�
2 +

�4

2
�4���1 + g0n�����

+ g0 � · �� � �− K0�
2 + �0�

4�

���1 + g0n���� − g0 � · �������2�
2 +

�4

2
�4�n�

+ g0
2 � · �n� � ���2�

2 +
�4

2
�4�n + �− K0�

2 + �0�
4���� , �33�

D2 = �2�ḡn + �1 + g0n���2�
2 +

�4

2
�4�n + �2v1� + w2�2�n + �v2 + g��n2 + g3n3 + w0� + v0�2 + u0�3

+ �− K0�
2 + �0�

4���1 + g0n���� + g0 � · 
n � �w0� + �− K0�
2 + �0�

4���1 + g0n�����

− g0 � · ���n���2�
2 +

�4

2
�4�n� + g0 � · �� � ��− � + �1��n + �2n2 + ��2 + q0

2�2n + ��2�
2 +

�4

2
�4���1 + g0n�����

+ g0
2 � · �n� � ���2 + q0

2�2n + ��2�
2 +

�4

2
�4���� , �34�

where the rescaled parameters are

� =
B0

x − B0
�

B0
x , q0 = 1, g =

B2
�

v
,

g2 =
g0

2
�2B̃0 − 1

B0
x − �� ,

v1 = �
1 + �


2B0
x �g0,

w0 =
1 + 
2

B0
x , u0 =

2B̃2

9v
, K0 =

K

B0
xR0

2 = −
�Ĉ2

2Ĉ̄2

,

�0 =
�

B0
xR0

4 =
�Ĉ4

4Ĉ̄4

,

ḡ =

0

B0
x , g1 =

B1
�

B0
x g0, ḡ2 =

B1
� + 2B̃1

2v
, u1 =

B3
�

3v
,

w2 =

0 + 2B3

�

v
, v2 = �
0/2 + B̃1/3

B0
x �g0, g3 =

2B̃1

9v
,

v0 = �
0 + B3
�

2B0
x �g0, �1 = 3�g3 − u1�/g0, �2 = g2 − v1.

�35�

Note that from Eqs. �22� and �18�, B0
x can be rewritten as

B0
x =

�lĈ̄2
2

4Ĉ̄4

= �l�Ĉ̄0 + Ĉ̄max� , �36�

where Ĉ̄max is the maximum of the first peak of the two-point

correlation function Ĉ̄ in Fourier space. If ���l�= ��l
A−�l

B�

� �Ĉ̄0 / Ĉ̃0
�3��, B0

��1+�lĈ̄0 from Eq. �22� and thus

� =
B0

x − B0
�

B0
x �

�lĈ̄max − 1

�l�Ĉ̄0 + Ĉ̄max�
�

Ĉ̄max

Ĉ̄0 + Ĉ̄max

. �37�

Usually Ĉ̄max� Ĉ̄0 particularly when close to the melting
point Tm, and hence � can be viewed as a small variable �also
used in amplitude equation expansion given below�, propor-
tional to �T−Tm� /Tm as discussed in the original PFC model
�25�.

2. Simplification of scaled binary model

The rescaled PFC dynamic Eqs. �31�–�34� can be further
simplified to a lower order form via a scale analysis. A
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simple scale analysis of Eqs. �33� and �34� yields n ,�
�O��1/2� �e.g., from Eq. �33� we have O��n��O�n3� and
O����O�n�, as is usually assumed�. To simplify the results
the following approximations are made: �i� Assume that


�Ĉ̄0� , �Ĉ̄0
�3�� , ��Ĉ0

�3���� 
��Ĉ0� , �Ĉ̃0
�3�� , ��Ĉ0

�3��� and ��l
A−�l

B�
� ��l

A+�l
B�. �An example case would be that the zeroth-mode

�q=0� correlation functions between the same atomic species
are of the same order, and are either significantly larger or
significantly smaller than those between different ones; see
Eq. �23�.� Thus for the rescaled parameters in Eq. �35�, we
can estimate �based on the definitions in Eqs. �22� and �23�,
as well as Eqs. �32� and �36�� that

g0,g,g2,v1,u0 � O�1� or O��1/2� ,

ḡ,g1, ḡ2,u1,w2,v2,g3,v0,�1,�2 � O��� or higher.

�ii� The concentration field � is slowly varying in space, and
we can keep only the lowest linear gradient terms for �. �iii�
Similar to the single-component case in Sec. II A, it can be
argued that in Eqs. �33� and �34�, compared to the first terms
�2
¯ �, all other terms �g0� · 
¯ �� are of higher order. �iv�
For linear terms in n, only �−�+ ��2+q0

2�2�n is kept which
will lead to periodic crystal structure in solid phases, while
the other term ��2�

2+
�4

2 �4�n is neglected, which corre-
sponds to ignoring the n� related terms in the free energy
functional �21� owing to the much larger length scales of �
field �25�. �v� It is assumed that �2��4 /2�2� �see the
discussions below Eq. �24��.

To lowest order in O��3/2� the above simplifications re-
duce the PFC Eqs. �31�, �33�, and �34� to

�n/�t = D1 + mD2, � �/�t = mD1 + D2, �38�

where

D1 = �2
�− � + g�2�n + ��2 + q0
2�2n + g2n2 + n3 + v1�2

+ 2�0����2 + �4�n + ��2 + �4��n���� ,

D2 = �2�2�0n��2 + �4�n + �w0 + 2v1n + gn2�� + u0�3

− K0�
2�� , �39�

with �0=g0� the rescaled solute expansion coefficient. Equa-
tions �38� and �39� recover the original binary PFC model
with conserved dynamics for both n and � fields �25,32�,
except for the v1 terms �v1�2 and 2v1n��, which account for
additional coupling between the atomic density and concen-
tration fields �or between small crystalline and “slow” con-
centration scales�. This can also be seen via rewriting Eq.
�39� through an effective potential �or free energy functional�
Feff,

D1 = �2
�Feff

�n
, D2 = �2

�Feff

��
, �40�

Feff =� dr�−
1

2
�n2 +

1

2
n��2 + q0

2�2n +
1

3
g2n3 +

1

4
n4

+ 2�0n��2 + �4��n�� +
1

2
�w0 + 2v1n + gn2��2 +

1

4
u0�4

+
1

2
K0����2� . �41�

In the rest of this work, all results, including the correspond-
ing amplitude equation formalism, noise dynamics, and the
related applications, are based on the simplified PFC dy-
namic Eqs. �38� and �39�.

The above results can also be derived and verified through
two other alternative methods, as given in Appendix A. Fur-
thermore, to include higher-order terms �e.g., n4 ,�4 , . . .� in
both the free energy functional and the dynamic equations,
we need to consider higher-order direct correlation functions
�four-point, five-point, etc.� as shown in the single-
component case �Sec. II A�, with similar derivation steps.

III. AMPLITUDE EQUATION FORMALISM FOR BINARY
PFC MODEL

As discussed in Sec. I, the PFC methodology includes
model equations governing the dynamics of density and con-
centration fields as given above. This section will examine
the long wavelength and time limits of the alloy PFC model
by deriving its corresponding amplitude equations, which
emerge after coarse-graining the model using a multiple-
scale analysis. The amplitude representation for single-
component PFC models has been well established �26–30�,
while for binary systems the corresponding amplitude equa-
tions have been derived very recently, for both 2D
hexagonal/triangular and 3D bcc and fcc crystalline struc-
tures �32,43�. Here we focus on the 2D amplitude equations
for the binary PFC model with hexagonal lattice structure,
yielding a complete formulation incorporating the effects of
different mobilities between alloy components and dynamic
variation of the average atomic density, both of which are
missing in the previous binary alloy amplitude formulation
�32�. It is straightforward to extend this calculation to 3D bcc
or fcc structures. The derivation process involves two steps:
the standard multiple-scale expansion �85� for lowest order
amplitude equations �Sec. III A�, and a new hybrid approach
�combining results of multiple-scale approach and the idea of
“Quick and Dirty” renormalization-group �RG� method de-
veloped by Goldenfeld et al. �26,27�� for full order amplitude
equations �see Sec. III B�. To apply the multiple-scale analy-
sis, the rescaled PFC Eqs. �38� and �39� are used.

A. Multiple-scale expansion: Lowest order amplitude equations

Following the standard procedure of multiple-scale ap-
proach �85�, in the limit of small � �i.e., high temperature� we
can separate “slow” spatial and temporal scales �X
=�1/2x , Y =�1/2y , T=�t� for structural profile/amplitudes
from “fast” scales of the underlying crystalline lattice. Sub-
stituting
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�x → �x + �1/2�X, �y → �y + �1/2�Y, �t → ��T, �42�

and the expansions

n = �1/2n�1/2� + �n�1� + �3/2n�3/2� + �2n�2� + ¯ ,

� = �1/2��1/2� + ���1� + �3/2��3/2� + �2��2� + ¯ , �43�

into the PFC Eqs. �38� and �39�, we can obtain the corre-
sponding equations at each order of �1/2. For simplicity, as-
sume m ,�0 ,g ,u0 ,K0�O�1�, g2 ,v1�O��1/2�, and w0
�O��� �as also assumed in Sec. II B 2 for model simplifica-
tion�. To O��1/2� and O��� we have

�2�L0n�i� − mK0�
2��i�� = 0, �2�mL0n�i� − K0�

2��i�� = 0,

�44�

where i=1 /2 or 1, and L0= ��2+q0
2�2. This leads to �1

−m2��2L0n�i�=0 and �1−m2��4��i�=0, with solutions

n�i� = n0
�i��X,Y,T� + 


j=1

3

Aj
�i��X,Y,T�eiqj

0·r + c.c.,

��i� = �0
�i��X,Y,T� , �45�

where q j
0 represent the three reciprocal lattice vectors for 2D

hexagonal/triangular structure: q1
0=−q0�	3x̂ /2+ ŷ /2�, q2

0

=q0ŷ, q3
0=q0�	3x̂ /2− ŷ /2�. Aj are the slowly varying com-

plex amplitudes of the modes q j
0, while n0 and �0 refer to the

real amplitudes of the zero wavenumber neutral mode as a
result of order parameter conservation �86�.

Expanding to O��3/2� yields �with �s= ��X ,�Y�, � ·�s
=�x�X+�y�Y, and �s

2=�X
2 +�Y

2�

�2L0n�3/2� − mK0�
4��3/2�

= �Tn�1/2� + ��2 − �2�2 � · �s�2 − q0
4�s

2�n�1/2�

− �2�g2n�1/2�2
+ n�1/2�3

� − g��1/2�2
�2n�1/2�

+ 2�0�
2���1/2��2 � · �s�n�1/2�

+ �2 � · �s����1/2�n�1/2���

+ m
2�0�
2�n�1/2��2 � · �s�n�1/2��

− g��1/2��2n�1/2�2
− 2v1��1/2��2n�1/2�� ,

m�2L0n�3/2� − K0�
4��3/2�

= m
��2 − �2�2 � · �s�2 − q0
4�s

2�n�1/2� − �2�g2n�1/2�2

+ n�1/2�3
� − g��1/2�2

�2n�1/2� + 2�0�
2���1/2��2 � · �s�n�1/2�

+ �2 � · �s����1/2�n�1/2���� + �T��1/2� + 2�0�
2�n�1/2�

��2 � · �s�n�1/2�� − g��1/2��2n�1/2�2
− 2v1��1/2��2n�1/2�,

which is equivalent to

�1 − m2��2L0n�3/2�

= �Tn�1/2� − m�T��1/2� + �1 − m2�
��2 − �2�2 � · �s�2

− q0
4�s

2�n�1/2� − g��1/2�2
�2n�1/2� − �2�g2n�1/2�2

+ n�1/2�3
�

+ 2�0�
2���1/2��2 � · �s�n�1/2�

+ �2 � · �s����1/2�n�1/2���� ,

�1 − m2�K0�
4��3/2�

= m�Tn�1/2� − �T��1/2� + �1 − m2�
− 2�0�
2

��n�1/2��2 � · �s�n�1/2�� + g��1/2��2n�1/2�2

+ 2v1��1/2��2n�1/2�� . �46�

As shown in Eq. �45�, the zero eigenvectors of operators

�2L0 and �4 are �e
iqj
0·r ,1� and 1 �of the 0th mode�, respec-

tively. Using the Fredholm theorem or solvability condition
�85� in Eq. �46�, we can derive the lowest order amplitude
equations as �with j=1,2 ,3�

�Aj
�1/2�/�t = − �1 − m2�q0

2
�− 1 + �2iq j
0 · �s�2�Aj

�1/2� + �3n0
�1/2�2

+ 2g2n0
�1/2� + g�0

�1/2�2
�Aj

�1/2� + 3Aj
�1/2���Aj

�1/2��2

+ 2
k,l�j

k�l
��Ak

�1/2��2 + �Al
�1/2��2�� + �6n0

�1/2�

+ 2g2�
k,l�j

k�l
Ak

�1/2��

Al
�1/2��

− 2�0��0
�1/2�

��2iq j
0 · �s�Aj

�1/2� + �2iq j
0 · �s���0

�1/2�Aj
�1/2���� , �47�

�n0
�1/2�/�t = q0

4�s
2n0

�1/2�, �48�

��0
�1/2�/�t = mq0

4�s
2�0

�1/2�. �49�

Using the scaling relation Aj =�1/2Aj
�1/2�, n0=�1/2n0

�1/2�, and
�0=�1/2�0

�1/2�, we can then obtain the corresponding ampli-
tude equations in the unscaled units �x ,y , t�.

It is noted that the direct solutions to Eq. �46� have the
form

n�3/2� = n0
�3/2��X,Y,T� + 


j=1

3

Aj
�3/2��X,Y,T�eiqj

0·r + c.c.

+ higher harmonics, �50�

��3/2� = �0
�3/2��X,Y,T� + 


j=1

3

� j
�3/2��X,Y,T�eiqj

0·r + c.c.

+ higher harmonics. �51�

Compared to Eq. �45� for the O��1/2� and O��� solutions, it
can be found that the complex amplitudes � j corresponding
to the periodic modes of the concentration field in substitu-
tional binary alloys considered here is generally of order �
higher than Aj, n0, and �0. For systems in which a sublattice
ordering occurs �such as B2 or B32 ordering in bcc crystals�,
� j would be of the same order as these other fields. To de-
scribe sublattice ordering a different free energy functional
from the one given in Eq. �41� would also be required. De-
tailed results will be presented elsewhere.

B. A hybrid approach: Full order amplitude equations

The lowest order amplitude Eqs. �47�–�49� derived above
are not sufficient to describe the evolution of binary systems;
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e.g., Eq. �47� for Aj is not rotationally invariant, and Eqs.
�48� and �49� for n0 and �0 are just diffusion equations and
would lead to a steady state solution of constant n0 and �0
values at long enough time. We thus need higher-order am-
plitude equations, which in principle can be derived by ex-
tending the multiple-scale process described above to higher-
order expansions. However, the procedure is complicated
and tedious. In the following we use, instead, a simplified
approach combining the above steps of multiple-scale expan-
sion and the idea of the “Quick and Dirty” RG method
�26,27�.

The first step is the standard multiple-scale expansion
given in Sec. III A, starting from the scale separation Eq.
�42�. From the solution forms of Eqs. �45�, �50�, and �51�, we
know that to all orders of � the solutions of n and � fields
can be written as

n = n0�X,Y,T� + 

j=1

3

Aj�X,Y,T�eiqj
0·r + c.c.

+ higher harmonics, �52�

� = �0�X,Y,T� + 

j=1

3

� j�X,Y,T�eiqj
0·r + c.c.

+ higher harmonics, �53�

with �X ,Y ,T� the slow scales. Thus, based on the separation
between “fast”/“slow” scales the following expansions �full-
order� can be obtained,

�2n → ��s
2n0 + 


j=1

3

�L j
sAj�eiqj

0·r + c.c. + 
 ¯ � ,

��2 + q0
2�2n → ���s

2 + q0
2�2n0 + 


j=1

3

�G j
s2Aj�eiqj

0·r + c.c. + 
 ¯ � ,

��2 + �4��n�� → ���s
2 + �2�s

4��n0�0 + 

j=1

3

Aj� j
� + c.c.�

+ 

j=1

3 �L j
sG j

s��0Aj + n0� j

+ 

k,l�j

k�l

Ak
��l

���eiqj
0·r + c.c. + 
 ¯ � ,

n2 → n0
2 + 2


j=1

3

�Aj�2 + 

j=1

3 �2n0Aj + 2 

k,l�j

k�l

Ak
�Al

��eiqj
0·r + c.c.

+ 
 ¯ � ,

n3 → n0
3 + 6n0


j=1

3

�Aj�2 + 6��
j=1

3

Aj + c.c.� + 

j=1

3 �3�n0
2

+ �Aj�2�Aj + 6 

k,l�j

k�l

�n0Ak
�Al

� + Aj��Ak�2 + �Al�2���eiqj
0·r

+ c.c. + 
 ¯ � ,

n�2 → n0�0
2 + 2n0


j=1

3

�� j�2 + 

j=1

3

�2�0Aj + 

k�l�j

Ak
��l

��� j
�

+ c.c. + 

j=1

3 �2n0��0� j + 

k,l�j

k�l

�k
��l

��
+ ��0

2 + 2

k=1

3

��k�2�Aj + 2�0 

k�l�j

Ak
��l

� + 2� j

k�j

�Ak�k
�

+ c.c.� + Aj
�� j

2�eiqj
0·r + c.c. + 
 ¯ � ,

¯¯ �54�

where 
¯ � refers to the contributions from higher harmonics
and the slow operators are given by

L j
s = ��s

2 + �1/2�2iq j
0 · �s� − q0

2,

G j
s = L j

s + q0
2 = ��s

2 + �1/2�2iq j
0 · �s� . �55�

Assuming that higher harmonic terms can be neglected,
the binary PFC Eqs. �38� and �39� are then replaced by

��Tn0 + �
 j
�TAje

iqj
0·r + c.c. = D1

s + mD2
s , �56�

��T�0 + �
 j
�T� je

iqj
0·r + c.c. = mD1

s + D2
s , �57�

where D1
s and D2

s are the corresponding expansion of D1 and
D2, as obtained by substituting Eq. �54� into Eq. �39�. Inte-
grating Eqs. �56� and �57� over the eigenmodes

�dr
e−iqj
0·r ,1�, keeping in mind that “fast” and “slow” scales

are separated, and in the final step returning to original un-
scaled units �x ,y , t�, we arrive at the following full-order
amplitude equations for the binary PFC model:

�n0/�t = �2
�F
�n0

+ m�2
�F
��0

, �58�

�Aj/�t = L j� �F
�Aj

� + m
�F
�� j

�� � − q0
2� �F

�Aj
� + m

�F
�� j

�� ,

�59�

��0/�t = m�2
�F
�n0

+ �2
�F
��0

, �60�
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�� j/�t = L j�m
�F
�Aj

� +
�F
�� j

�� � − q0
2�m

�F
�Aj

� +
�F
�� j

�� , �61�

where j=1,2 ,3, and

F =� dr�−
1

2
�n0

2 +
1

2
���2 + q0

2�n0�2 +
1

3
g2n0

3 +
1

4
n0

4 + �− � + 3n0
2 + 2g2n0 + g�0

2�

j=1

3

�Aj�2 + 

j=1

3

�G jAj�2 +
3

2

j=1

3

�Aj�4

+ �6n0 + 2g2���
j=1

3

Aj + c.c.� + 6

j�k

�Aj�2�Ak�2 + g�1

2
n0

2�0
2 + n0

2

j=1

3

�� j�2 + 2 

j,k=1

3

�Aj�2��k�2 + 

j=1

3 �2n0�0Aj� j
� +

1

2
Aj

2� j
�2 + c.c.�

+ 

j�k

�Aj� j
� + c.c.��Ak�k

� + c.c.� + 

j�k�l

�n0� j
� + �0Aj

��Ak
��l

� + c.c.� + 2�0��0n0��2 + �4�n0 + �0�

j=1

3

Aj
�L jG jAj + c.c.�

+ n0��2 + �4��

j=1

3

Aj� j
� + c.c.� + n0


j=1

3

� j
�L jG jAj + 


j�k�l

Aj�kLlGlAl + c.c.� +
1

2
w0�0

2 +
1

2
K0���0�2

+
1

4
u0�0

4 + �w0 + 3u0�0
2�


j=1

3

�� j�2 −
1

2
K0


j=1

3

�� jL j
�� j

� + c.c.� + u0�3

2

j=1

3

�� j�4 + 6�0��
j=1

3

� j + c.c.� + 6

j�k

�� j�2��k�2�
+ v1�n0�0

2 + 2n0

j=1

3

�� j�2 + 2�0�

j=1

3

Aj� j
� + c.c.� + 


j�k�l

Aj�k�l + c.c.�� . �62�

Corresponding to Eq. �55�, the operators L j and G j �in the
original scales� are defined by

L j = �2 + 2iq j
0 · �− q0

2, G j = L j + q0
2 = �2 + 2iq j

0 · � ,

�63�

and for simplicity, in Eqs. �59�–�62� the operator L j can be
replaced by −q0

2 in the long wavelength approximation as
adopted in Ref. �32�.

As discussed at the end of Sec. III A, the amplitudes � j
are of O��� higher compared to the others for the free energy
functional considered here. Thus the above amplitude equa-
tions can be further simplified by assuming � j �0, which
leads to

�Aj/�t = − q0
2 �F
�Aj

� − mq0
2�2�0�Aj��2 + �4�n0 + n0L jG jAj

+ 

k�l�j

Ak
�Ll

�Gl
�Al

�� + 2g�0�n0Aj + 

k,l�j

k�l

Ak
�Al

��
+ 2v1�0Aj� = − q0

2 �F
�Aj

� − mq0
2� �F

�� j
��

�j=0

.

The dynamic equations for n0 and �0 are still governed
by Eqs. �58� and �60�. The amplitude equations can be fur-
ther simplified by noting from Eq. �61� 0��� j /�t
=−q0

2�m�F /�Aj
�+�F /�� j

� ��j=0�. Thus, the above dynamic
equation for Aj can be further approximated as

�Aj/�t � − q0
2�1 − m2�

�F
�Aj

� , �64�

which to lowest order recovers the result of multiple-scale
approach given in Eq. �47�. In the applications that will be
examined in Sec. V the simplified amplitude Eqs. �58�, �60�,
and �64� will be used.

IV. NOISE DYNAMICS AND STOCHASTIC AMPLITUDE
EQUATIONS

In the original PFC model �23,24� a conserved noise dy-
namics has been incorporated. However, in DDFT it has
been argued that the dynamic equation governing the density
field evolution should be deterministic and an additional sto-
chastic noise term added to Eq. �1� would lead to an artificial
double-counting of thermal fluctuations �76�. On the other
hand, recent studies �87� have shown that deterministic
DDFT dynamics governs the ensemble averaged density
field ��r , t�, while if the density field is temporally coarse
grained—as is the assumption in PFC modeling—the corre-
sponding dynamic equation would then be stochastic, but
with a �unknown� coarse-grained free energy functional in-
stead of the equilibrium Helmholtz free energy functional
used in static DFT. In the current case of PFC modeling,
quite drastic approximations have been made to the DFT free
energy functional �particularly at the level of the direct cor-
relation functions; see e.g., Eqs. �3�, �4�, and �18��, and hence
it could be argued that the incorporation of noise terms in the
PFC dynamics would be necessary and useful to capture the
qualitative effects of fluctuations in phenomena such as ho-
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mogeneous nucleation. In what follows, noise will be added
to the PFC models studied above and the corresponding sto-
chastic amplitude equations will be derived for both single-
component and binary systems.

A. Single-component PFC

The stochastic DDFT equation for single-component sys-
tems is given by Eq. �1� with a multiplicative noise term
� · �	��r , t���r , t�� added to the right-hand-side, where the
noise field ��r , t� is determined by �with �0=2kBTM�

���r,t�� = 0,

����r,t����r�,t��� = �0��r − r����t − t����� ��,� = x,y,z� .

�65�

The corresponding dynamic equation governing the rescaled
density field n is similar to Eq. �7�, i.e., �n /�t=M�� · ��1
+n���F /�n�+� · �	�1+n� /�l��. Adopting the lowest order
approximation as given in Sec. II A, we can write the res-
caled stochastic PFC equation as

�n/�t = �2�− �n + ��2 + q0
2�2n + g2n2 + n3� + � · � , �66�

where the rescaled noise � is also determined by Eq. �65� but
with �0=2v / �Bx2Rd�l� �where d is the dimensionality�.

To derive the associated stochastic amplitude equations,
we follow the standard multiple-scale approach in the limit
of small �, which leads to the expansion of density field n in
terms of the zeroth-mode average density n0 and complex
amplitudes Aj that are varying on slow scales �X ,Y ,T�; see
Eq. �52�. Effects of external noise can be approximated via a
projection procedure used in hydrodynamic analysis �88,89�.
Based on the fact that thermal noises originate from the fluc-
tuations or random motion of individual atoms/molecules at
the microscopic scales, we can project � onto the base modes
given in Eq. �52�, i.e.,

� = �0�X,Y,T� + 

j=1

3

�Aj
�X,Y,T�eiqj

0·r + c.c., �67�

where

��0� = ��Aj
� = 0, ��Ai

�Aj
� = ��0�Aj

� = ��0�Aj

� � = 0,

��0
��0

�� = �0�0��r − r����t − t�����,

��Ai

� �Aj

� �� = �i�0��r − r����t − t���ij�
��, �68�

�with i , j=1,2 ,3 ; � ,�=x ,y�. Here �i �i=0,1 ,2 ,3� is a con-
stant determining the noise correlation strength, which can
be approximated as �i=�=1 /7 if equal contribution from all
modes in Eq. �67� is assumed. Thus the random noise term in
Eq. �66� is given by

� · � = 

j=1

3

iq j
0 · �Aj

eiqj
0·r + c.c. + �1/2��X�0

x + �Y�0
y + 


j=1

3

��X�Aj

x

+ �Y�Aj

y �eiqj
0·r + c.c.� . �69�

In order to be relevant in the amplitude expansion, it is nec-
essary that � ·��O��3/2�, leading to �Aj

�O��3/2� and hence
the noise intensity �0�O���. The latter yields �0�O��3/2�,
which can be deduced from Eq. �68�.

Following the procedure of multiple-scale expansion and
retaining the random force contribution to the lowest order,
we can derive the following stochastic amplitude equations:

�Aj/�t = − q0
2�F/�Aj

� + � j , �70�

�n0/�t = �2�F/�n0 + � · �0, �71�

where F is the effective free energy of the single-component
amplitude representation �see Refs. �3,30,37� for the detailed
form�, which is given by Eq. �62� with �0 and � j set to 0.
Also, � j = iq j

0 ·�Aj
�j=1,2 ,3� and

�� j� = ��0� = 0,

��i� j� = ��0� j� = ��0� j
�� = 0,

��i� j
�� = �iq0

2�0��r − r����t − t���ij , �72�

��0
��0

�� = �0�0��r − r����t − t�����.

The noise dynamics is then consistent with the dynamics of
amplitude representation, i.e., nonconserved dynamics for Aj
in Eq. �70� and conserved one for n0 in Eq. �71�.

B. Binary PFC

Similar to the single-component system, based on Eq.
�15� the stochastic DDFT equations for a binary system can
be written as

��A

�t
= � · �MA�A �

�F
��A

+ 	�A�A� ,

��B

�t
= � · �MB�B �

�F
��B

+ 	�B�B� , �73�

where for noises �� ,
=A ,B ; � ,�=x ,y ,z ; ��=2kBTM��,

��i�r,t�� = 0, ���
��r,t��


��r�,t��� = ����r − r����t − t����
���.

�74�

From Eqs. �19� and �26� the dynamics equations for n and �
fields can be rewritten as
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�n/�t = M1D1 + M2D2 + � · �	1 + n�	1 + ��A + 	1 − ��B�� ,

��/�t =
1

1 + n

�M2 − M1��D1 + �M1 − M2��D2

+ �1 − �� � · �	�1 + n��1 + ���A�

− �1 + �� � · �	�1 + n��1 − ���B�� , �75�

where we have rescaled �A�B�→�A�B� /	2�l. Following the
procedure given in Sec. II B and only retaining the lowest
order noise terms, we can derive the rescaled stochastic bi-
nary PFC equations as

�n/�t = D1 + mD2 + � · �n, � �/�t = mD1 + D2 + � · ��,

�76�

where the expressions of D1 and D2 have been given in Eqs.
�39�–�41�. The noise terms are defined by

�n = �A + �B, �� = �A − �B, �77�

where �A�B� also obeys Eq. �74�, although with ��

=kBTM�v / �M1B0
x2Rd�l� due to the rescaling, and

��n� = ���� = 0, ��n
���

�� = ��A − �B���r − r����t − t�����,

��n
��n

�� = ���
���

�� = ��A + �B���r − r����t − t�����, �78�

with �A+�B=2v / �B0
x2Rd�l� and �A−�B=m��A+�B�

=2mv / �B0
x2Rd�l�.

Using the multiple-scale approach, we can expand the
density field n according to Eq. �52� while assuming the
concentration field as slowly varying, �=�0�X ,Y ,T� �that is,
keeping only the zeroth mode and neglecting the higher-
order contributions from � j in Eq. �53�, as discussed in Sec.
III B�. Similar to the single-component case, the projection
of noises can be given by

�n = �0�X,Y,T� + 

j=1

3

�Aj
�X,Y,T�eiqj

0·r + c.c., �� = ���X,Y,T� .

�79�

Thus the expression of � ·�n is the same as Eq. �69�, while
� ·��=�1/2��X��

x +�Y��
y �. Also we can estimate �Aj

,�0 ,��

�O��3/2� and �A ,�B�O���.
The stochastic amplitude equations for binary PFC model

can then be derived, i.e.,

�Aj/�t = − q0
2�1 − m2�

�F
�Aj

� + � j , �80�

�n0/�t = �2
�F
�n0

+ m�2
�F
��0

+ � · �0, �81�

��0/�t = m�2
�F
�n0

+ �2
�F
��0

+ � · ��0
, �82�

where the deterministic parts have been obtained in Sec.
III B; see Eqs. �58�, �60�, and �64�, as well as Eq. �62� for the

effective potential F. For the noise terms, � j = iq j
0 ·�Aj

�j
=1,2 ,3�, and

�� j� = ��0� = ���0
� = 0,

��i� j� = ��0� j� = ��0� j
�� = ���0

� j� = ���0
� j

�� = 0,

��i� j
�� = �iq0

2��A + �B���r − r����t − t���ij ,

��0
��0

�� = �0��A + �B���r − r����t − t�����,

���0

� ��0

� � = ��A + �B���r − r����t − t�����,

���0

� �0
�� = ��A − �B���r − r����t − t�����, �83�

with i , j=1,2 ,3 and � ,�=x ,y. If assuming �A��B �for
equal mobility MA�MB and m�0�, i.e., with almost the
same noise/fluctuation intensity for A and B components, we
have ���0

� �0
���0 and hence all noise terms �� j ,�0 ,��0

� can be
treated independently. However, for the case of different mo-
bilities �MA�MB and m�0�, we get ���0

� �0
���0, and hence

noises �0 and ��0
for 0th-mode density fields n0 and �0 are

then correlated. Similar results can be obtained for noises �n
and �� in the stochastic PFC Eqs. �75� and �78�.

V. APPLICATIONS IN ALLOY HETEROSTRUCTURES

As discussed in the introduction, the PFC model and the
corresponding amplitude equations have applied to the study
of a wide variety of phenomena involved in material process-
ing and microstructure evolution. In this section we will il-
lustrate how the amplitude equations derived in the preced-
ing sections can be employed to examine the effect of
surface segregation and alloy intermixing. Alloy intermixing
is known to play an important role in the growth and pro-
cessing of material heterostructures, including morphological
and compositional profiles and the associated sample opto-
electronic properties and functionality. Recent intensive stud-
ies on thin film epitaxy and atomic deposition have shown
the important effects of intermixing on nanostructure self-
assembly. Typical examples include InAs�InGaAs�/
GaAs�001� �66–68� or Ge�SiGe�/Si�001� �69,70� heteroepit-
axy that has been investigated extensively �particularly the
intermixing-caused alloying of wetting layers and quantum
dots�, and the interlayer diffusion in semiconductor multilay-
ers or superlattices such as InP/InGaAs �71�, GaAs/GaSb
�72�, and GaAs/InAs �73�. An important phenomenon in
these epitaxial layers is the occurrence of surface segrega-
tion, in which an enrichment of one of the film components
at a surface or interface region occurs. This has been ob-
served in a variety of material systems including III-V and
II-VI semiconductor heterostructures �66–73�. To address
these complicated phenomena and effects, the basic pro-
cesses and mechanisms of intra- and interlayer diffusion at
nearly planar interfaces as well as their coupling with mate-
rial processing and growth parameters needs to be clarified.

In light of the above observations, the focus of this sec-
tion is on heterostructures of a nearly planar interface, for
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both lattice-matched and strained epitaxial layers. For layers
stressed due to lattice mismatch, the configurations studied
here are metastable in nature, and our results will be used for
further studies of the associated later-stage nanostructure
evolution �e.g., quantum dots�, which will be presented else-
where. For such film geometry with a planar interface, it can
be assumed that both morphological and compositional pro-
files along the lateral direction are approximately uniform or
homogeneous �at least metastability�, and hence these struc-
tural profiles vary only along the direction �y� normal to the
interface. An advantage of the amplitude equation represen-
tation of the PFC model developed above is that the system
of interest can then be mapped onto an effective one-
dimensional �1D� description, as will be shown below.

A. Effective 1D model system with elasticity

To address the elasticity incorporated in the amplitude
equation formalism, it is useful to note that the structural
amplitudes can be written as

Aj = Aj�e
iqj

0·u �j = 1,2,3� , �84�

where for 2D hexagonal structure q j
0 are the three basic wave

vectors given in Sec. III and u=�0�xx̂+yŷ� describes the bulk
compression or dilation. The effective free energy F in Eq.
�62� can be rewritten as �neglecting the higher-order contri-
butions from � j and approximating L j �−q0

2�

F =� dr�−
1

2
�n0

2 +
1

2
���2 + q0

2�n0�2 +
1

3
g2n0

3 +
1

4
n0

4

+ �− � + 3n0
2 + 2g2n0 + g�0

2�

j

�Aj��
2 + 


j

�G j�Aj��
2

+
3

2

j

�Aj��
4 + �6n0 + 2g2���

j

Aj� + c.c.� + 6

j�k

�Aj��
2�Ak��

2

+
1

2
w0�0

2 +
1

2
K0���0�2 +

1

4
u0�0

4 +
1

2
gn0

2�0
2 + v1n0�0

2

+ 2�0��0n0��2 + �4�n0 − q0
2�0�


j

Aj�
�G j�Aj� + c.c.��� ,

�85�

where

G j� = �2 + 2i�� j + q j
0� · �− �� j�2 − 2q j

0 · � j , �86�

with �1=−�xx̂−�yŷ /2, �2=�yŷ, �3=�xx̂−�yŷ /2, �x
=	3q0�0 /2, and �y =q0�0. The corresponding dynamic equa-
tions for Aj�, n0, and �0 are still governed by Eqs. �80�–�82�,
although with Aj replaced by Aj�. In mechanical equilibrium,
we can assume that Aj��A, i.e., Aj �A exp�iq j

0 ·u� where A is
a constant. Minimizing the effective free energy F with re-
spect to A yields the equilibrium value �0

eq=−1+	1−2�0�0
�−�0�0 to lowest order. This leads to the equilibrium wave
number qeq= �1+�0

eq�q0=	1−2�0�0q0 �where �0 is the res-
caled solute expansion coefficient defined in Sec. II B�, and
the equilibrium amplitude

A =
1

15

− �3n0 + g2� + 	�3n0 + g2�2 − 15�− � + q0

4��0
2 + 2�0���0

2 + 2�0 + 4�0�0� + n0�3n0 + 2g2� + g�0
2�� . �87�

The elastic constants �rescaled� are then given by C11=C22

=9A2, C12=C44=C11 /3=3A2, and Young’s modulus E=8A2

�24,25,32�.
For the dynamics of a heterostructure configuration with

nearly-planar interface �either liquid-solid or solid-solid�, we
can assume that Aj��x ,y , t��Aj

0�y , t�, n0�x ,y , t��n0
0�y , t�, and

�0�x ,y , t���0
0�y , t�, resulting in an effective 1D description

of the system. The dynamics of the amplitude equations then
become

�n0
0/�t = �y

2 �F
�n0

0 + m�y
2 �F
��0

0 , �88�

��0
0/�t = m�y

2 �F
�n0

0 + �y
2 �F
��0

0 , �89�

�Aj
0/�t = − q0

2�1 − m2�
�F

�Aj
0�

, �90�

where

�F
�n0

0 = �− � + ��y
2 + q0

2�2�n0
0 + g2n0

02 + n0
03 + �6n0

0 + 2g2�

j

�Aj
0�2

+ 6��
j

Aj
0 + c.c.� + �gn0

0 + v1��0
02 + 2�0��0

0��y
2 + �y

4�n0
0

+ ��y
2 + �y

4��n0
0�0

0�� , �91�

�F
��0

0 = �w0 − K0�y
2��0

0 + u0�0
03 + g�n0

02 + 2

j

�Aj
0�2��0

0

+ 2v1n0
0�0

0 + 2�0�n0
0��y

2 + �y
4�n0

0 − q0
2


j

�Aj
0�G j

0Aj
0

+ c.c�� , �92�
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�F
�Aj

0�
= �− � + G j

02 + 2g2n0
0 + 3n0

02 + g�0
02�Aj

0

+ 3Aj
0��Aj

0�2 + 2 

k,l�j

k�l

��Ak
0�2 + �Al

0�2��
+ �6n0

0 + 2g2��
k�j

Ak
0� − 2�0q0

2��0
0G j

0Aj
0 + G j

0��0
0Aj

0�� ,

�93�

with

G j
0 = �y

2 + 2i�� jy + qjy
0 ��y − �� j�2 − 2q j

0 · � j . �94�

For coherent strained alloy layers, which are of great in-
terest in materials growth, the solid layer is strained with
respect to a substrate and subjected to an epitaxial condition
qx=qx

sub= �	3 /2�q0�1+�0
sub� �with “sub” referring to the sub-

strate�. The wavenumber qy along the vertical or layer
growth direction y is determined by the lattice elastic relax-
ation �or Poisson relaxation in continuum elasticity theory�.
The system is thus governed by the above amplitude Eqs.
�88�–�93�, but with �0 fixed by the corresponding elasticity
quantity �0

sub of the substrate �and thus �x=	3q0�0
sub /2 and

�y =q0�0
sub�. The vertical strain relaxation �Poisson relax-

ation� can be determined from the phase of complex ampli-
tudes Aj

0. Furthermore, the misfit strain �m of such a solid
layer is given by

�m =
Req − R

R
=

qx

qx,eq
− 1 =

�0 − �0
eq

1 + �0
eq , �95�

where R and qx are lateral lattice spacing and wavenumber of
the strained layer, and Req, qx,eq, and �0

eq are for the corre-
sponding stress-free, equilibrium bulk state.

For the systems studied here the model parameters are
chosen such that no phase separation or spinodal decompo-
sition can occur in the bulk of each solid or liquid region.
The corresponding conditions on the parameters that assure
this are derived via a linear stability analysis of the ampli-
tude equations. Following standard procedures, we substitute

the expansion n0= n̄0+ n̂0, �0= �̄0+ �̂0, and Aj = Āj + Âj into
Eqs. �58�, �60�, and �64�, obtain the linearized evolution

equations for the perturbed quantities n̂0, �̂0, and Âj, and
calculate the associated perturbation growth rates. The cor-
responding results are complicated due to the coupling be-
tween the evolution equations of all three perturbed quanti-
ties. To estimate the conditions for phase separation, here we

simply assume that n̂0 , Âj �0, and only study the stability of

concentration field. To first order of �̂0 we have

��̂0/�t � �2�− K0�
2 + w0 + 3u0�̄0

2 + gn̄0
2 + 2v1n̄0

+ 2g

j

�Āj�2 + m�2�0n̄0��2 + �4� + 2gn̄0�̄0

+ 2v1�̄0���̂0. �96�

In Fourier space, the perturbation growth rate ��q� is then
given by

� = − q2�2m�0n̄0q4 + �K0 − 2m�0n̄0�q2 + weff� , �97�

where

weff = w0 + 3u0�̄0
2 + gn̄0

2 + 2v1n̄0 + 2g

j

�Āj�2

+ 2m�gn̄0 + v1��̄0. �98�

If weff�0, an instability of the homogeneous alloy occurs,
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FIG. 1. �Color online� Liquid-solid-solid coexistence profile calculated from the amplitude equations, as characterized by �a� the
composition field �0, amplitudes �Aj�, and the average density field n0, and �b� the phases of amplitudes Aj. The parameters are set as �
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leading to spinodal decomposition or phase separation of al-
loy components. The characteristic wave number �for maxi-
mum perturbation growth rate� is then given by qmax

2

= �	�K0−2m�0n̄0�2−6m�0n̄0weff− �K0−2m�0n̄0�� / �6m�0n̄0�
if m ,�0 , n̄0�0, or qmax

2 =−weff / �2K0� if one of m ,�0 , n̄0=0.
For the heterostructural systems presented below and the

parameters chosen, the condition weff�0 is always satisfied
in the bulk phases, keeping homogeneous concentration pro-
file within each layer. Concentration heterogeneity may oc-
cur across the system configuration, which however is due to
the effect of interfaces or due to composition overshooting, a
phenomenon caused by alloy intermixing that will be dis-
cussed in detailed below.

B. Results: Equilibrium profiles and layer growth

Equations �88�–�93� were solved numerically using a
pseudospectral method and an exponential propagation
scheme for time integration of stiff equations �90,91�. Re-
sults of the corresponding morphological and compositional
1D profiles are shown in Figs. 1–5, for two types of configu-
rations of liquid-solid-solid and liquid-solid coexistence or
growth. For the simulations shown here we choose a time
step �t=1, which can be made as large as this due to the
numerical scheme we used; The numerical grid spacing used
is �y=�0 /8 �where �0=2� /q0�. To emulate a liquid-solid �or
liquid-solid-solid� heterostructure and apply periodic bound-
ary conditions in the numerical calculation, the initial con-
figuration is set as two �or four� symmetric interfaces located
at y=Ly /4 and 3Ly /4 �or y=Ly /6, Ly /3, 2Ly /3, and 5Ly /6�,
separating different liquid or solid regions. These interfaces
need to be set sufficiently far apart from each other to avoid
any interface coupling and the artifacts of finite size effects.
For results shown below we choose the 1D system size per-
pendicular to the interfaces as Ly =2048�y, with similar re-
sults obtained in calculations up to Ly =8192�y. Also, the
parameters used in the amplitude equations are based on the
phase diagrams given in Ref. �32� showing liquid-solid and

solid-solid coexistence, i.e., �g ,g2 ,u0 ,K0 ,v1�= �−1.8,
−0.6,4 ,1 ,0�, w0=0.008 or 0.088, �0=0.3 or 0, and �
= 
0.02.

1. Liquid-solid and liquid-solid-solid coexistence

The equilibrium profile for a liquid-solid�I�-solid�II� co-
existence is given in Fig. 1 �with time corresponding to t
=2�107�. To obtain the liquid-solid-solid coexistence, we
use �=0.02, �0=0.3, and w0=0.008 �from the eutectic phase
diagram in Ref. �32��, set the initial length ratio of liquid:so-
lid�I�:solid�II� as 1/3:1/3:1/3, and let all of �0

0, Aj
0, and n0

0

evolve with time until a stationary state is reached. Solid II is
treated as a substrate �unstrained�, and hence in the ampli-
tude Eqs. �88�–�93� we set �0=�0

II=−1+	1−2�0�0
II. Due to
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nonzero solute expansion coefficient �0, i.e., different atomic
sizes of A and B alloy components, solid I is strained �with
misfit �m with respect to the substrate �solid II� being 14.9%
for the parameters of Fig. 1�. This is consistent with the
numerical results in Fig. 1�b�, showing zero phase of ampli-
tudes Aj within unstrained solid II and a linear dependence of
phase on position y in the bulk of solid I. For comparison,
the magnitude of lattice misfit between III-V or II-VI layers
is around 0 to 5% �e.g., �m=4.2% for Ge/Si and less for
SixGe1−x /SiyGe1−y�, while the lattice mismatch for III-V Ni-
tride heteroepitaxial films or III-V/Si heterostructures could
reach 10% or more �e.g., �m=11.5% for InAs/Si�.

For a liquid-solid heterostructural configuration, to deter-
mine the coexistence state we choose similar parameters ex-
cept for w0=0.088, �=−0.02, and initially �0=0 in the whole

system. This corresponds to the single solid phase region �no
solid-solid coexistence, only liquid-solid� in the phase dia-
gram �32�. To make the solid strained, we set �0=0.05 as
given by an external condition �i.e., a substrate�, and thus
from Eq. �95� the misfit strain in the solid here is about 5%.
The results for �0=0 and 0.3 are given in Figs. 2�a� and 2�b�,
respectively, including the equilibrium profiles �up to t=2
�107� and the process of time evolution. As expected, for
�0=0 �equal atomic size of alloy components� the concen-
tration field �0 remains at 0 all the time, as seen in Fig. 2�a�.
However, for �0=0.3 the initial �0=0 profile splits at the
liquid-solid interface �see Fig. 2�b��. For the parameters used
here, �0�0 �with size of atom A larger than that of atom B�
and misfit �m�0 �compressed solid�, and thus the solid
would prefer to have more smaller atoms B �with �0�0�,
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leading to a “dip” on the solid side of the compositional
interface; due to the conservation law on the field �0, a
“bump” of �0�0 �more larger atoms A� appears on the other
side via layer interdiffusion or alloy intermixing. As a result
of atomic diffusion, such “dip” and “bump” will spread out
into the bulk phases as time increases, leading to a positive/
negative �0 equilibrium profile of liquid-solid coexistence, as
shown in Fig. 2�b�.

It is interesting to note that the nonhomogeneous compo-
sitional profile can also be found in liquid-solid heterostruc-
tures with nonzero �0 and no misfit strain �i.e., �0=0, �0
=0, and �0=0.3, as in Fig. 3�. A slight enrichment of larger
atoms A is observed on the surface of unstrained solid, show-
ing as a “peak” �with �0�1.5�10−4� at the compositional
interface in Fig. 3. Note that this phenomenon of weak sur-
face segregation persists in the equilibrium or stationary con-
figuration �as tested up to t=107�, and is caused by unequal
atomic sizes of alloy components. Due to the conservation of
the �0 field and the appearance of concentration “peak” at
interface, the bulk values of concentration field �0 in both
liquid and solid regions deviate from the 0 value in the cor-
responding phase diagram, as mediated by the alloy diffusion
process. We find that this deviation is a result of finite size
effect: the deviation decreases with increasing system size,
as confirmed in our simulations of Ly =1024�y, 2048�y, and
8192�y. Thus in the thermodynamic limit �with Ly→	� �0
=0 is expected in the liquid and solid bulks, consistent with
the equilibrium phase diagram for unstrained systems. On
the other hand, the effect of surface enrichment would be
preserved, as we have observed in simulations of various
system sizes.

2. Coherent strained layer growth and front motion

To simulate the process of strained layer growth encoun-
tered in most experiments, we start from a liquid-
solid�strained� coexisting configuration and let the liquid so-
lidify, leading to a growing front of the strained solid layer
�as shown in Fig. 4�. The initial condition is set as the liquid-
solid coexistence profiles given in Fig. 2, with only n0 in
liquid changed to n0

liq=−0.0021 to initialize the solidification
and growth while all others �including concentration �0 and
amplitudes Aj� being kept the same as the coexistence con-
dition. The growth rate of the strained layer can be controlled
by the setting of liquid n0

liq, i.e., its deviation from the equi-
librium or coexistence value. A boundary condition of con-
stant flux is kept in the liquid region �with distance 100�y
beyond the moving interface�.

The growth process is shown in Fig. 4, for equal mobility
MA=MB, 5% misfit strain for solid layer, and up to t=106.
The liquid-solid front moves smoothly for both �0=0 and
0.3, as seen from the amplitude and n0 profiles in the figure.
For �0=0, the concentration �0 in both liquid and solid lay-
ers remains uniform at the initial value 0, as in the equilib-
rium state. However, the results for �0=0.3 show a phenom-
enon of composition overshooting at the growth front of
strained solid �see Fig. 4�b��. Such overshooting effect re-
veals as the increase of �0 �i.e., more A or less B atoms�
around the interface, resulting in the phenomenon of surface
enrichment: The A atoms �with larger atomic size for �0

�0� are segregated on the solid surface with compressive
strain. As time increases, such variation of alloy concentra-
tion will propagate into the bulk of solid layer as a result of
atomic diffusion �note that the concentration of liquid bulk
remains unchanged due to the constant flux boundary condi-
tion�.

Figure 5 shows that the mobility disparity between differ-
ent alloy components plays an important role on this over-
shooting effect. Atoms with larger mobility will accumulate
on the surface, even with �0=0. As seen in the concentration
profile of Fig. 5�a�, a peak of larger �or smaller� �0 appears
around the liquid-solid interface for MA�MB �or MA�MB�,
while no overshooting is observed in the case of equal mo-
bility. For nonzero �0 �Fig. 5�b��, the effect of surface en-
richment of A atoms will be enhanced when MA�MB, while
when MA�MB the B atom enrichment is observed at large
enough time.

Another effect of mobility difference presented in Fig. 5 is
the change of solid layer growth rate or front moving speed.
For large disparity of atomic mobility between A and B com-
ponents, one of the components moves much slower com-
pared to the other one and thus would hinder the atomic
diffusion process. This leads to a slower motion of interface,
as seen in Fig. 5. Thus we can expect that in the limit of
MA /MB�1 �or MA /MB�1�, B �or A� atoms would be al-
most immobile compared to A �or B� and hence would pin
the interface location, resulting in a frozen front. This has
been incorporated in the amplitude equations developed
above: When m= 
1 �with m= �MA−MB� / �MA+MB� as de-
fined in Eq. �32��, Eq. �64� yields dAj /dt=0, a frozen ampli-
tude profile. Furthermore, the concentration profile is sym-
metric with respect to the sign of m �i.e., MA /MB�1 vs �1�
for �0=0, as shown in Fig. 5�a� for MA /MB=100 and 10−2

which yield the same front moving rate and the same Aj and
n0 profiles. The situation for nonzero �0 �different atomic
sizes� is more complicated. In our calculations of Fig. 5�b�
with �0=0.3 and 5% compressive misfit, the liquid-solid co-
existing profile yields �0�0 �A-rich� in the liquid region and
�0 �B-rich� in the solid layer �see also Fig. 2�b��. When
MA=100MB, the segregation of fast A atoms around the in-
terface would tend to hinder the growth of B-rich solid layer,
while for MA=MB /100 the accumulation of fast B atoms will
naturally be accompanied by the expansion of solid region,
resulting in a faster solid growth.

The composition overshooting effect presented here and
the associated surface enrichment phenomenon can be
viewed as a result of interface intermixing process via atomic
interdiffusion and mass transport of alloy components, show-
ing as the vertical phase separation or segregation in the
liquid-solid interface region. Such process of vertical separa-
tion has also been found in 2D simulations of binary PFC
equations �25�, where the component of greater size or larger
mobility was found to accumulate near undulated solid sur-
face in a liquid/substrate epitaxial system. Importantly, the
results shown here are consistent with recent experimental
observations of surface or interface segregation phenomenon
in alloy heterostructures, particularly in semiconductor epi-
taxial layers. Most experiments focus on III-V or group IV
heteroepitaxial films, with typical systems including InGaAs/
GaAs�001� �with In enrichment or segregation �66–68��,
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Ge�SiGe�/Si�001� �with Ge segregation �69,70��, and multi-
layers or superlattices of InP/InGaAs �with excess InAs at
the interface �71��, GaAs/GaSb �with Sb segregation and
Sb-As exchange and intermixing �72��, GaAs/InAs �with In
segregation �73��, etc. In these experimental systems the seg-
regation or enrichment effect involves the coupling of vari-
ous factors of different atomic size �nonzero �0�, misfit
strain, and unequal mobility of alloy components �e.g.,
MGe�MSi and MIn�MGa�, each of which has been identi-
fied in our analysis given above.

VI. CONCLUSIONS

In this paper we have furthered the development of the
phase-field-crystal methodology by systematically deriving
the PFC dynamic model equations from dynamical density
functional theory �DDFT� and completing the derivation of
the corresponding amplitude equation formalism. A trunca-
tion of the DFT free energy functional up to three-point di-
rect correlation functions has been used, and the dynamics
derived from DDFT has been further simplified through low-
est order approximations via a simple scale analysis to obtain
the PFC equations, for both single-component and binary
alloy systems. For the binary PFC model, the corresponding
amplitude equations �both deterministic and stochastic� have
been established via a hybrid multiple-scale approach, which
describe large or “slow” scale dynamics of structural and
compositional profiles based on the underlying crystalline
state. Compared to other recent developments which have
mainly focused on the evolution of complex structural am-
plitudes and concentration field, this work presents results
that incorporate the new effects of mobility difference be-
tween alloy components, the coupling to zero-mode average
atomic density, and also noise dynamics. Although the results
of amplitude equations that we derive are for 2D hexagonal
crystalline state, they can be extended to 3D bcc or fcc struc-
tures by following a procedure similar to the one developed
here and adopting the corresponding basic wavevectors �see
also Ref. �32��.

This amplitude equation formalism for binary PFC has
been applied to identifying the mechanisms and parameter
coupling during the process of surface segregation and alloy
intermixing. Both liquid-solid and liquid-solid-solid epitaxial
heterostructures have been examined, including morphologi-
cal and compositional profiles. We find that the effect of
concentration segregation on solid surface is controlled by
material parameters such as the disparity of atomic size and
mobility between different alloy components and misfit
strain in solid layers. In the cases of nonzero solute expan-
sion coefficient or unequal atomic mobility, an effect of com-
position overshooting around liquid-solid interface is ob-
tained during strained layer growth, corresponding to vertical
phase separation or segregation in the interface region. These
results are consistent with recent experimental findings in
heteroepitaxial systems, particularly the phenomenon of sur-
face or interface segregation showing as the enrichment of
one of the alloy species as compared to the bulk phase. This
sample application of the amplitude equation formalism de-
veloped here has further illustrated the features and advan-

tages of the PFC methodology, particularly in terms of mod-
eling and understanding complex material phenomena
involving spacial and temporal scales of experimental rel-
evance.
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APPENDIX A: ALTERNATIVE DERIVATIONS OF BINARY
PFC DYNAMICS VIA DDFT

1. Alternative derivation I

In the following we provide an alternative derivation pro-
cedure for PFC dynamics, including two steps: �i� directly
use the original free energy functional �17� and the DDFT
Eqs. �15� to obtain the expressions of ��A�B� /�t, and then �ii�
derive the dynamics of n and � through Eq. �25�, instead of
using Eqs. �21� and �28� as in Sec. II B.

Define nA= ��A−�l
A� /�l and nB= ��B−�l

B� /�l, and hence
the free energy functional �17� can be rewritten as �using the
expansion �18��

�F/�lkBT =� dr���l
A�1 +

nA

��l
A�ln�1 +

nA

��l
A�

+ ��l
B�1 +

nB

��l
B�ln�1 +
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��l
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+
�l

2
�nA�Ĉ2
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AA�4�nA + nB�Ĉ2

BB�2

+ Ĉ4
BB�4�nB + 2nA�Ĉ2
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AB�4�nB + Ĉ0

AAnA
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+ Ĉ0
BBnB

2 + 2Ĉ0
ABnAnB� +

�l
2

6
�Ĉ0

AAAnA
3 + Ĉ0

BBBnB
3

+ 3Ĉ0
AABnA

2nB + 3Ĉ0
ABBnAnB

2�� , �A1�

where ��l
A=�l

A /�l and ��l
B=�l

B /�l. From the DDFT Eqs.
�15� we can obtain the PFC equations for A & B components
respectively, i.e.,

�nA/�t = MAkBT��2��1 + �l
AĈ0

AA�nA + �l
A�Ĉ2

AA�2 + Ĉ4
AA�4�nA

+
1

3
�l

2Ĉ0
AAAnA

3 +
�l

2
�Ĉ0

AA + �l
AĈ0

AAA�nA
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+ �l � · �nA�Ĉ2
AA�2 + Ĉ4

AA�4� � nA�

+ �l � · ��nA + ��l
A� � ��Ĉ0

AB + Ĉ2
AB�2 + Ĉ4

AB�4�nB
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+
�l

2
�2Ĉ0

AABnAnB + Ĉ0
ABBnB

2���� , �A2�

�nB/�t = MBkBT��2��1 + �l
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BB�nB + �l
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1

3
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Note that n=nA+nB and �= ���l
A−�l

B�+�l�nA−nB�� / ��l�1
+n��, and hence equivalent to Eq. �25� we have

�n

�t
=

�nA

�t
+

�nB

�t
,

��

�t
=

1

1 + n
��1 − ��

�nA

�t
− �1 + ��

�nB

�t
� .

�A4�

Substituting Eqs. �A2� and �A3� into Eq. �A4�, and noting
nA= �1+n��1+�� /2−��l

A, nB= �1+n��1−�� /2−��l
B, MA

=�l�M1+M2�, and MB=�l�M1−M2�, we can derive the bi-
nary PFC equations for n and �, which are exactly the same
as Eqs. �26�, �29�, and �30�.

2. Alternative derivation II

Another alternative derivation for PFC dynamics is to
start with Eqs. �26�–�28� as already derived in Sec. II B.
Different from Sec. II B, in the formula �28� for D1 and D2 if
considering that the chemical potentials �n=�F /�n and �N
=�F /�� are slowly varying quantities and retaining terms
up to the lowest order, we have

D1 � �2
�F
�n

, D2 � �2
�F
��

, �A5�

as used in the original PFC model �25,32�. As in the previous
work, the logarithm terms in the free energy functional �21�
are expanded in a power series, yielding �up to 4th order of n
and ��

�F/�lkBT =� dr��1

2
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����n +

1

2
B����n2
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1

3
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1

4
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2
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4
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+
1

2
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+
1

2
K����1 + n����2 +

�

2
��2��1 + n����2� , �A6�

where �= B̃0−1 /2, w=1+
2, v=u=1 /3, and other param-
eters �such as B�, 
, K, and �� are defined in Eq. �22�.

Substituting Eq. �A6� into Eq. �A5�, we find �up to third
order�

D1 = �2�− �B0
x − B0

��n + B0
x�R0

2�2 + 1�2n + �B1
�� + B2

��2�n
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D2 = �2�
0n + B0
x�1 + n���2R0

2�2 +
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2
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+ ��1 + 2
1�� + 3
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+ w� + 
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�A8�

As in Sec. II B, we can rescale the PFC equations �using the
same length and time scales as well as the scales for n and �
fields�. Following the scale analysis discussed at the end of
Sec. II B, to lowest order approximation we can obtain the
same simplified binary PFC equations given in Eqs. �38� and
�39�, albeit with different forms of rescaled parameters g2
=g0� /B0

x and v1=g0�1 /2+
1� /B0
x �other parameters g, w0,

�0, and g0 are the same as those defined in Sec. II B but with
different value of v�.
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