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It is well known that a mixture of big and small hard spheres next to a planar wall will exhibit segregation
based on their size difference. The larger spheres will tend to locate next to the substrate because the overall
system entropy loss per unit area is less. In the present study we determine the role of attraction between the
small particles and the wall to displace the larger particles. Both fluids density-functional theory and discon-
tinuous molecular dynamics simulations demonstrate that at a certain attractive potential, which is on the order
of the thermal energy, the large particles can indeed be dislodged from the surface layer so the small particles
are now the major surface component. Exploration of a range of parameters, including relative sphere size and
concentration, as well as attractions between the small spheres in the bulk, shows that the phenomenon is quite
robust.
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I. INTRODUCTION

In a fluid mixture of colloidal particles, the distribution of
the particles near a substrate is determined by the complex
interplay among the steric effects and the particular particle-
wall and particle-particle interactions �1�. Understanding the
various contributions to the surface free energy is both a
fundamental issue in colloid science, and necessary for con-
trolling particle distributions in a variety of self-assembled
fluid systems. If all the fundamental forces acting on a col-
lection of particles at any given surface were known, it
would be possible to design systems so that particles as-
sembled in desired locations. An example of a step in this
direction is self-assembly of a polymer-nano-particle system
�2�, in which the nanoparticles segregated to the solid sub-
strate when the entropic forces were dominant or to the air
interface if the dielectric properties were properly tuned.

The simplest example of fluid particle mixtures is a binary
mixture of hard spheres, in which the particle distribution
near a hard substrate is determined only by entropic contri-
butions to the surface free energy. Binary hard sphere mix-
tures have been extensively studied in the literature, both
experimentally �3� and theoretically �4–9�. It has been shown
that when there is a size anisotropy, there is an effective
“depletion” attraction between the large spheres caused by
the presence of the small spheres �10,11�. As shown in Fig. 1,
the centers of the small spheres are excluded from being
closer than half their diameter from the surface of the large
spheres, so that there is no overlap. When two large spheres
are close enough for their depletion layers to overlap, the
effective volume accessible to the small spheres increases.
This increase in volume, due to such overlapping depletion
zones, leads to an increase in the small spheres’ translational
entropy, which induces a depletion attraction between the big
spheres. For sufficiently large size ratios �=�b /�s=5 �where
�b and �s are the diameters of the big and small spheres,
respectively�, it has been observed that a metastable fluid-
fluid phase separation exists within a stable solid-fluid coex-
istence boundary by virtue of this depletion attraction
�12,13�.

In the presence of a hard substrate �wall�, the depletion
zone also exists along the surface of the wall. This results in

a similar depletion attraction between the wall and the big
spheres, leading to an enhancement of the big particle den-
sity close to the wall �14,15�. This leads to a fundamental
question: what is required to overcome the entropic depletion
interaction pushing the large particles to the wall? In this
paper, we show that adding an attractive interaction between
the small spheres and the wall is sufficient to displace the
large particles from the wall. We also show that the wall-
small sphere attraction remains sufficient to displace the
large particles when we also add a fluid-fluid attractive inter-
action between the small spheres.

To do so, we use classical density-functional theory
�DFT�. DFT has been shown to very accurately describe the
statistical mechanics of hard spheres �16� and hard sphere
mixtures near surfaces �17�. In particular, Roth and Dietrich
�10� calculated the structural and thermodynamic properties
of binary hard-sphere mixtures near a hard wall with two
different size ratios using DFT, and showed excellent agree-
ment with simulation. The DFT accurately captured the
depletion effect for these mixtures, for three different ver-
sions of the Rosenfeld density functional.

In this paper, we use the “White-Bear” functional �18�
that provides slightly more accurate density profiles, espe-
cially near contact, of hard sphere mixtures near a planar
hard wall. It has been shown by comparison with simulation

FIG. 1. The depletion effect. Continuous lines represent the
large and small hard spheres and a hard wall. Dotted lines delineate
the depletion zones inside of which the center of a small sphere is
excluded. Hatched areas represent overlapping depletion zones.
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that DFT also usually works well for hard-sphere or repul-
sive fluids near an attractive wall �19–21�. We verify the
accuracy of the DFT for our binary mixtures with small
particle-wall attractions by also performing discontinuous
molecular dynamics �DMD� simulations on the same sys-
tems. An additional goal of performing DMD simulations is
to add to the available simulation data, which is still some-
what scarce in the literature for binary mixtures. We study
the effects of attractions between the small particles by com-
bining the hard-sphere White-Bear functional with a mean-
field description of the attractions. It is well-known that the
mean-field form of the attractions is problematic in DFT, and
is particularly inaccurate for fluids near critical points �22�
and for attractive fluids near neutral or repulsive walls
�22–24�. Here, we show that the DFT is in good agreement
with DMD simulations for systems which are far from any
binodals, and which have a particle-wall attraction as well as
the fluid-fluid attraction for the small particles.

We investigate binary mixtures at several compositions, at
finite volume fractions of both spheres. There has been some
work in the literature that also looked at the effects of attrac-
tions in binary sphere mixtures, but those studies that fo-
cused on the depletion potential were all done in the dilute
limit, with 1 or 2 large spheres in a sea of small spheres �25�.
Most of the other work in this area used the Asakura-Oosawa
�AO� approximation, used to model mixtures of colloids and
nonadsorbing polymers. In the AO approximation, the poly-
mers are treated as hard spheres in their interactions with the
colloids, but the polymer-polymer interactions are those of
an ideal gas �26–28�. In this work, we do not make such
assumptions, but rather consider small particles with ex-
cluded volume. We show that as we increase the strength of
attraction ��wf� between the small spheres and the wall, the
small sphere density near the wall increases by pushing the
big spheres away. There is a transitional value, �wf

� , beyond
which the concentration of the small spheres at the wall is
higher than that of the big spheres.

The content of the paper is organized as follows. In Sec. II
we first introduce the model in Sec. II A and then briefly
describe the details of the DMD simulations and the DFT in
Secs. II B and II C, respectively. We present our results in
Sec. III, starting with the effects of a small sphere-wall at-
traction in Sec. III A and continuing with the effects of add-
ing fluid-fluid attractions between the small spheres in Sec.
III B. We summarize our findings in Sec. IV.

II. MODEL AND METHODS

A. Model

We study a mixture of hard spheres with diameters �s and
�b. In all of our calculations the fluid-fluid interaction for the
big spheres and between big and small spheres is hard-core,
with �bs= ��b+�s� /2. Additionally, the big spheres have
purely hard interactions with the wall. We model the attrac-
tive interactions between the small spheres and the wall by a
square well potential. The wall-fluid potential for the small
spheres is thus given by

V�x� =��; x �
�s

2

− �wf;
�s

2
� x � �

0; x � � ,
� �1�

where x is the perpendicular distance of the small sphere
from the wall. The walls are smooth and extend infinitely in
the y and z directions. �wf is the well depth and � is the
potential range. In the calculations presented here, �=1.5�s
unless otherwise specified. The wall-fluid attraction strength
was varied from �wf =0.2 to 2.0 kT.

We also investigate the effect of adding small sphere-
small sphere attractions. The fluid-fluid potential for the
small spheres is also a square-well potential given by

u�r� = ��; r � �s

− � f f; �s � r � �

0; r � � ,
� �2�

where r is the distance between any two attractive particles.
� f f is the fluid-fluid attraction strength and �=1.5�s is the
potential range. Fluid-fluid attractions were investigated by
increasing � f f from 0.0 to 0.4 kT for every value of �wf.

We consider systems with size ratios �=2, 3, and 4. These
size ratios are less than the size asymmetry required to in-
duce phase separation, so our mixtures are miscible in the
bulk. The total packing fraction, 	=
 /6��b�b

3+�s�s
3�, was

kept at solutionlike densities. Here, �s/b are the small and big
number densities, and we define 	i=
�i�i

3 /6 for i=s ,b as
the individual small and big particle packing fractions. We
focus on systems with a volume fraction of small particles of
�s�0.22, which corresponds to a larger number density of
small particles than large particles due to the size asymme-
tries. For the �=2 case, we consider two additional compo-
sitions with volume fractions of the small particles �s
�0.14 and �s�0.66. We present additional DFT results for
all three size ratios at �s=0.128. Since the DMD simulations
necessarily involved finite numbers of particles, an unknown
number of which were adsorbed near the wall, the packing
fractions in the bulk region far from the wall differed some-
what for different values of �wf. The total packing fraction
and the individual species packing fractions for all the cases
studied are given in Table I.

B. Discontinuous molecular dynamics

We simulate the binary fluid mixture by using the DMD
method �29–31�. Traditional molecular dynamics employs a
particle-particle interaction potential that is a continuous
function of particle separation �for example, the Lennard-
Jones potential�, and which incorporates short-range repul-
sions as well as long-range attractions. The trajectories of a
system of particles are repeatedly advanced at a small incre-
ment in time, after which the forces between all pairs of
particles are reevaluated. DMD, on the other hand, replaces
the continuous potential function with a discontinuous func-
tion, such as a hard-sphere repulsion or square-well attrac-
tion.
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The advantage of using DMD over traditional MD is that
the particles do not need to be moved at short regularly
spaced time steps as in traditional molecular dynamics. In-
stead, one only needs to calculate the time until the next
collision for each particle, tij, and the particle’s new postcol-
lision velocity �32,33�. The collision time between particle i
and all other particles j� i is given by

tij =
− �bij� 
 	bij

2 − vij
2 �rij

2 − �2�
vij

2 , �3�

where rij 
ri-r j is their relative position, vij 
vi-v j is their
relative velocity, and bij 
rij ·vij �31�. Next, the minimum
collision time for the system, tc, is chosen and all particles
are moved according to

ri�t + tc� = ri�t� + vi�tc� , �4�

where ri and vi represent the ith particle’s position and veloc-
ity, respectively. At this point, exactly two particles collide
while the remaining particles are separated from one another.
New velocities for the colliding particles are calculated using
conservation of momentum and of kinetic energy.

Our DMD simulations are carried out in a rectangular box
�L�W�H=20�10�10�s� with walls parallel to the yz
plane and located at x=−L /2 and x=L /2. The box is periodic
along the y and z axes. Since the diameter of species i is �i,
only the width �L−�i� is available to the particle centers. All
the systems were equilibrated for 2 million collisions before
the actual production run of 5 million collisions. Due to the
large size of the files generated, the ensemble averages were
calculated using trajectories of the particles that were re-
corded every 1,000 collisions. We calculated the density pro-
files by dividing the simulation box into a number of bins, in
the direction perpendicular to the wall, and counting the
number of small and big spheres in each bin.

In addition to the particle density profiles, we can extract
various thermodynamic quantities from both the DMD simu-
lations and the DFT calculations described below. In particu-
lar, we calculate the pressure, excess adsorption, and surface
tension �surface excess free energy�. In planar geometries,
the pressure tensor contains two independent components
only, the normal and transverse components. The former is
determined by the condition for hydrostatic equilibrium �34�,

pN� �x� = − ��x�V��x� . �5�

Integration of Eq. �5�, from a specified point x0 out into bulk
fluid �e.g., x=�� where V��x� is zero and pN is the bulk
pressure p, yields

p = pN�x0� − �
x0

�

dx��x�V��x� . �6�

Introduction of the external potential V��x� for each species
into Eq. �6� results in the pressure sum rule. In our system,
where the wall-small particle interaction is a square-well po-
tential, we can calculate the bulk pressure from the contact
peaks of the small and big sphere density profiles and from
the second peak at x=� in the small particle density distri-
bution �35�

TABLE I. Total �	� and individual packing fractions for small
�	s� and big �	b� particles for different size ratios � and small par-
ticle volume fractions �s. For �=2 and each individual value of
�wf, the first row is for �s�0.22, the second row for �s�0.66, and
the third row for �s�0.14.

� 	 �s 	s 	b �wf � f f

2 0.387 0.222 0.086 0.301 0.0 0.0

0.363 0.656 0.238 0.125

0.350 0.143 0.050 0.300

0.388 0.216 0.084 0.304 0.2

0.337 0.658 0.222 0.115

0.358 0.139 0.050 0.308

0.387 0.219 0.085 0.302 0.34

0.358 0.672 0.238 0.120

0.359 0.134 0.048 0.311

0.388 0.214 0.083 0.305 0.5

0.344 0.663 0.228 0.116

0.374 0.131 0.049 0.325

0.393 0.196 0.077 0.316 0.67

0.348 0.681 0.237 0.111

0.367 0.136 0.050 0.317

0.393 0.193 0.076 0.317 0.8

0.326 0.742 0.242 0.084

0.359 0.145 0.051 0.308

0.394 0.188 0.074 0.320 1.0

0.363 0.658 0.239 0.124

0.362 0.141 0.051 0.311

0.405 0.161 0.065 0.340 1.34

0.347 0.692 0.240 0.107

0.361 0.136 0.049 0.312

0.406 0.155 0.063 0.343 1.5

0.367 0.643 0.236 0.131

0.362 0.135 0.049 0.313

0.408 0.142 0.058 0.350 1.75

0.345 0.704 0.243 0.102

0.358 0.139 0.050 0.308

0.404 0.149 0.060 0.344 2.0

0.354 0.669 0.237 0.117

0.362 0.138 0.050 0.312

2 0.375 0.128 0.048 0.327 all �wf all � f f

0.375 0.220 0.083 0.293 all �wf all � f f

0.391 0.220 0.086 0.305 all �wf all � f f

3 0.375 0.075 0.028 0.346 all �wf all � f f

0.375 0.128 0.048 0.327 all �wf all � f f

0.391 0.220 0.086 0.305 all �wf 0

4 0.375 0.037 0.014 0.360 all �wf all � f f

0.375 0.128 0.048 0.327 all �wf all � f f

0.391 0.220 0.086 0.305 all �wf 0
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�p = �b�0� + �s�0� − ��s�x − �−� − �s�x − �+�� , �7�

where �=1 /kT, k is Boltzmann’s constant, and T is tempera-
ture. Here, �b��b /2� and �s��s /2� are the densities of big and
small spheres at the wall, respectively, and �+ and �− corre-
spond to the limits of approaching x=� from the right and
left, respectively.

The excess adsorption of species i, i=s, b is defined as

�i = �
0

�

dx��i�x� − �i, bulk� . �8�

Here we take the Gibbs dividing surface to be at x=0 for all
surface quantities, which is the natural choice for a mixture
with different sphere sizes �10�. This definition is different
than that used in some prior work in the literature for single
component hard sphere fluids �34�.

For a planar system the surface tension can be defined as
the integral of the difference between the pressure tensor
components �34�,

� =� dx�pN�x� − pT�x�� . �9�

It has been shown that the integral of pT�r� across a planar
interface does not depend on the particular choice of pressure
tensor �36� and, therefore, the surface tension � is obtained
directly from our simulations as �37�

� =
m

2At � �rij
2 − 3xij

2 �
2�2 Bij , �10�

where m is the mass of particle i, A is the surface area of the
wall, rij is the distance between particles i and j, xij is the x
component of the distance between particles i and j, and � is
the distance between the centers of particles. Bij is evaluated
at the collision between particles i and j as

Bij =�
bij; core

1

2
��9�2�/m + bij

2 �1/2 + bij�; capture

1

2
�− �− 9�2�/m + bij

2 �1/2 + bij�; dissociation

bij; bounce,

�
bij = rij�t�vij�t� . �11�

In the capture case, there is a soft-core collision between the
particle and the wall and the particle is attracted toward the
wall. In the bounce case, the cores collide and bounce off of
each other. The factor of 1

2 arises from the fact that there are
two walls present in our systems; i.e., Eq. �10� is the surface
tension of a single wall-fluid interface.

C. Classical density-functional theory

The generic methodology of classical DFT is built upon a
mathematical theorem stating that in an open system speci-
fied by temperature T, total volume V, and chemical poten-
tials of all constituent molecules �i, there is an invertible

mapping between the external potential and the one-body
density profiles �38–41�. In other words, there exists a den-
sity distribution �i�r� of the constituent species i that mini-
mizes the functional ���i�. This minimization is performed
using a variational approach, while keeping chemical poten-
tial �i, volume V, and temperature T, constant, i.e.,
�����i� /��i��,V,T=0. This functional corresponds to the
grand potential � of an open ��VT� ensemble. The grand
potential for the binary fluid mixture is

���i�r�� = Fid��i�r�� + Fhs��i�r�� + Fatt��i=s�r��

+ �
i=s,b

� dr�i�r��Vi�r� − �i� , �12�

where the terms on the right hand side represent the intrinsic
Helmholtz free energies for the ideal gas, hard spheres, and
attractive interactions �42�. The final term is the Legendre
transformation in which the �i are the species’ chemical po-
tentials and Vi�r� is the external field due to the presence of
surfaces in the system.

A precise expression of the intrinsic Helmholtz free en-
ergy as a functional of the molecular density profiles is gen-
erally unknown. Formulation of the Helmholtz energy func-
tional is a task essentially equivalent to enumeration of the
statistical partition function for the particular system under
investigation. A viable approach is to divide the Helmholtz
energy into an ideal part and an excess part. The ideal part
represents the contribution of an ideal, noninteracting gas;
the excess part accounts for interactions leading to the ther-
modynamic nonideality. The Helmholtz free energy for an
ideal gas is given by

Fid��i�r�� = kT�
i
� dr�i�r�
ln��i

3�i�r�� − 1� , �13�

where k is the Boltzmann constant, T is the temperature, and
�i is the thermal wavelength of the species i.

Here the hard sphere contribution to the free energy is
computed using the fundamental measure theory �FMT� of
Rosenfeld �16�. FMT DFTs are based on geometric interac-
tions between the fluid components with a free-energy func-
tional given by

Fhs��i�r�� = kT� dr��ni�r�� . �14�

The ni�r� are nonlocal weighted densities that are based on
the deconvolution of the Mayer f function �43� for hard
spheres into a sum of weighted functions based on the indi-
vidual particle radii �16�. These are defined as

ni�r� = �
�
� dr����r���

�i���r − r��� , �15�

where the ��
�i� are the weight functions:

w3
i �r� = ��Ri − r� ,

w2
i �r� = ��Ri − r� ,
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w� 2
i �r� =

r

r
��Ri − r� ,

and w1
i �r�=w2

i �r� / �4
Ri�, w0
i �r�=w2

i �r� / �4
Ri
2�, and w� 1

i �r�
=w� 2

i �r� / �4
Ri�. Here Ri is the radius of species i, ��r� is the
Heaviside step function and ��r� is the Dirac delta function.
Several modifications to the original Rosenfeld FMT func-
tional can be found in the literature �44,45�. The specific
functional we used here, known as the “White-Bear” func-
tional, was developed by Roth et al. �18�. It was designed to
match the Mansoori-Carnahan-Starling-Leland �MCSL�
equation of state �46� for multicomponent hard sphere fluids
and is written as

� = − n0 ln�1 − n3� +
n1n2 − n�1 . n�2

1 − n3

+ �n2
3 − 3n2n�2 . n�2�

n3 + �1 − n3�2ln�1 − n3�
36
n3

2�1 − n3�2 . �16�

For a more detailed derivation and discussion of FMT, we
refer the reader to the recent review article by Roth �17�.

Pairwise attractive interactions were implemented using a
mean-field form for the Helmholtz free energy:

Fatt���r�� =
1

2�
i

�
j
� dr� dr��i�r�� j�r�uij

att��r − r��� ,

�17�

where uij
att��r−r��� is the attractive part of the pair potential in

Eq. �2�.
Minimization of the grand potential from Eq. �12� with

respect to the density profiles of each fluid component pro-
duces a set of Euler-Lagrange equations which must be
solved for all points in the computational volume. These are

�F�� j�
��i�r�

= �i + Vi�r� , �18�

where F��i�=Fid��i�+Fhs��i�+Fatt��i�. The chemical poten-
tial of each species can be divided into its constituent parts,
i.e., ideal, hard sphere, and attractions, and written as �i
=�i

id+�i
hs+�i

att, where the superscripts indicate the contribu-
tion type.

Equation �18� is solved using the Tramonto �47� fluids-
DFT code. The nonlinear integral equations are solved in real
space on a Cartesian mesh using Newton’s method as de-
scribed previously �48–50�. The Jacobian matrix required in
Newton’s method is formed analytically, and we apply a seg-
regated Schur complement technique to solve the linear ma-
trix problem as detailed elsewhere �51�. In this paper, we are
only concerned with fluids near a planar wall, and so the
density profiles are only a function of the distance x from the
surface. All of the DFT calculations presented here were
therefore performed in a one-dimensional box of size 10�s
for �=2 and 20�s for �=3 and 4, with a mesh size of 0.01�s,
and with a planar wall on one side of the computational
domain. For convenience we used a reflective boundary on
the other side of the domain; in all cases the density profiles
reached their bulk values in the middle of the box.

The bulk pressure in the system was calculated from the
density profiles using the pressure-sum rule given in Eq. �7�.
The numerical accuracy of the pressure calculations was con-
firmed �see the Appendix� by checking the values of the
pressure obtained by Eq. �7� with the pressure calculated
from the bulk equation of state in Tramonto. The excess
adsorption was calculated from the density profiles obtained
from DFT using Eq. �8�. The excess surface free energy is
defined as

� =
����x��

A
−

�bulk

A
, �19�

where � is the grand free energy and �bulk is the grand free
energy of the bulk system at the same chemical potential as
the inhomogeneous system.

III. RESULTS AND DISCUSSION

We present the results in two different sections. In the first
section, we keep � f f =0.0 and study the effect of the wall-
fluid attractions by increasing �wf. The DFT results for the
�=2 case are compared with DMD simulations. In the sec-
ond section, we add fluid-fluid attractions between the small
spheres. In these results, all lengths are in units of �s and
energies in units of kT.

A. Case 1: εff=0.0

The number density profiles of both components of the
binary mixture close to a planar wall were obtained from the
DFT by a free minimization of the functional given in Eq.
�12�. For �=2 we also obtain density profiles from the DMD
simulations. We calculated the densities of the small and big
particles in the bulk region from the DMD simulations, and
used those values in the DFT calculations in order to com-
pare the two techniques. The relevant packing fractions are
listed in Table I. Here, we present detailed results for the �
=2 case only, as the results for �=3 and 4 are qualitatively
similar.

We find excellent agreement between density functional
theory and the simulations for the density profiles of both
components for the �=2 system. In Fig. 2, we show the
density profiles of the small and big spheres with two differ-
ent wall-small particle attraction strengths, �a� �wf =0.2 and
�b� �wf =2.0, to illustrate the agreement between the DFT and
the DMD data. The high packing fraction of the system re-
sults in pronounced structure of the density profiles. For a
weak wall-fluid attraction, the density of the big spheres near
the wall is high, as seen by the tall peak in the density dis-
tribution, and is a result of the depletion effect caused by the
size anisotropy. As �wf is increased, the peak corresponding
to the density of the big spheres slowly diminishes, while a
second peak in the density distribution of the small spheres
begins to appear. The attraction between the wall and the
small particles acts against the entropic force that arises due
to the size anisotropy. This attraction pulls more small par-
ticles closer to the wall, dislodging the bigger particles. The
location of the second peak in the density distribution of the
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small particles corresponds to the range of the attractive wall
potential.

A clearer way to see the effects of the wall-small particle
attraction is to plot the local concentrations Cs�x� and Cb�x�
of the small and large spheres, respectively, defined as

Ci�x� =
�i�x�

�s�x� + �b�x�
, i = s,b . �20�

Figure 3 shows these concentration profiles for the same pa-
rameters as Fig. 2. These concentration profiles demonstrate
that for the weak wall-small particle attraction, apart from
the purely geometrical constraints, near the wall the big par-
ticles are enriched and the small particles are depleted. This
result is similar to what is found for the purely hard sphere
case where the gain in entropy of the small spheres induces
an attractive depletion potential between the big spheres and
the hard wall �10�. With a small value of �wf, the concentra-
tion of the big spheres near the wall is slightly lower than
that of the hard-sphere case. For a stronger wall-small par-
ticle attraction, the enthalpic force due to the attraction be-
tween the small spheres and the wall dominates over the

entropic force, resulting in the small spheres replacing the
big spheres at the wall. This is clearly seen in Fig. 3�b�,
where the concentration of the small spheres is much higher
than the concentration of the big spheres near the wall.

A similar result was observed recently by Zhou et al. �25�,
who investigated the effective interaction between a big hard
sphere colloid, immersed in a sea of smaller hard particles,
and a hard wall that has a different affinity to the small
particles. They fixed the size ratio between the big and small
colloids at �=5, and varied the interaction of the small par-
ticles with the wall from purely repulsive to attractive. When
the wall is repulsive to the small particles, the effective large
colloid-wall attractions are enhanced by depleted small par-
ticles near the wall. With an increase in the attractive
strength between the wall and the small particles, a dense
layer of small particles is formed near the wall, resulting in a
high peak in the small particle density profile. Furthermore,
this leads to an effective repulsion between the large particle
and the wall, overcoming the depletion effect, analogous to
the behavior we see in our system with a finite volume frac-
tion of large spheres.

FIG. 2. �Color online� Density profiles for the small �blue
circles� and large �red diamonds� particles with � f f =0 and �=2 for
�a� �wf =0.2 and 	s=0.084 and �b� �wf =2.0 and 	s=0.060. Solid
symbols are from DMD simulation and open symbols with dashed
lines are from the DFT.

FIG. 3. �Color online� Concentration profiles for the small �blue
circles� and large �red diamonds� particles with � f f =0 and �=2 for
�a� �wf =0.2 and 	s=0.084 and �b� �wf =2.0 and 	s=0.060. Solid
symbols are from DMD simulation and open symbols with dashed
lines are from the DFT.
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As �wf is increased in our system, there is a smooth tran-
sition in which the concentration of the big spheres at the
wall falls while the concentration of the small spheres in-
creases, as shown in Fig. 4. At �wf

� �0.7, the concentrations
of the small and big spheres near the wall are equal. Beyond
this point, the attractive force existing between the small
spheres and the wall dominates over the entropic force that is
present due to the anisotropy in the sizes of the particles. We
see good agreement between the simulations and the DFT
results for the whole range of �wf values in Fig. 4.

Another way to quantify the numbers of particles near the
wall is to calculate the excess adsorption. Figure 5 shows the
excess adsorption of the small and big spheres, as calculated
from Eq. �8�, as a function of �wf for �a� different composi-
tions for �=2, and �b� different size ratios at the same com-
position. For �=2 in Fig. 5�a�, the bulk densities used in the
DFT calculation for each �wf were taken from the MD re-
sults. All of the calculations for �=2, 3, and 4 in Fig. 5�b�
were carried out at the same total packing fraction of 0.391,
with �s=0.22 �see Table I�, using only the DFT. Because the
excess adsorptions follow from integrating over oscillatory
functions, they depend very sensitively on the precise struc-
ture of the density profiles and this makes them a very good
measure for comparison between the simulations and the
DFT calculations. Figure 5�a� shows good agreement be-
tween DFT and DMD for all three compositions. For all the
systems studied here, the adsorption of small spheres in-
creases and the adsorption of big spheres decreases as we
increase �wf. In Fig. 5�b�, we note that for increasing size
ratios, the change in the excess adsorption of the big spheres
with increasing �wf is less. This is because the depletion
effect is stronger for larger size ratios, and so applying the
wall-fluid attraction has less of an effect.

Surface tensions are not often reported in the literature,
but are also a sensitive test of the agreement between DFT
and simulation. Hence we calculated the surface tension for
systems with � f f =0.0 using both methods, as shown in Fig. 6
for the same parameters as in Fig. 5. The surface tension

decreases as the wall-fluid attraction is increased, since the
wall-fluid attraction makes it more favorable to have the wall
present in the system. For the systems with �s�0.14 and
�s�0.22 shown in Fig. 6�a�, the packing fraction and hence
the number of the large spheres is approximately the same.
The slopes of the surface tension and adsorption curves are
roughly the same in these two cases, whereas for the third
composition where the packing fraction of large spheres is
different, the slope is quite different. Once again we obtain
excellent agreement between DFT and DMD. For different
size ratios at a constant small sphere volume fraction of �s
�0.22 as in Fig. 6�b�, we find that the slopes of all three
curves are again roughly similar, with the curves just shifted
along the vertical axis.

The qualitative behavior of the system is the same if the
range of the wall-fluid interactions is increased to �=2.5.
This is demonstrated in Fig. 7 which shows the concentration
of the small and big spheres near the wall for various wall-
fluid attractions with both �=1.5 �with �s�0.22� and �
=2.5 �with 	=0.388 and �s=0.214�. The value of �wf

� is
lower in the case of �=2.5 since it is easier to pull more

FIG. 4. �Color online� Concentrations of big �red diamonds� and
small �blue circles� spheres near the wall, for � f f =0, �=2, and �s

�0.22. The increasing curve is for small spheres and the decreasing
curve is for big spheres. The solid symbols are from MD simula-
tions while open symbols with dashed curves are from DFT.

FIG. 5. �Color online� Excess adsorption at � f f =0 as a function
of �wf for �a� �=2 at different compositions, and �b� different size
ratios at the same composition with �s=0.22 �total packing fraction
	=0.391�. Increasing �solid� curves are for the small spheres, while
decreasing �dashed� curves are for the large spheres. Solid symbols
are from MD simulations; curves with open symbols are DFT
calculations.
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small particles close to the wall with a larger range of attrac-
tion.

B. Case 2: nonzero εff

In this section we consider the effects of adding fluid-fluid
attractions between the small spheres, using the square-well
fluid-fluid attraction as given in Eq. �2�. Here we are only
interested in miscible systems that are far from any phase
boundaries, so we calculated liquid-vapor phase diagrams
from our DFT �52�. First we calculated the phase diagram for
a pure �single component� square-well fluid and compared it
to simulation results from the literature �53,54�. As previ-
ously observed by Gloor et al. �54� for the same equation of
state applied to the same square-well fluid, the theory under-
estimates the location of the vapor-liquid critical point and
the width of the coexistence curve �see Fig. 1 in �54� for a
comparison of the mean-field DFT coexistence curve and
simulation results�. This is because the mean-field treatment
of the attractions cannot accurately describe the coexistence
curve. For our binary mixture of hard spheres and a square-
well fluid, we can compare to Gibbs ensemble Monte Carlo
simulations of Green et al. �55�, for the case of equal sized

spheres, �=1. Once again, our equation of state leads to an
underprediction of the critical point �we obtain a critical
point near � f f =1.33 compared to the simulation result of
� f f =1.5� and a downward �in � f f� shift of the whole phase
envelope, due to the inaccuracy of the mean-field attractions
in predicting the vapor-liquid phase behavior. We therefore
cannot expect good agreement between DFT and DMD
simulations anywhere near the coexistence curves in our sys-
tems.

In this section, the values for � f f have been chosen such
that the two components are completely miscible in all pro-
portions; we keep � f f �0.4 in all calculations. We note that
the coexistence curve is typically calculated in
� f f-composition space at constant pressure, whereas in our
DFT calculations for the mixture near a wall, we keep the
composition fixed and vary � f f, which also leads to variation
in the pressure. For all our systems, the two-phase region is
larger and the critical point lower in � f f as the pressure in-
creases. Therefore, we calculated phase diagrams at the high-
est possible pressure for a given composition of interest,
which is the pressure when � f f =0 at that particular compo-

FIG. 6. �Color online� Surface tension at � f f =0 as a function of
�wf for �a� �=2 at different compositions, and �b� different size
ratios at the same composition �s=0.22 �total packing fraction 	
=0.391�. Solid symbols in �a� are from MD simulations.

FIG. 7. �Color online� Concentration near the wall for �=1.5
�blue circles� and �=2.5 �red squares� as a function of �wf, with �
=2 and � f f =0.

FIG. 8. �Color online� Coexistence curves for �=2, 3, and 4 at
pressures of p=0.868, 0.457, and 0.337, respectively �pressure in
units of kT /�s

3�.
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sition. We then verified that each composition we used was
well outside the two-phase boundary at that pressure. Figure
8 shows some representative vapor-liquid coexistence curves
for �=2, 3, and 4. For these curves the pressure was chosen
based on the mixtures with total packing fractions of 	
=0.375 and �s�0.128. Clearly for �=2, the mixture is mis-
cible for all compositions when � f f �0.4. For the larger size
ratios, we only consider compositions that are outside the
two-phase region, with 	s�0.05 for �=3 and 4 at 	
=0.375 �see compositions in Table I�.

We simulated two systems with both wall-fluid and fluid-
fluid attractions at �=2 and �s�0.22, setting �wf =� f f =0.34
and �wf =� f f =0.2 �and also verified that these mixtures are
well outside the two-phase region�. We find excellent agree-
ment between DFT and DMD for the density profiles for
both these cases, as illustrated in Fig. 9 for the �wf =� f f
=0.34 case. This excellent agreement between theory and
simulation is due to several reasons. First, we matched the
bulk densities away from the wall in both calculations. Sec-
ond, since the strength of attraction in these systems is fairly
low, the inaccuracy that results from the mean-field term is
also minimal. At these compositions, we are far away from
the coexistence region and the packing effects dominate over
the attractive fluid-fluid interactions. Finally, we also have an
attractive wall-fluid interaction, which additionally improves
agreement between DFT and simulation as seen in previous

work �19–21�. It therefore appears that in these circum-
stances, the mean-field approach is sufficient. Table II shows
the comparison between the theory and simulations for the
surface tension and excess adsorptions for these systems.

Figure 10 shows the concentrations of the small and big
spheres at the wall as a function of �wf for various values of
� f f for �=2 and �s=0.22. The transitional value �wf

� drops to
lower values as the fluid-fluid attractions get stronger, mean-
ing that a weaker wall-small particle attraction is required to
push the large particles off the wall when there are also at-
tractions between the small particles. This counterintuitive
effect can be understood by the fact that the wall-fluid attrac-
tion leads to an enhancement of the particles near the wall,
and an additional fluid-fluid attraction then pulls even more
of them into those peaks since the small particles want to be
near each other at nonzero � f f. This effect was also seen by
Karanikas et al. �21�, who observed a nonlinear enhancement
of particle densities near the wall �compared to the case of
hard spheres near a hard wall� for a fluid with both fluid-fluid
and wall-fluid attractive interactions. This phenomenon leads
to a decrease in the wall-fluid attraction required to obtain a
50–50 concentration of the particles near the wall as � f f is
increased.

Finally, Fig. 11 shows the transitional wall-fluid attraction
strength �wf

� as a function of fluid-fluid attraction strength � f f
for the three different size ratios, at a fixed total packing
fraction of 	=0.375. Figure 11�a� shows �wf

� as a function of

TABLE II. Comparison of excess adsorption and surface tension between DFT and DMD.

�wf =� f f

DFT MD

Small Big Small Big

Excess adsorption 0.20 0.02252 −0.03299 0.02113 −0.03424

0.34 0.12337 −0.05597 0.11935 −0.05734

Surface tension 0.20 0.39033 0.38412

0.34 0.35838 0.34141

FIG. 9. �Color online� Density profiles for the small �blue
circles� and large �red diamonds� spheres with �=2 and �s�0.22,
for � f f =�wf =0.34. Solid symbols are from DMD simulation and
open symbols with dashed lines are from the DFT.

FIG. 10. �Color online� Concentration near the wall as a func-
tion of �wf, for different fluid-fluid attraction strengths for �=2 and
�s�0.22. The symbols are from MD simulations. Open symbols
are for � f f =0.0 and solid symbols are for � f f =�wf.
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� f f, calculated as before from the value of �wf when the
concentrations of big and small spheres at the wall are equal.
In the top set of curves, the compositions for �=3 and 4 have

been adjusted such that the value of �wf
� coincides with the

value of �wf
� for �=2 �at �s=0.128� when � f f =0.0. We note

that the slope of the �wf
� vs. � f f curve is smaller for larger size

asymmetries. The nonlinear enhancement effect discussed
above, which lowers �wf

� with increasing fluid-fluid attraction
strength � f f, appears to be less effective as the size asymme-
try increases. This could be because the depletion attraction
between the large sphere and the wall is stronger for stronger
size asymmetries. It may also be because the small sphere
number density decreases for these three cases, from �s�s

3

=0.092 for �=2, to �s�s
3=0.054 for �=3 and �s�s

3=0.026 for
�=4, so the total effect of the fluid-fluid attractions is less. At
the same fixed composition of �s=0.128 with the same num-
ber of small particles, the curve for �=3 is well below that of
�=2; because of the larger size asymmetry, here there are
fewer large particles in the �=3 case, and it apparently re-
quires less wall-fluid attraction to displace them from the
wall even though one would expect the depletion attraction
to be stronger. Figure 11�a� also shows for both �=2 and �
=3 that the values of �wf

� are lower for a larger volume frac-
tion of small spheres, but the dependence on � f f is similar.

Finally, we investigated using a different criterion for de-
fining the transitional wall-fluid attraction strength. Using
our original concentration-based criterion for �wf

� , when the
number density of the big spheres is too low, the concentra-
tion of the small spheres next to the wall is larger than that of
the big spheres even for very small �wf. As a result, it is
impossible to identify �wf

� in these cases from the concentra-
tions at the wall. Nevertheless, in these systems the big
spheres still experience a depletion potential and get pushed
preferentially toward the wall. An alternative criterion is to
determine the value of �wf when the density of the large
spheres at the wall is equal to their density in the bulk,
�b

wall /�b
bulk=1. For weak �wf we expect �b

wall��b
bulk, reflecting

the enhancement of the large spheres at the wall; as they are
displaced by the small spheres, we should eventually find
�b

wall��b
bulk. The results of using this new criterion are shown

in Fig. 11�b�. The new criterion allows us to identify �wf
� for

TABLE III. Pressure obtained from DMD, from DFT using the bulk equation of state �EOS�, and from DFT using the sum rule in Eq.
�7�, for small particle volume fractions �s=0.14, 0.22, and 0.66, at various values of the small particle-wall attraction strength �wf.

�wf

�p

�s=0.14 �s=0.22 �s=0.66

DMD DFT �bulk EOS� DFT �sum rule� DMD DFT �bulk EOS� DFT �sum rule� DMD DFT �bulk EOS� DFT �sum rule�

0.0 0.8132 0.7419 0.7408 1.2512 1.2534 1.2526 2.2453 2.4214 2.4050

0.2 0.8468 0.7792 0.7784 1.2381 1.2443 1.2249 2.2723 2.2887 2.2844

0.34 0.8132 0.7806 0.7919 1.2364 1.2547 1.2389 2.3123 2.3566 2.3278

0.5 0.7704 0.8179 0.7963 1.2516 1.2323 1.2405 2.1023 2.1009 2.1053

0.67 0.8912 0.8356 0.8403 1.2113 1.2363 1.2214 2.3644 2.2373 2.2919

0.8 0.8418 0.7985 0.7840 1.2426 1.2266 1.2255 2.3584 2.0341 2.1027

1.0 0.8154 0.8153 0.8152 1.2193 1.2034 1.2064 2.3134 2.2668 2.3059

1.34 0.8129 0.7939 0.7971 1.2124 1.2173 1.2147 2.2934 2.1833 2.1857

1.5 0.8348 0.7998 0.7973 1.2347 1.2136 1.2363 2.2725 2.2586 2.2636

1.75 0.8419 0.7818 0.7932 1.2114 1.1862 1.2135 2.3265 2.2445 2.2434

2.0 0.8671 0.8017 0.8132 1.2137 1.1698 1.2121 2.3554 2.3087 2.3086

FIG. 11. �Color online� �wf
� as a function of � f f at a constant

total packing fraction of 	=0.375 for different size ratios and com-
positions with �a� the concentration criterion and �b� the density
criterion for �wf

� as described in the text.
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mixtures with �=4 and �s=0.128, which was not possible
with the concentration-based criterion. With this density-
based criterion, the values of �wf

� are higher than they are for
the concentration criterion used in Fig. 11�a�. The trends re-
main the same; in particular, at fixed composition the values
of �wf

� decrease with increasing size asymmetry, again appar-
ently because the number of large spheres decreases and they
are easier to displace from the wall.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the structural and thermodynamic prop-
erties of a binary fluid mixture near a planar wall with wall-
small particle and small particle fluid-fluid attractions, using
both DFT and DMD simulations. For hard sphere mixtures
with small particle-wall attractions, we find excellent agree-
ment between the DFT and DMD results for density profiles,
excess adsorption, and surface tension. Adding fluid-fluid at-
tractions between the small spheres by including a mean-
field attraction in the DFT, we also find good agreement with
DMD for state points that are far from any phase coexistence
boundaries. The good agreement in this case, despite the
shortcomings of the mean-field approximation in the DFT, is
due to the fact that the bulk densities of both components
away from the wall were matched and at these compositions,
packing effects dominate over the attractions.

We showed, for purely hard sphere mixtures, that adding
an attractive interaction between the small particles and the
wall overcomes the entropic depletion force that causes en-
hancement of the big spheres at the wall for small values of
�wf; for larger values of �wf, the small particles displace the
large particles from the wall. Defining the transition value of
�wf

� as that value of �wf where the concentrations of big and
small spheres at the wall are equal, we find that �wf

� is on the

order of the thermal energy kT for the range of systems stud-
ied here.

When there are also attractions between the small spheres,
there is a decrease in �wf

� . This is due to a nonlinear enhance-
ment of the adsorption of the small spheres �21�: the attrac-
tive interaction with the wall causes an increase in the num-
ber of small particles near the wall, which is then further
increased due to the fluid-fluid interaction attracting even
more small particles into the near-wall density peaks. Not
surprisingly for a quantity that depends on the interplay be-
tween entropic and enthalpic effects, the behavior of the tran-
sition value �wf

� also depends on the size ratio � and the
absolute number densities of large and small particles.
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APPENDIX

As an additional comparison between the DFT and DMD
simulations, in Table III we show the bulk pressure for dif-
ferent �wf and the three different compositions studied, for
the �=2 case. For the DFT results we calculated the pressure
both from the sum rule of Eq. �7� and from the bulk equation
of state in the DFT. The pressures as obtained from DFT and
DMD are in good agreement with each other. Additionally,
the agreement in the two different calculations of the pres-
sure from the DFT is reasonable, indicating that our numeri-
cal methods are sound. We note that decreasing the mesh size
further improves the consistency between these two pressure
calculations.
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