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Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and
biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of
vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of
renewal theory to describe ensembles of point processes with time varying input. This is made possible by a
representation in terms of occupation numbers of two states: active and refractory. The dynamics of these
occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to
uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in
response to modulation of the input. We present exact solutions that demonstrate generic features, such as
stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency
doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be
regarded as special cases of the model we analyze. Hence our approach represents a widely applicable frame-
work to define and analyze nonstationary renewal processes.
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I. INTRODUCTION

Point processes are stochastic models for time series of
discrete events: a particle passes through an apparatus, a pho-
ton hits a detector, or a neuron emits an action potential
�1,2�. As diverse as these examples are, they share three ba-
sic features that need to enter a statistical description and
which are illustrated in Fig. 1. The first feature is refractori-
ness. Technical devices to detect point events typically can-
not discriminate events in arbitrarily short succession. This is
addressed as the dead-time of the detector �3,4�. The process
of vesicle release and transmitter recycling in the synaptic
cleft is of similar nature �5�. Upon the arrival of an action
potential at the synapse, a vesicle might fuse with the mem-
brane and release its contents into the synaptic cleft. Subse-
quently the vesicle is reassembled for future signaling, but it
is available only after a certain delay, equivalent to a refrac-
tory signaling component. In neurons, refractoriness can be
the result of the interplay of many cellular mechanisms, and
possibly also of network effects �6�. In case of cortical neu-
rons, which are driven to produce an action potential mainly
by fluctuations of the input currents �7�, refractoriness can
model the time it takes to depolarize the membrane from a
hyperpolarized level that follows the action potential into a
range in which action potentials can be initiated by fluctua-
tions. Generally, refractoriness can be described as a duration
d for which the component cannot be recruited to generate
another event. In Fig. 1 it is illustrated as a delay line. After
the refractory time is elapsed, the component reenters the
pool of active components that can generate an event. The
existence of such a pool is the second common property of
the examples. Each component process of the ensemble can

be either active or refractory. So an ensemble of neurons,
vesicles, or detectors, can be treated in terms of the occupa-
tion of two states, “active” and “refractory,” as depicted in
Fig. 1, where A�t�� �0,1� describes the fraction of compo-
nents which are active at time t and 1−A�t� is the fraction of
components that are currently refractory. The third feature is
the stochastic nature of event generation. The time of arrival
of a particle at a detector, the fluctuation of the membrane
potential of a neuron that exceeds the threshold for action
potential initiation, and the release of a vesicle into the syn-
aptic cleft can, under many conditions, be assumed to happen
stochastically. Given an independent transition density of
��t� per time interval, event generation follows an inhomo-
geneous Poisson process, as indicated in Fig. 1. In the ex-
ample of a detector, ��t� corresponds to the actual rate of
incoming particles, and we will call it the input rate in the
following. We distinguish two models of systems which
share the properties described above: if the refractoriness has
a fixed duration we obtain the well-known Poisson process
with dead-time �PPD�. If the duration is drawn randomly
from a specified distribution we call the model the Poisson
process with random dead-time �PPRD�.

In the following we describe an extension of renewal
theory for ensembles of point processes with time varying
input. For stationary input rate, many previous publications
have investigated the statistics of the PPD �8–11�. In case of
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FIG. 1. Scheme of the ensemble description of the Poisson pro-
cess with refractoriness: active component processes produce
events with rate ��t� and remain refractory for the duration d, illus-
trated by the delay line. After the dead-time they become active
again. The fraction of active component processes is given by A�t�.
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slowly varying input rates, expressions for mean and vari-
ance of detector counts have been derived �12�, and recently
a method was proposed to correct for clustered input events
�13�. PPDs with non-stationary input rate have been em-
ployed as a model for the signal transduction in the auditory
nerve �14�. A sudden switch of the input rate was found to
induce strong transients of the ensemble output rate. These
reflect a transiently perturbed equilibrium of the occupation
numbers in our two-state model, and we quantitatively ana-
lyze this case for the PPD. Response transients to rapidly
changing input, in fact, explain the relation between neural
refractoriness and neural precision �15�. Furthermore, peri-
odic input profiles are known to be distorted by refractori-
ness �16�. Here we derive the mapping of periodic input to
output in the steady state and uncover the impact of refrac-
toriness on the transmission. Interacting populations of re-
fractory neurons have been studied in �17�. This approach, in
contrast to ours, neglects the effects of refractoriness on short
time scales due to temporal coarse graining of the population
dynamics.

From a more abstract perspective, the PPD is a very
simple example of a point process that exhibits stochastic
transients, which are not shared by the ordinary Poisson pro-
cess. Besides its many applications, the PPD therefore is a
prototype system to study nonequilibrium phenomena in
point process dynamics. Generally, non-stationary point pro-
cesses can be defined by two different models: by rescaling
time �18–20� or by time-dependent parameters of the hazard.
The drawback of the former method is that the transforma-
tion from operational to real time distorts the inter-event in-
tervals, such that, for example, a constant refractory period is
not maintained. An example how a time-dependent hazard
function can be derived from an underlying neuron model
with time-dependent input is given in �21�. Our approach
differs with regard to the choice of the hazard function,
which enables rigorous analysis of the dynamics of the pro-
cess.

To analytically investigate nonequilibrium phenomena in
ensembles of renewal process, a typical approach is to use a
partial differential equation �PDE� for the probability density
of the ages of the components �time since the last event� �6�.
In Sec. II we derive the two-state representation of the PPD
from the dynamics of the age density. We present analytical
solutions of the population dynamics for the response to a
step change in the input rate in Sec. III, and to periodic input
rate profiles in Sec. IV. Finally, in Sec. V, we generalize our
results to random refractoriness. We compute the effective
hazard function of the resulting inhomogeneous renewal pro-
cess, connecting it to the framework of renewal theory. For
the PPRD with gamma-distributed dead-times, as applied re-
cently to model neural activity �22�, we show how the dy-
namics in terms of a distributed delay differential equation
can be reduced to a system of ordinary �nondelay� differen-
tial equations. Again we study the transient response of an
ensemble of processes to a steplike change in the input rate
and the transmission of periodic input. We observe that both
distributed and fixed refractoriness lead to qualitatively simi-
lar dynamical properties. At last we identify the class of re-
newal processes that can be represented as a PPRD. As it
turns out, this covers a wide range of renewal processes.

II. DYNAMICS OF AN ENSEMBLE OF PPDS

Point processes can be defined by a hazard function

h�t,Ht� =
def

lim
�→0

1

�
P�event in�t,t + ���Ht� , �1�

which is the conditional rate of the process to generate an
event at time t, given the history of event times Ht up until t.
A process is a renewal process �1� if the hazard function
depends only on the time � since the last event �age� instead
of the whole history Ht. This can be generalized to the inho-
mogeneous renewal process which, additionally, allows for
an explicit time dependence of the hazard function h�t ,Ht�
=h�t ,��.

Here we consider an ensemble of point processes defined
by the hazard function

h�t,�� = ��t���� − d� , �2�

where ��t�= �1 for t�0, 0 else� denotes the Heaviside
function, d�0 is called dead-time, ��t��0 is the time-
dependent input rate and ��0 is the age of the component
process. This is an inhomogeneous renewal process, which is
known as the Poisson process with dead-time �PPD�. The
state of an ensemble of such processes can be described by
the time-dependent probability density of ages a�t ,��, for
which a partial differential equation is known �6�

�

�t
a�t,�� = −

�

��
a�t,�� − h�t,��a�t,�� . �3�

Solutions must conserve probability, which manifests itself
in the boundary condition a�t ,0�=��t�, with the event rate of
the ensemble

��t� =
def�

0

�

h�t,��a�t,��d� = ��t�A�t� . �4�

In the second step we inserted Eq. �2� and introduced the
active fraction of component processes with age ��d

A�t� =
def�

d

�

a�t,��d� . �5�

For �	d, Eq. �3� simplifies to �ta�t ,��=−��a�t ,��, implying

a�t + u,u� = a�t,0� = ��t� ∀ u � �0,d� . �6�

Since a�t ,�� is normalized we obtain with the boundary con-
dition and Eq. �6�,

1 = �
0

�

a�t,��d� = �
t−d

t

��s�ds + A�t� . �7�

This equation is the starting point of the analysis of interact-
ing populations of refractory neurons in �17�. Differentiation
of Eq. �7� by t yields

d

dt
A�t� = ��t − d�A�t − d� − ��t�A�t� , �8�

which is a linear delay differential equation �DDE� with
time-dependent coefficients. Its forward solution for input
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��t� is uniquely defined given A�t� on an interval of length d
�23�. However, not all solutions of Eq. �8� can be interpreted
physically, since by differentiation of Eq. �7� additive con-
stants are lost. Only if the initial trajectory satisfies Eq. �7�,
Eq. �8� determines the time evolution of the ensemble. With
Eq. �4�, the time-dependent output rate ��t� follows. Note
that only in the case of the “pure” Poisson process with d
=0 we obtain ��t�=��t�, because A�t�=1 by Eq. �7�.

Equation �8� represents a more accessible description of
the process in terms of the occupation of the active and the
refractory state �see Fig. 1 and Sec. I� compared to the dy-
namics of the probability density of ages �Eq. �3��. This de-
scription is feasible because of the particular nature of the
hazard function of the PPD �Eq. �2��. In the following we
will consider specific solutions of Eq. �8�.

III. SOLUTIONS FOR A STEP INPUT

If ��t�=� is constant, given the occupation A�t�=u�t� on
the first interval t� �−d ,0� with u : �−d ,0�→ �0,1�, solutions
to Eq. �8� are known in integral form �23�

A�t� = u�0�g�t� + �
0

d

�u�s − d�g�t − s�ds �9�

for t�0, where we introduced the fundamental solution g�t�.
It obeys g�t�= �0 for t	0, 1 for t=0� and solves Eq. �8�
for t
0. As we will show, here g is in fact the shifted and
scaled autocorrelation function R of the process.

The interevent interval density of the stationary PPD is
f�t�=���t−d�e−��t−d�. For t�d, the integral equation

A�t� = �f � A��t� , �10�

is equivalent to the delay differential Eq. �8�, which can be
proven by differentiation with respect to t �� denotes the
convolution�. The auto-correlation function �1�

R�t� = 	
k=0

�

f�k�t� , �11�

with f�k�t� =
def

�f��k−1�� f��t� for k�1 and f�0 =
def

��t�, solves Eq.
�10� for t�d, and hence is a solution of Eq. �8� in that
domain. We find for k�1 that

f�k�t� = �k�t − kd�k−1e−��t−kd���t − kd�/�k − 1�!. �12�

Given the initial trajectory g�t� for t�0, solving Eq. �8� by
variation of constants for t� �0,d� yields g�t�=�−1f�t+d�
=�−1R�t+d�. Then due to uniqueness of the solution it holds
for all t�0 that

g�t� = �−1R�t + d� . �13�

We apply these results to compute the response of A�t� if the
input rate is switched from �0 to � at t=0, given the process
was in equilibrium for t�0. Equation �7� determines this
equilibrium to A�t�
a0= �1+�0d�−1, t�0. In this case, the
step change in ��t� enters Eq. �9� as

�0

Astep�t� = u�0�g�t� + �
0

d

��s − d�u�s − d�g�t − s�ds ,

�14�

for t�0. We insert Eq. �13� to obtain

Astep�t� =
a0

�
R�t + d� +

�0a0

�
�

0

d

R�t + d − s�ds

=
a0

�
R�t + d� +

�0a0

�
�1 −

1

�
R�t + d��

=
a0�0

�
�1 + ��0

−1 − �−1�R�t + d�� , �15�

where we used Eq. �7�, which holds for g�t�=�−1R�t+d�.
Figure 2 shows this analytical solution compared to direct
numerical simulation of an ensemble of PPDs upon a step
change of the input rate ��t� at t=0. The output rate displays
a marked transient, which increases with the dead-time d and
exhibits oscillations of frequency 1 /d.

IV. TRANSMISSION OF PERIODIC INPUT

We now investigate an ensemble of PPDs with an input
rate ��t��R that is periodic. If T is its period, we obtain the
Fourier series ��t�=	k=−�

� ke
ik�t, with �= 2�

T and k�C.
Then the steady-state solution for the active fraction A�t� of
the PPD is also periodic in T, so it can be expressed as
A�t�=	k=−�

� �ke
ik�t with �k�C. Inserted into Eq. �7� we ob-

tain

1 = 	
k,l=−�

�

l�kql+ke
i�l+k��t + 	

k=−�

�

�ke
ik�t, �16�

where for k�0

�
t−d

t

eik�tdt =
1 − e−ik�d

ik�
eik�t =

def

qke
ik�t,

and q0 =
def

d. Since the Fourier basis functions �eik�t ,k�Z� are
mutually orthogonal, we can separate Eq. �16� for different k.
This yields the infinite dimensional linear system of equa-
tions

1 0 1 2 3 4

t [ d ]

0

5

1 0

1 5

2 0

2 5

3 0

ν
[H

z]

1 0 1 2 3 4

t [ d ]

0

2

4

6

8

1 0

ν
[ H

z]

(a) (b)

FIG. 2. Transients upon step change of the input rate ��t� at t
=0. Exact analytical result �15� �solid lines� and simulation of the
ensemble rate of 1010 processes �crosses�. Parameters: d�s�: 0.02,
0.05, 0.08 �light gray, mid gray, dark gray� �a� �0= ��5 Hz�−1

−d�−1 , �= ��10 Hz�−1−d�−1, �b� �0= ��10 Hz�−1−d�−1 , �
= ��5 Hz�−1−d�−1.
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�k,0 = qk 	
l=−�

�

l�k−l + �k, k � Z . �17�

The ensemble averaged output rate of the PPD defined in Eq.
�4� then follows as ��t�=��t�A�t�=	k=−�

� �ke
ik�t with the

spectrum

�k = 	
l=−�

�

�k−ll = qk
−1��k,0 − �k� , �18�

where we used Eq. �17�. This given, we replace the �k by �k
in Eq. �17� to obtain

�k = k − 	
l=−�

�

k−lql�l, k � Z . �19�

This relation shows how different frequencies of the output
rate are coupled by a convolution with the input spectrum.
Note that inverting Eq. �19� yields the spectrum of the time-
dependent input rate ��t� given the spectrum of the output
rate signal ��t�.

Let us now consider the special case of a cosine-
modulated input

��t� = �0 + � cos��t� ,

which we obtain with k= �0 for �k�
1, �
2 for k� �1,

−1� ,�0 for k=0�, �0���0. Then for k�N, Eq. �17� be-
comes a so-called three-term recurrence relation �24� of the
form 0=�n+1+xn�n+yn�n−1 with xn= �qn

−1+�0��2 /�� and yn
=1. This relation has two linearly independent solutions. The
unique minimal solution is convergent and can be obtained
from the continued fraction rn−1=−yn / �xn+rn� in a robust
manner �24� using the relation rn=�n+1 /�n ,n�0: setting
rN=0 for some N�N one computes �rn�0�n	N backward and
increases N until r0 does not change within the required tol-
erance. Inserting �1=r0�0 into Eq. �17� for k=0 we solve for
�0 to obtain �0= �1+d��0+�R�r0���−1 �here R denotes the
real part�. The remaining �k follow recursively from �k+1
=�krk and �−k=�k

�, since A�t��R. The spectrum of the out-
put rate is then given by Eq. �18�. Figure 3�a� shows the
output rate ��t� for different input rate modulation frequen-
cies f =� / �2��. Figures 3�c� and 3�d� display the amplitude
and phase of the three lowest harmonics of the output rate
��t� as a function of f . The time averaged emission rate ��0�
depends on the modulation frequency. It is maximized
slightly below the characteristic frequencies f =k /d. This is
due to the oscillation of A�t�, which is almost in phase at
these frequencies and hence cooperates with the oscillatory
hazard rate ��t� to enhance the emission �see Fig. 3�d��. In-
terestingly, the first ��1� and second ��2� harmonic of ��t�
display maxima at different f . At a particular modulation
frequency f 1 / �2d� the amplitude of the second harmonic
��2� is larger than the first harmonic ��1�, so that the en-
semble activity is effectively modulated with twice the input
frequency �see Fig. 3�a� �a,� and Fig. 3�c��: the ensemble
performs a frequency doubling. Figure 3�b� shows the maxi-
mum over one period of the output rate trajectory. These
maxima are dominated by the maxima of the amplitude of
the first harmonic. In particular, low frequency input signals

are transmitted to the output with strong distortion and re-
duced intensity because the fraction of nonrefractory pro-
cesses, A�t�, is in antiphase �Fig. 3�d�� to ��t� and hence
suppresses the output rate’s modulation. This is in contrast to
the common view that the PPD transmits slow signals more
reliably than the Poisson process �6�. Note that only if the
driving frequency f =n /d, n�N is an integer multiple of the
inverse dead-time then A�t�= �1+�0d�−1 is constant in time
and the output rate is proportional to ��t� without any distor-
tion.

V. RANDOM DEAD-TIME

For detector devices as well as for neurons, a fixed dead-
time might be a somewhat restricted model. Here we con-
sider the PPRD as described in the introduction. Upon gen-
eration of each event, the PPRD draws an independent and
identically distributed random dead-time with the probability
density function �PDF� � for the duration of which it remains
silent. The PPRD is still a renewal process, since it has no
further dependencies on the event history beyond the time
since the last event. As in the case of a fixed dead-time in
Sec. II, the following analysis of the PPRD is based on the
conservation of the total number of processes in an en-
semble. Inactive components must have generated an event
at some time in the past, which leads to the normalization
condition

1 = A�t� + �
−�

t

A�t����t���
t−t�

�

��x�dxdt�. �20�

This equation can be seen as the generalization of the nor-
malization condition �7�, from which the DDE �Eq. �8�� fol-
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)
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FIG. 3. Transmission of cosine-modulated input. �a�-�b� Theo-
retical result �solid lines� and simulation of an ensemble of 1010

processes �crosses�. �a� Steady-state rate ��t� for different modula-
tion frequencies f , with fd: 0.42, 0.85, 1.0, 1.4 �a,b,c,d�. �b��max

=max���t�� for different f . Here d�s�: 0.02, 0.05, 0.08 �light gray,
mid gray, dark gray� �c�—�d� Amplitude �c,� and phase �d,� of har-
monics k� �0, . . . ,3� of A�t� Eq. �19� �top� and ��t� Eq. �18� �bot-
tom� as a function of modulation frequency f . Grayscale denotes
order of harmonics k: 0, 1, 2, 3 �black, dark gray, mid gray, light
gray�, d=80 ms. Other parameters in �a�—�d� ��t�=�0�1
+0.9 cos�2�ft��, �0= ��0

−1−d�−1, �0=10 Hz.
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lows by differentiation, to the case of random dead-time.
Analogously the distributed DDE,

d

dt
A�t� = − ��t�A�t� + �

0

�

��x���t − x�A�t − x�dx �21�

follows from Eq. �20� by differentiation with respect to t.
Equation �21� describes the time evolution of the occupation
of the active state for an ensemble of general PPRDs. Obvi-
ously, the dynamics of the PPD �Eq. �8�� is recovered from
Eq. �21� in case of the localized density ��x�=��x−d�. In the
rest of this section, we will derive the hazard function h�t ,��
of the PPRD, consider the case of gamma-distributed dead
time and the associated step response, generalize the trans-
mission of periodic input to random dead-time, and finally
identify the class of renewal processes that can be repre-
sented by the PPRD.

For a given density ��x� of the dead-time it is not obvious
what the hazard function of the PPRD is. In order to relate
the PPRD to renewal theory we compute its time-dependent
hazard function �1� here. Let

Q�t,�� =
def

E���� − x��last event at t − ��

denote the probability of the process to be active at time t,
given the last event occurred at t−�, where x is the random
dead-time and E denotes the expectation value with respect
to x. The hazard function is then h�t ,��=��t�Q�t ,��. With

Q�t,�� = P�x 	 ��last event at t − ��

= 1 − P�x � ��ev. at t − � � no ev. in�t − �,t��

= 1 − P�x � ��/P�no ev. in�t − �,t��ev. at t − ��

we obtain

h�t,�� = ��t��1 − F���/E�F�t,��x��� , �22�

where

F��� = �
�

�

��x�dx

is the survivor function of the dead-time distribution and

F�t,��x� = exp�− ��� − x��
t−�+x

t

��t��dt��
is the survivor function of a PPD with dead-time x. In case of
constant ��t�=� we further have

E�F�t,��x�� = e−���
0

�

e�x��x�dx + F��� .

The hazard function �22� is shown for constant ��t� in Fig.
4�a� for the special case described below. Equation �22� was
applied to generate realizations of the PPRD for Fig. 4�b�.

For gamma-distributed dead-time �Eq. �21�� can be trans-
formed into a system of ordinary differential equations. We
exemplify this for gamma-distributed dead-times with pa-
rameters n�N and ��R+,

��x� = �n�x� , �23�

�n�x� = �n+1xne−�x/n!, �24�

with E�x�= �n+1� /�. The time course of the rate can be ob-
tained from Eq. �21�. Introducing

bk�t� =
def�

−�

t

�k�t − x���x�dx

for 0�k�n and bn+1�t� =
def

A�t� and exploiting the relation

d

dx
�k�x� = ��k − 1���k−1�x� − ��k�x�

for 0�k�n enables to replace the integral in Eq. �21� by a
closed system of ordinary differential equations

d

dt
bk�t� = �− bn+1�t���t� + bn�t� k = n + 1

�bk−1�t� − �bk�t� 1 � k � n

�bn+1�t���t� − �b0�t� k = 0.
� . �25�

For constant ��t�=� this can be written as d
dtb��t�=M�b��t�,

b��t��Rn+2. Hence given the initial state b��0� the solution
unfolds to

b��t� = exp�M�t� · b��0� . �26�

With ��t�=�= ��−1+E�x��−1 the equilibrium state follows:
Setting the temporal derivatives to 0 in Eq. �25� yields bk
=� for 0�k�n, and bn+1=A=1−�E�x�. The rate response to
a switch from �0 to � at t=0 is thus given by Eq. �26� where
b��0� is the equilibrium state for �0. A numerical simulation
of the process with gamma-distributed refractoriness �Eq.
�23�� with hazard function �22� and the corresponding ana-
lytical solution �26� upon a step change of ��t� are shown in
Fig. 4. The simulation of the process was done via rejection
�25� and averaged over independent runs. The spread of
dead-times �Fig. 4�a�� does not qualitatively change the
shape of the response transient �Fig. 4�b��.

Analogous to Sec. IV, we consider the case of periodic
input. We insert the Fourier series of ��t� and A�t� into Eq.
�20� and obtain the same relation of their spectra �Eq. �16��
as for a single dead-time with the altered coefficients

0 4 0 8 0 1 2 0 1 6 0

τ [ m s ]

0 . 0

0 . 5

1 . 0

1 0 1 2 3 4 5

t [ d ]

0

1 0

2 0

3 0

ν
[H

z]

(a) (b)

FIG. 4. PPD with gamma-distributed random dead-time with
mean 80 ms, shape parameter n: 10, 50 �black, gray�. �a� Density of
dead-times ���� /max������ Eq. �23� �dotted lines� and hazard func-
tion h��� /�0 Eq. �22� for ��t�=�0 �solid lines�. �b� Transients upon
step change of the input rate ��t� at t=0. Theoretical result from Eq.
�26� �solid lines� and simulation of an ensemble of 106 processes
with hazard function �22� �crosses� averaged over 225 trials. The
error bars denote the standard deviation over trials. �0= ��5 Hz�−1

−d�−1 , �= ��10 Hz�−1−d�−1.
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qk = �
0

�

e−ik�y�
y

�

��x�dxdy . �27�

As is easily seen, by inserting the localized dead-time PDF
��x�=��x−d� the original qk are recovered. Hence all results
of Sec. IV also hold for the PPRD, but with the coefficients
�Eq. �27��. In particular we would like to emphasize the va-
lidity of the general input-output mapping �Eq. �19�� for ar-
bitrarily distributed dead-time.

Let us now investigate which class of renewal processes
can be represented by the PPRD. We start with an arbitrary
renewal process with interevent interval I�R+, defined by
its PDF ��x�. Let E�0 be an independent, exponentially dis-
tributed interval with PDF ��x�=�e−�x, and let R be the ran-
dom dead-time with PDF ��x�. For I to be a realization of a
PPRD it must hold for some � and ��0 that

I = R + E ⇒ � = � � � ⇒ �̂ = �̂�̂

⇒ �̂ = �−1�s + ���̂ ⇒ � = �−1L−1�s�̂� + �

⇒ ��x� =
1

�
� d

dx
��x� + ��0�� + ��x� , �28�

where ˆ decorates a function which was transformed by the
Laplace transform L, and s denotes the Laplace variable. The
renewal process defined by � can be represented by a PPRD
if � is a PDF. Let us call the hazard function of the renewal
process h�x�, and the survivor function F�x�=exp�
−�0

xh�x��dx��, which obey ��x�=h�x�F�x� �1�. Assume that
��x� is differentiable. Since expression �28� is always normal-
ized, in order for it to define a suitable PDF we only have to
require ��x��0 for all x, possibly in the sense of distribu-
tions. This translates into

�−1�h��x� − h2�x�� + h�x� � 0. �29�

In case h�x�
0, this can be written as

h�x� −
h��x�
h�x�

� � . �30�

If, in addition, the hazard and its derivative are bounded in
the sense that h�x�	� and h��x�
−�, there exists a �
0
such that Eq. �30� is fulfilled. These conditions are indeed
met by a large class of renewal processes.

For example, the gamma process which has random inter-
event intervals with PDF ��x�=�r�x� �Eq. �23�� with param-
eters r ,��R, r�1, ��0 is by Eq. �28� equivalent to the
PPRD with ��x�=�r−1�x� and �=�, but other choices of �
are also possible. This illustrates the well known fact that the
interevent intervals of gamma processes with integer shape
parameter n can be considered as the concatenation of n
exponentially distributed intervals. In neuroscience the
gamma process is frequently used to model stationary time
series of action potential emissions of nerve cells. To de-
scribe adaptation phenomena, a time dependence of the pa-
rameters of the hazard function was introduced in �21�. Iden-
tification of the gamma-process with a PPRD entails the
alternative to generalize the gamma process to time-
dependent rates by varying the input rate of the PPRD. Simi-
larly, the log-normal process can be represented as a PPRD.

We define its interevent interval as x=��, where � is a unit-
less random number and � gives the time scale. Let � be
distributed according to the log-normal PDF

���� =
1

�2���
exp�−

�log � − ��2

2�2 �
for �
0, ��0�=0, with unit-less parameters � ,�. Then x is
distributed according to ��x�=�−1��x /��. According to Eq.
�28� the process can be represented by any of the PPRDs
with

��x� = ��x��1 −
1

x�
�1 +

log
x

�
− �

�2 �� ,

� � �−1�−2 exp�− 1 − � + �2� ,

where the lower bound on � is due to the requirement ��x�
�0. For these and other renewal processes for which a
PPRD representation exists, nonequilibrium dynamics can be
studied on the basis of Eq. �21�.

VI. DISCUSSION

In this paper, we consider the effect of refractoriness on
the output of an encoding point process in case of arbitrary
time-dependent input signals. Such point processes, for ex-
ample, are used to model the generation of action potentials
by nerve cells, the release and reuptake of vesicles into the
synaptic cleft, or the detection of particles by technical de-
vices. We describe ensembles of these stochastic processes
by the occupation numbers of two states: active and refrac-
tory. The active components behave as inhomogeneous Pois-
son processes, but after an event is produced the component
is silent for the duration of the dead-time, it is caught in a
delay line. We derive a distributed delay differential equation
that describes the dynamics in the general case of a randomly
distributed dead-time.

Due to the simpler dynamics in case of a fixed dead-time,
we first elaborate properties of the PPD. For stationary input
rate, we solve the dynamics of the ensemble in a way that
sheds light on the connection between the fundamental solu-
tion of the DDE and the autocorrelation function of the point
process. This relation is employed to express the time-
dependent ensemble rate �output� for a step change of the
hazard rate �input�. The resulting output rate displays sto-
chastic transients and oscillations with a periodicity given by
the dead-time. Such transients might enable nerve cells to
respond reliably to rapid changes in the input currents
�15,26�. For periodically modulated input rate, we demon-
strate how the spectrum of the steady-state periodic output
rate results from the linear coupling between harmonics. In
the particular case of cosine-modulated input signals only
adjacent harmonics are coupled. This nearest-neighbor inter-
action is rigorously solved using the theory of three-term-
recurrence relations and continued fractions �24�.

Our analytic result explains frequency doubling, the emer-
gence of higher harmonics and the dependence of the time
averaged population activity on the modulation frequency. In
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particular, slow frequency components of the input are at-
tenuated and distorted in the population rate, which is in
contrast to the claim that the PPD transmits slow frequency
signals more reliably than the Poisson process �6�.

In case of periodic input modulation, the output spectrum
contains all harmonics of the fundamental frequency of the
input. This might be related to a psychophysical phenom-
enon called “missing fundamental illusion” �27,28�: Being
presented an auditory stimulus which consists of several har-
monics of a fundamental frequency, but in which the funda-
mental frequency itself is missing, subjects nonetheless per-
ceive the fundamental frequency as if it was contained in the
stimulus spectrum. By considering neurons in the auditory
system as PPDs whose hazard rate is modulated by the au-
ditory stimulus, our theory explains how the lowest harmonic
is recovered in the population activity of the neurons. Con-
versely, our results can be applied to infer input rate profiles
from the count rate of detectors with dead-time, in particular
in the case of periodic input, for which Eq. �19� applies.

For the more general case of a random, arbitrarily distrib-
uted dead-time, we show how the DDE generalizes to a dis-

tributed DDE. By suitable choice of the distribution of the
dead-time, nonequilibrium dynamics of a large class of re-
newal processes can be described. For integer gamma-
distributed dead-time we demonstrate how the distributed
DDE transforms into a coupled system of finitely many or-
dinary differential equations, which could also be imple-
mented as a multistate Markov system �22�. Regarding the
output rate transient upon a step change of the input and the
transmission of periodic inputs, we find that the qualitative
behavior of the system is very similar to the PPD. In conclu-
sion, we present a canonical model for nonstationary renewal
processes, as well as the analytical methods to describe en-
sembles thereof.
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