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Crystal nucleation and growth processes induced by an externally applied shear strain in a model metallic
glass are studied by means of nonequilibrium molecular dynamics simulations, in a range of temperatures. We
observe that the nucleation-growth process takes place after a transient, induction regime. The critical cluster
size and the lag-time associated with this induction period are determined from a mean first-passage time
analysis. The laws that describe the cluster-growth process are studied as a function of temperature and strain
rate. A theoretical model for crystallization kinetics that includes the time dependence for nucleation and
cluster growth is developed within the framework of the Kolmogorov-Johnson-Mehl-Avrami scenario and is
compared with the molecular dynamics data. Scalings for the cluster-growth laws and for the crystallization
kinetics are also proposed and tested. The observed nucleation rates are found to display a nonmonotonic strain
rate dependency.
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I. INTRODUCTION

The study of phase transformation between liquid and
crystal through a nucleation and subsequent growth regime is
a problem with a very long history �1,2�. Understanding the
crystallization process, including the rate of phase transition
and the morphology of the crystal formed, has a great impor-
tance for many technological applications. The situation be-
comes even more complex, when the phase transformation
takes place in a system under external drive due to shear
flow, electric, magnetic or laser-optical fields etc. �for a re-
cent review see �3��. The problem belongs then to the class
of nonequilibrium processes in driven materials, which has
attracted attention more recently �4�.

Numerical simulations techniques have allowed one to
obtain a series of important results for the kinetics of crys-
tallization in systems driven by an imposed shear flow �5–9�,
including glasses �10–12�, semicrystalline polymers �13�,
colloidal suspensions �14,15�, and Ising model �16�. The
generally established outcome here, which confirms the ex-
perimental observations �see, e.g., �17–20��, is that the shear
drive can have a significant impact on the various aspects of
the nonequilibrium phase transitions, in particular, on the
transition, nucleation and crystal growth rates as well as on
the induction time �3,21�.

In terms of nucleation, the influence of a finite shear rate
on the structural ordering of a system appears to be, in gen-
eral, that a small shear rate speeds up nucleation, while larger
shear rates prevent ordering �15,16�. Fluid-crystal coexist-
ence can also be affected by shear, as found in Ref. �14�,
where crystallization is shown to be suppressed by flow.
Hence, the shear flow influences both the thermodynamic
and the kinetic aspects of nucleation, in a way that may
depend on the depth of supercooling and on the intensity of
the strain rate, presumably compared to the system internal
relaxation time. For a deeply supercooled, glassy system, the
relaxation time is essentially infinite, so that a finite shear
rate will always have a favorable impact on nucleation.

The cluster-growth process, which follows nucleation, is
also expected to be affected by a finite strain rate. For a
specific, Ising-like, two-dimensional system, it was shown
recently that a moderate shear drive plays a significant role in
crystal erosion and growth governing by single “particle”
attachment and coalescence processes �15,16�. More gener-
ally, one may inquire how the domain growth law is affected
by the shear rate. In systems at rest, the standard description
for the apparition of a crystalline phase through nucleation
and cluster growth, is generally reproduced by the classical
Kolmogorov-Johnson-Mehl-Avrami �KJMA� theory �1�. In
the present work, we apply the extension of the KJMA
theory for the case of the time-dependent nucleation and
growth in a model metallic glass under shear drive. Exten-
sion of the theory is tested together with nonequilibrium mo-
lecular dynamics simulation data at different temperatures
and wide range of shear rates. The data is compatible with
the extension of the theory that includes a finite lag time for
appearance before the onset of steady-state nucleation.

The numerical model used in our simulations, as well as
the extended KJMA theory, is presented in Secs. II and III.
The results of molecular dynamics simulations and param-
eters of the KJMA theory, in particular, the critical cluster
size, the lag-time and the steady-state nucleation rate, are
analyzed and discussed in Sec. IV. Finally, we present our
conclusions in Sec. V.

II. MODEL, SIMULATION DETAILS, AND CLUSTER
ANALYSIS

In this work we focus on a system of particles interacting
through the spherically symmetric Dzugutov potential

U�r��/� = A�r�−m
− B�exp� c

r� − a
�H�a − r��

+ B exp� d

r� − b
�H�b − r�� ,
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r� = r/� , �1�

where � and � define the unit length and energy,
respectively.1 The parameters A, B, m, a, b, and c are chosen
as proposed originally in Ref. �22�, the Heaviside step func-
tion H� . . . � sets the range of the various contributions in
relation �1�. Besides a minimum U�rmin

� =1.13�=−0.581�, the
potential includes a maximum U�rmax

� =1.628�=0.46� and
falls off rapidly with the interatomic distance r. Such a short-
ranged, oscillating interaction mimics in a simple way the
ion-ion interaction influenced by the electron screening ef-
fects in the metallic systems. Moreover, the maximum in
potential �Eq. �1�� reflects the first of the Friedel oscillations
and favors icosahedral local order in the system, therefore
making it a good glass former at low pressure �23�.

The system under study and the simulation setup are com-
pletely identical to the considered one in Ref. �12�. Namely,
the system consists of N=19 652 particles within the simu-
lation box L3 with L=28.55� that corresponds to the density
�=0.84�−3. A set of glassy samples is prepared by fast cool-
ing from the equilibrated liquid state to the temperatures T
=0.01, 0.03 and 0.06� /kB that is well below the melting
point T=0.5� /kB �24�.

The shear drive is applied by moving two amorphous
walls created at the sides of the simulation cell perpendicular
to the ey direction. The bottom wall is fixed, whereas the top
wall is moving in the x direction with the instantaneous ve-
locity u�t�= �̇L�t�ex at a constant strain rate �̇ and pressure
Pyy =7.62� /�3, which in the equilibrium phase diagram
would favor the fcc phase. Here L�t� is the instantaneous
distance between the walls.

To identify the nuclei of the ordered phase �clusters� we
use a cluster analysis, which is based on the consideration of
the local environment around each particle by means of a
�2� l+1�-dimensional complex vector with the components

qlm�i� =
1

Nb�i� �
j=1

Nb�i�

Ylm��ij,�ij� , �2�

where Ylm��ij ,�ij� are the spherical harmonics with the polar
�ij and azimuthal �ij angles between radius-vector rij and a
reference direction; Nb�i� is the number of neighbors for a
particle i, which are the particles located within a sphere of
the radius �rij�=1.5� �see Ref. �25��. Following the ten
Wolde-Frenkel scheme �26�, we specify the pair of neigh-
bors, particles i and j, as correlated into an ordered structure
if the following condition is satisfied,

	 �
m=−6

6

q̃6m�i�q̃6m
� �j�	 	 0.5, �3�

where the normalization

q̃lm�i� =
qlm�i�


 �
m=−l

l

�qlm�i��2�1/2
�4�

sets the maximum possible value in the r.h.s. of inequality
�3� equal to unity. Moreover, to exclude from consideration
the structures with a negligible number of bonds per atom,
which occurs even in liquid phase, we apply the following
additional restriction �26�: particle i is considered as included
into a crystalline structure if it has seven and more neighbors
satisfying the condition �3�.

III. NUCLEATION AND GROWTH KINETICS

According to the KJMA theory for crystallization kinetics
�1�, the fraction of material transformed into a crystalline
phase at a given time t is defined by


�t� = 1 − exp�− 

0

t

I�t��vex�t�,t�dt�� , �5�

where I�t� is the nucleation rate and vex�t� , t� is the volume at
time t of a nucleus formed at time t�:

vex�t�,t� = cg


t�

t

G�t��dt��3

, �6�

G�t� is the growth rate of the nucleus radius, cg is a dimen-
sionless shape factor. This description is obviously correct if
critical sized nuclei grow isotropically and are much smaller
than the system size. In the simplest version of the theory,
the growth rate does not depend on size or time, G�t��Gc
and the nucleation rate I�t� is approximated by the steady-
state nucleation rate Is, Eqs. �5� and �6� are simplified to give
a well-known expression for steady-state homogeneous
nucleation kinetics,


�t� = 1 − exp�−
cgIsGc

3t4

4
� . �7�

However, if the time scale of the transient regime, which
precedes the steady nucleation and growth kinetics, is com-
parable to nucleation and growth time scales, a lag-time tc
that accounts for the nonstationary character of the transition
kinetics should be introduced, as discussed below.

The growth law of a supercritical cluster is commonly
chosen �see Ref. �1�, p. 378� to be of the form

R�t� = �Gct��, �8�

with the growth rate averaged over directions2

G�t� = �Gc
�t�−1. �9�

Here, R is the averaged radius of a crystallite, the growth
constant Gc and the exponent � take positive values and are

1For convenience, all quantities are expressed in reduced form.
The time unit is �=��m0 /�, m0 is a particle mass, the strain rate is
in units of �−1, the temperature T is in units of � /kB and the pressure
is in units of � /�3, where kB is the Boltzmann constant.

2Generally, clusters can have a distribution of shapes and struc-
tures. Here we use a simplified description in terms of appropriately
averaged cluster shapes �27�.
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determined by the growth mechanisms. Note that the term Gc
has a dimension of �length�1/��time�−1.

Taking into account the last equation, one obtains the vol-
ume of the supercritical cluster V�t�=cgR�t�3=cg�Gct�3�. As a
result, the growth law of a supercritical cluster can be written
as

N�tc,t� = Nc + cg�sGc
3��t − tc�3�, t 
 tc, �10�

where Nc is a critical cluster size, �s is a numerical density of
the crystalline cluster and tc is the mean lag-time for the
appearance of a critical cluster. This equation can be rewrit-
ten in the dimensionless form,

N���
Nc

− 1 =
cg�s�Gctc�3�

Nc
�� − 1�3�, �11�

where

� =
t

tc
, � 
 1.

Assuming that Eq. �10� holds to describe the growth of a
supercritical cluster, we obtain equation for the time-
dependent extended volume of a single cluster

vex�tc,t� =
N�tc,t�

�s
=

1

�s
�Nc + cg�sGc

3��t − tc�3�� . �12�

Further, the simplest model to take into account the exis-
tence of a transient regime on the nucleation rate consists in
assuming that this rate is zero until tc, and becomes constant
hereafter �28,29�. This corresponds to a function I�t� given
by

I�t� = IsH�t − tc� , �13�

where H�t� is the Heaviside step function. By inserting Eqs.
�12� and �13� into Eq. �5�, we obtain for nucleation-growth
regime t
 tc the following equation:


�t�

�

= 1 − exp�−
IsNc

�s

�t − tc� +

cg�sGc
3�

�3� + 1�Nc
�t − tc�3�+1�� ,

�14�

where the normalization factor 
� indicates the possibility of
incomplete crystallization of the parent phase, 0�
��1. By
analogy with the growth law for a supercritical cluster �see
Eq. �11�� the last equation can be also written in the dimen-
sionless form:


���

�

= 1 − exp�−
IsNctc

�s

�� − 1� +

cg�sGc
3�tc

3�

�3� + 1�Nc
�� − 1�3�+1�� .

�15�

When the critical cluster size Nc is much smaller than the
system size, the first �linear� term in the exponent of Eqs.
�14� and �15� can be neglected. Moreover, if the lag-time tc is
negligible in the nucleation and growth kinetics, then Eq.
�14� reduces to the well-known Avrami equation �Eq. �7��.

IV. RESULTS

A. Critical cluster

The critical cluster size Nc is one of the crucial parameters
in nucleation theories. Since the critical clusters are undetect-
able by the common traditional experimental tools, espe-
cially at the high supercoolings corresponding to a glassy
phase, advanced methods must be used to define the critical
cluster size and to clarify the question about subcritical clus-
ter morphology �see review �30��. Here one can mention the
advanced Köster’s method �31� and the way based on the
accurate study of static structure factor data �32�. On the
other hand, molecular dynamics simulations allow one to
identify clusters of all sizes including supercritical solid clus-
ters of the nucleation regime as well as subcritical clusters of
the transient regime. Therefore, the critical cluster size can
be identified, if a method to define correctly the boundary
between these regimes is found.

Yasuoko-Matsumoto method. A first method for identify-
ing Nc is based on the consideration of the time-dependent
total number of clusters whose size is larger than a given
value N�, i.e.,

f�N�,t� = �
s=N�

Nmax�t�

ns�t� , �16�

where ns�t� is the time-dependent cluster size distribution,
Nmax�t�=maxs,ns�0�ns�t�� is the size of the largest cluster at
the time t. Obviously, at N�=Nc Eq. �16� defines the total
number of supercritical clusters f�Nc , t� formed at time t,
whereas �1 /V�� f�Nc , t� /�t is the nucleation rate I�t�; V is the
volume. In the steady nucleation regime, the rate I�t�
=const= Is, defined by the slope of f�Nc , t� /V, is independent
of N� for the range of supercritical clusters, i.e., N�
Nc.
Note that this is correct only if the cluster-growth rate is
independent of time and size. As a result, the time-dependent
curves f�N� , t� at different N�
Nc must be simply shifted
and have the same slope for the steady nucleation regime.
This regularity will appear in the vicinity to the critical clus-
ter size Nc �33�.

To test the suitability of this method for extraction of the
critical cluster size Nc, we compute f�N� , t�. The time evolu-
tion of f�N� , t� at the different threshold values of N� is
shown in Fig. 1. As expected, the curves shift in t with the
increase of N�. A linear growth in the nucleation regime
�marked one in the main figure� is observed for all the cases
including the case with extremely small threshold value N�

=3. At the same time, the expected regularity that would
indicate the independence of the f�N� , t�-slope on N� is never
observed �see inset of Fig. 1�. Instead, we find that the de-
pendence of the slope on N� is well fitted by an exponential
decay �34�. Therefore, we conclude that in the present case,
the method does not allow one to find explicitly the values of
the critical cluster size Nc. On the other hand, such a behav-
ior of f�N� , t� can arise because both nucleation and growth
take the comparable time scales �35�, and the growth rate is
a time- and size-dependent. In that case, a supercritical clus-
ter is growing by a single-particle attachment as well as by a
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cluster coalescence, where a larger cluster merges with a
smaller one.

Mean first-passage time method. This method focuses on
the evolution of the largest cluster with the aim to define the
average time of first appearance of a cluster with size N �see
Refs. �37,38��, i.e.,

�̄�N� =
1

M
�
i=1

M

�N
�i�, �17�

where �N
�i� is the time of the first appearance of the N-sized

cluster after a single run and M is the total number of runs,
i=1,2 ,3 , . . . ,M. If the nucleation is followed by fast cluster
growth, the �̄�N� has a pronounced sigmoidal form and can
be fitted by

�̄�N� = tc�1 + erf��N − Nc�c�� , �18�

where erf� . . . � is the ordinary error function, c defines the
curvature and is related to the Zeldovich factor Z=c /��
�36�. Then, the critical cluster size Nc can be simply defined
by the position of the inflection point in MFPT �38�, which
indicates the onset of stable cluster growth, whereas the term
�̄�Nc� will characterize the mean lag-time tc for the appear-
ance of a critical cluster. It is important to note that if the
transient regime is insignificant and the transition is charac-
terized by steady-state nucleation mainly, then MFPT
method allows one to estimate the nucleation rates directly as
an inverse height of plateau in MFPT divided by volume
�37,38�.

Figure 2 shows MFPT distributions averaged over set of
independent runs, where each curve corresponds to a fixed
temperature and strain rate. Although a fit of Eq. �18� to the
data is suitable and the plateau in MFPT is observable for all
cases �Fig. 2�b��, the position of the plateau is difficult to

locate accurately �Fig. 2�a��. Such a behavior indicates once
again the possible nonstationary character of the cluster
nucleation-growth process and that nucleation and growth
occur at the comparable time scales �35�. Nevertheless, as
can be seen from Fig. 2�a�, the inflection point in MFPT
distributions, which is associated with the critical cluster size
Nc and the lag-time tc, is well-defined.

B. Cluster growth

Figure 3 shows the growth curves of the largest cluster in
the system under shear, for strain rates �̇
� �0.0001,0.01��−1, and at a low temperature T=0.01� /kB. It
is seen from the figure that all the curves indicate a steady
growth for a cluster with size larger than N=20 particles.
Therefore, the threshold value of a cluster size, associated in
CNT with a critical cluster size Nc, at which the steady
growth starts, must be relatively small. The values of Nc
defined by means of MFPT method are also presented in Fig.
3. These small values of Nc are qualitatively in agreement
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with CNT, which predicts a decrease of the critical cluster
size with the supercooling. Another interesting observation is
related with the existence of a transient regime, which pre-
cedes the nucleation and growth processes and causes the
delay of the cluster growth. The transient regime can be char-
acterized by the lag-time tc, which defines the time required
for the appearance of a critical sized cluster �28,33�. Hence,
the shift of the growth curves, observed in Fig. 3, indicates
directly a �̇-dependence of the lag times. We note that the
similar growth curves are also observed for the cases with
T=0.03 and 0.06� /kB.

Growth laws of the largest cluster at various strain rates
and temperatures are presented in Fig. 4, using the scaling
form described by Eq. �11�. First, as can be seen, all curves
for the fixed temperature are collapsed onto a single master
curve, which indicates the universal character of the growth
kinetics. Moreover, the master curve is very well fitted by
Eq. �11� with the growth exponent �=2 /3 and the factor
cg�s�Gctc�2 /Nc=1.7�0.3 for all considered temperatures.
Both parameters appear to be T-independent for the tempera-
tures we have studied. On the other hand, it appears that the
growth constant Gc correlates with the lag-time tc and the
critical cluster size Nc, and so we have

Gc �
1

tc

� Nc

cg�s
. �19�

Taking into account that �=1 for three-dimensional �3D�
uniform crystalline growth controlled by interface transfer,
the smaller value of the growth exponent, �=2 /3, can reflect
the influence of shear on the growth mechanism, where the
corresponding cluster growth is considered as an averaged
one over directions. Note that a crystal growth law �t3� with
a small exponent 3�=1, was observed in the diffusion wave
spectroscopy “echo” experiments for colloidal glasses under
shear of Ref. �18�. While we do not have any theoretical
explanation for the empirical correlation �19�, this correla-
tion is clearly associated with the influence of shear on the
kinetic aspect of the nucleation and growth process. The
growth constant Gc is defined by a particle attachment fre-

quency, whereas the lag-time tc characterizes shear-induced
“unjamming” of the glassy system �12�.

C. Crystallization kinetics and nucleation rates

We now come to a discussion of the crystallization kinet-
ics of the glassy system under strain. The time-dependent
crystalline phase fraction 
�t�, as resulting from cluster
analysis applied to our simulation data at three fixed tem-
peratures T=0.01, 0.03, and 0.06� /kB and four fixed values
of the strain rate �̇, is presented in Fig. 5. The data for each
case presented in the figure is the result of averaging over a
set of independent runs. One can see from the figure, that the
evolution of the crystal fraction is characterized by three dis-
tinct regimes, in analogy with the transition without external
drive. In the first regime the crystalline fraction is practically
negligible. The characteristic time scale for this stage is de-
fined by the time elapsed between the system quench and the
formation of a critical cluster. The second regime corre-
sponds to the growth of the crystalline fraction. Finally, in
the third regime, the crystalline growth is essentially termi-
nated, and the small increase appears due to coarsening and
defect removal processes �11�. Moreover, Fig. 5 shows the fit
of these results by the theoretical model �14� presented in
Sec. III. Only two adjustable parameters, 
� and Is, are
needed to reproduce simulation results for all considered
cases, as the values of all other terms included in Eq. �14� are
known from the cluster-growth curves discussed above. It is
clear that the parameter 
� defines the final part of the crys-
tallized fraction and, thereby, can be found from the final
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plateau of 
�t�. Then, if theoretical model �14� is capable to
reproduce the data, then we obtain within such a model an
additional tool to extract the steady-state nucleation rate Is
from crystallization kinetics data.3

As can be seen from Fig. 5, an excellent agreement be-
tween the molecular dynamics simulation data and the model
�14� is obtained for all considered temperatures and values of
the strain rate �̇. The growth exponent � was taken as 2/3,
the product cg�sGc

2, the lag-time tc and the critical cluster size
Nc were used immediately as found from cluster-growth
analysis �see Table I�. Moreover, from Fig. 5, the values of

� do not saturate to unity. This indicates incomplete crys-
tallization of the glassy system, �65–70% of the bulk, and
represents a consequence of the shear drive. Note, that a
similar effect was observed by Rottler-Srolovitz for shear-
induced alignment in polycrystalline bilayer systems, al-
though the final ordered fraction was found to be less than in
our case �39�.

The slope of 
�t� in the nucleation-growth regime appears
to be the same for all the considered shear rates and tempera-
tures, indicating the universal character of the crystallization
kinetics. In Fig. 6, the rescaled curves for 
�t� according to
Eq. �15� with the extracted values of the parameters are pre-

sented. As can be seen, the rescaled data generate a unified
master curve, well described by the scaling form �Eq. �15��.
So, crystallization kinetics of the system is defined by the
time scales responsible for crystal nucleation and cluster
growth, respectively. This has a similarity with results of
Cavagna et al. for a lattice spin system �40,41�, where at low
temperatures the fast nucleation of small and stable crystal
droplets followed by slow activated crystal growth.

Figure 7 shows the �̇-dependence of the nucleation rate Is
at fixed temperatures. In this figure, the data obtained from

3A similar method was used in Ref. �28� to estimate the growth
and nucleation rates.

TABLE I. Parameters of the crystallization kinetics: the system temperature T, the strain rate �̇, the
critical cluster size Nc, the lag-time tc, the product of cluster-growth characteristics cg�sGc

2, and the crystal-
lization factor 
�. The numerical density of the amorphous phase is �am=0.85�−3 and of the crystalline fcc
phase is �c=1.09�−3.

T
�� /kB�

�̇
��−1� Nc

tc

���
cg�sGc

2

�10−5�−2� 
�

0.01 0.0001 10�1 1400�350 0.8 0.77�0.01

0.01 0.0005 11 310�10 19.4 0.68�0.01

0.01 0.001 15 235�5 46.1 0.68�0.01

0.01 0.002 20�1 195�5 84.4 0.69�0.01

0.01 0.005 21�2 200�6 89.3 0.69�0.01

0.01 0.008 19�1 215�2.5 69.7 0.7�0.01

0.01 0.01 16�1 280�5 34.6 0.7�0.01

0.03 0.0001 9 850�150 2.1 0.77�0.02

0.03 0.0005 13�1 298�6 24.8 0.71�0.01

0.03 0.001 15�1 235�5 46.1 0.77�0.01

0.03 0.002 21�2 195�5 93.9 0.76�0.01

0.03 0.005 20�2 176�10 109.6 0.75�0.01

0.03 0.008 18�1 178 97.0 0.78�0.02

0.03 0.01 15�1 179�15 79.5 0.75�0.01

0.06 0.0001 9 835�35 2.2 0.7�0.01

0.06 0.0005 13�1 294�6 25.5 0.73�0.01

0.06 0.001 14�1 235�5 43.0 0.74�0.01

0.06 0.002 16�1 190 75.2 0.74�0.01

0.06 0.005 18�1 158�8 122.4 0.72�0.01

0.06 0.008 15�1 150 113.3 0.68�0.02

0.06 0.01 14 165�10 87.4 0.75�0.02

10
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0
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t/t
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B

FIG. 6. �Color online� Time evolution of the crystalline fraction
at a temperature T=0.01� /kB and strain rates �̇� �0.0001;0.01��−1.
Curves are rescaled according to Eq. �15�.
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the evolution of crystallization kinetics within Eq. �15� are
compared with the results of Yatsuoko-Matsumoto method at
the known critical cluster size. Remarkably, both methods
yield a very close behavior and reveal the same features for
all the considered cases. As can be seen, Is��̇� at the constant
temperature is nonmonotonic. Namely, the nucleation rate Is
increases linearly at low strain rates. Then, at the values �̇
=0.2�−1–0.8�−1 the nucleation rate levels off and reaches a
maximum. On further increase of �̇ nucleation rate starts to
decrease. Interestingly, a similar �̇-dependence was earlier
found by us for the phase transformation rate of the system
�12�. Results similar to those shown in Fig. 7 have also been
observed for steady-state nucleation rate measurements
against shear rate in very different systems, including an in-
dustrial polydisperse isotactic polypropylene melt �20� and a
two-dimensional Ising model �16�.

To understand the observed nonmonotonic behavior of
Is��̇� we also consider the values of the product cg�sGc

2 and
of the lag-time tc presented in Table I �the inverse lag-time vs
the strain rate is also shown in the inset of Fig. 7�. As can be
seen, both quantities correlate directly with nucleation rate,
with a very similar nonmonotonic variation. The rise of
nucleation rate is therefore accompanied by the increase of
the cluster growth and by the reduction of the time scale for
transient regime and, vice versa, the decrease of nucleation
rate occurs at retarding the cluster growth and increasing the
lag-time scale. Such a correlation indicates directly that the
changes in the nucleation rate are essentially a kinetic, rather
than thermodynamic effect.

Recently, the similar nonmonotonic behavior of nucle-
ation rate vs strain rate for a driven two-dimensional Ising
model was revealed in Ref. �16�. The authors had related the
observed behavior with an interplay between shear-enhanced
cluster growth, cluster coalescence, and cluster breakup. It
was additionally found in Ref. �16� that shear-enhanced clus-
ter coalescence and monomer attachment �single spin flip
growth in Ising model� give the similar impact in the total
ordering. Results of our study indicate rather that cluster-
growth and nucleation processes are merely correlated and
their features are defined by kinetics of the transition. At the
same time, a weak �̇-dependence observed for the critical
cluster size �see Table I� reflects the influence of shear drive
on the particle cohesion in a crystalline nuclei due to me-
chanical stresses.

V. CONCLUSION

In summary, we have performed nonequilibrium molecu-
lar dynamics simulations to study crystal nucleation and
growth processes induced by shear drive in a metallic glass
for a range of temperatures and strain rates. By applying a
mean first-passage time analysis, we define the size of a criti-
cal cluster and the time scale of its appearance. We find that
the nucleation-growth process has a nonstationary character,
and the crystalline cluster grows with a time- and size-
dependent rate.

To describe the crystallization kinetics under shear ob-
served in our simulations, the extension of the KJMA theory
is suggested and compared with simulation data. As a result,
an excellent agreement is obtained for all the considered
cases. Further, we find that data for time evolution of the
crystalline fraction at particular values of strain rates can be
rescaled within this theoretical model to give an unified mas-
ter curve.

The observed nonmonotonic behavior of the nucleation
rate J on the strain rate �̇ at the fixed temperatures is very
similar with that was recently reported for the case of a two-
dimensional Ising model under shear �16�. This behavior of J
indicates directly that shear drive can speed up as well as
suppress nucleation in a glass. Finally, we find that nucle-
ation rate, lag time, and cluster growth are affected by the
shear in a very similar and correlated way.
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