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Information-theory-based solution of the inverse problem in classical statistical mechanics
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We present a procedure for the determination of the interaction potential from the knowledge of the radial
pair distribution function. The method, realized inside an inverse Monte Carlo simulation scheme, is based on
the application of the maximum entropy principle of information theory and the interaction potential emerges
as the asymptotic expression of the transition probability. Results obtained for high density monoatomic fluids
are very satisfactory and provide an accurate extraction of the potential, despite a modest computational effort.
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I. INTRODUCTION

This paper deals with the “inverse problem” in classical
statistical mechanics. Namely, we are interested in determin-
ing the interaction potential of a system from the knowledge
of its radial distribution function (RDF). A basic result due to
Henderson [1] states that if a system is governed by pairwise
additive interactions then two potentials which give rise to
the same RDF cannot be different more than a constant term.
This theorem provides a theoretical support to the formula-
tion of the inverse problem since it demonstrates the unique-
ness of its solution. However, the existence of the solution is
not guaranteed and furthermore the theorem does not indi-
cate a way to find it.

Despite this general result, the solution of the inverse
problem for a classical dense fluid turns out to be a difficult
task to achieve. This is due mainly to the fact that in the high
density regime the RDF is hardly sensitive to the detailed
shape of the interaction potential and is essentially deter-
mined by its repulsive part; so the inverse functional rela-
tionship between the RDF and the interaction potential evi-
dences a strong dependence of the latter on the input RDF. In
order to expect a reliable solution of the inverse problem not
only the input RDF must be provided with high precision but
also the underlying theory used to formulate the inversion
procedure must be very accurate. As stated by Reatto in [2]
the accuracy of a satisfactory inversion scheme has be to
independent both from the shape of the interaction potential
and from the density of the system under inspection. If these
properties are fulfilled then the interaction potentials of dif-
ferent systems can be consistently compared, furthermore
any dependencies of the extracted potential on the thermo-
dynamic state can be unambiguously ascribed to the effects
of many-body interactions.

A generally accepted scheme for the solution of the in-
verse problem which fulfills these features is still lacking
and, in the last three decades, several authors have proposed
different approaches. A first category comprises theoretically
based attempts in which the inversion scheme is defined on
the basis of an integral equation theory (HNC, MHNC, etc.)
of the liquid state. These pure theoretical approaches typi-
cally rely on some approximation and, due to the intrinsic
difficulties depicted above, their application provides reliable
results only in a limited set of cases. A considerable improve-
ment in the accuracy of the extracted potentials has been
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obtained by recurring to simulation assisted procedures.
These methods attempt to determine the pair interaction
starting from a guessed expression of the potential which is
iteratively modified on the basis of the discrepancy between
the simulated pair function and the experimental data. A first
result in this direction has been proposed by Schommers in
[3] and later on further improvements have been achieved by
Reatto, Levesque and Weiss in [4]; in this paper, the authors
applied the predictor-corrector scheme, using the MHNC
equation as predictor, to the Lennard-Jones fluid and to a
model potential for aluminum. The convergence of the itera-
tive potential to the correct result was found and it was
checked that the use of a less accurate predictor (for example
the one proposed in [3]) for the definition of the trial poten-
tial could spoil the accuracy of the procedure. Other results
belonging to this class of inversion procedures comprise the
empiric potential structure refinement (EPSR) proposed by
Soper [5,6] and a solution due to Lyubartsev and Laaksonen
[7]. The former technique performs the refinement of a ref-
erence potential using a perturbation term given by the dif-
ference between the experimental and the simulated structure
factor; the latter propose a parametric dependence of the po-
tential on a set of parameters which are determined by solv-
ing a large system of linear equations.

A further approach to the inverse problem is provided by
a family of “stochastic” inversion methods in which the so-
lution is sought as the expected value of properly extracted
random variables (inverse Monte Carlo). In this simulation
scheme, given the input RDF, a dynamical evolution law is
defined with the aim to build a set of configurations compat-
ible with the experimental data. So the solution of the inverse
problem is brought back to the determination of a suitable
transition probability which produces a “Monte-Carlo-like”
dynamic. Among the various attempts in this direction we
mention the reverse Monte Carlo (RMC) technique due to
McGreevy and Pusztai [8] and two “absolute minimization”
methods proposed by Cilloco in [9] and later on by da Silva,
Svensson, Akesson and Jonsson in [10]. Strictly speaking
these methods do not provide a solution of the inverse prob-
lem since they do not allow the direct determination of the
interaction potential, however the configurations produced in
the inverse Monte Carlo procedure can be used to compute
quantity of physical interest. It is worth mentioning that re-
sults reported in [9] represent the first application of the
maximum entropy principle, indicating a possible solution
based on the measurement of the three body correlation func-
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tion. A further contribution is due to a technique proposed by
Almarza, Lomba, and Molina [11,12] where a direct solution
of the inverse problem has been obtained by performing a
continuum refinement procedure of a trial interaction poten-
tial.

The purpose of this paper is to present a technique for the
solution of the inverse problem based on the maximum en-
tropy principle (ME) [13]. ME is an effective tool for setting
up the equilibrium distribution of a statistical system on the
basis of partial knowledge and the corresponding estimate
fulfills the remarkable property of being the “maximally non-
committal with regard to the missing information.” So, our
solution of the inverse problem is based on the maximization
of the configurational entropy constrained by the information
codified in the radial pair distribution function. The proce-
dure is realized inside an inverse Monte Carlo scheme and
the interaction potential emerges as the asymptotic expres-
sion of the transition probability.

The contents of the paper are as follows. Section II con-
tains a description of our method, in Sec. III we test the
method in the case of a Lennard-Jones fluid and for a model
of liquid aluminum. Finally in Sec. IV we discuss our results
and present some final remarks.

II. THEORY
A. Statistical description of a monoatomic system

We perform a statistical analysis of a simple monoatomic
system with the aim to define some quantities that will be of
central interest later on in the paper. Particular emphasis will
be given to the concepts of probability, likelihood, entropy,
and to their mutual relationship.

Consider an homogenous and isotropic system composed
of pointlike elements with average density p. In the follow-
ing we will refer to this system as the model. Given an arbi-
trary configuration x of the model we can perform a local
sampling of the elements pair function (PF). This means that
we select a reference element and divide the space in spheri-
cal shells of width or centered on it up to the maximum
value ry, [14]; then we count the number of elements in each
shell and we store these numbers in the array n;, where i
=1,...,J.

We define a probability function p(x) over the configura-
tion space of the model system and collect an ensemble of s
configurations extracted according to p(x). The global sam-
pling of the PF over the ensemble can be computed by evalu-
ating the n; for each configuration o and summing these local
samplings shell by shell, that is

m; = > nga). (1)

a=1

Assuming that the expected PF is given by a reference func-
tion u; we can evaluate the probability associated to the glo-
bal sampling [Eq. (1)]. Let us focus on a fixed shell k. The
values of n; obtained in two different configurations are un-
correlated and, admitting that the number of shells is large
enough, the probability of finding more than one element in
a single measurement can be neglected; so the shell £ follows
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a Poisson distribution with expected value su,. Since there is
no correlation between different shells we obtain

P m) = H emsu S 2)

l'

so the probability associated to m is given by a product of
Poisson distributions. This formula describes an “open sys-
tem,” which can be realized as an open subset of a larger
one, and elements fluctuations are possible. Conversely, if
we are dealing with a closed system in which each configu-
ration of the ensemble satisfies the further constraint,

J J
EniZEMiZNp (3)
i=1 i=1

the total number of elements is conserved and the probability
[Eq. (2)] is reduced to a multinomial expression (see [15]
and references therein):

Jom
./\/lq(WL) — M =N!H 4i

: 4
P(X n;=N,) i1 ;! “

where N=sN, and g;=u;/N,, is the normalized reference
probability distribution. Equations (2) and (4) can be inter-
preted as likelihood functions L(m,u) of the expected PF
given the observed values m. If the number of configurations
in the ensemble is very large (s>1 which implies N, m;
>1) we can take the logarithm of £ and make use of the
Stirling approximation up to the linear order, this gives

m;
In Lp(m,p) = — > m; In— + > (m; = sy,
i S i

i

In L (m, ,u)——Em lnN_cL (5)

the two formula in Eq. (5) differ for a linear term which
accounts for the fluctuations of elements.

The log-likelihood Egs. (5) possess a nice interpretation
when the number of configurations becomes infinite. Let us
focus on the multinomial likelihood given by the second line
of Eq. (5); in the asymptotic limit the average PF converges
to the probability p;=m;/N built over the ensemble and the
likelihood can be written as

1
lim—In £ (m,u) = =N, Ep,ln =—NpD(PHCI), (6)

§—0 8

we recognize that the log-likelihood is proportional to the
relative entropy D(pllg) (Kullback-Leibler divergence [16])
of the ensemble distribution p with respect to the reference
one. The relative entropy fulfills the properties of being posi-
tive definite and vanishing only if p=g. Equation (6) implies
that if the global PF built over the model ensemble maxi-
mizes the likelihood with the reference function w then, as-
ymptotically, the distribution p minimizes the relative en-
tropy respect to the reference probability g. We will make us
of this property in the next section.
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It is useful to rewrite Eq. (6) in term of radial distribution
functions. The model RDF g(r;) and its reference counterpart
go(r;) are defined by normalizing the ensemble average and
the expected reference function p by the average value of
particle per shell, respectively. So we have

Mi

— 7
4prtdr @)

1
g(r) = lim~—""—

o golr)=
50§ 47Tprl-25r o

Plugging Eq. (7) in Eq. (6) and passing to the continuum
limit provides an expression for the relative entropy that will
be widely used in the following:

K= imtn 2,00 = = 2 argtom £,
®

where the extra factor % has been inserted to avoid a double
counting of the number of independent distances between
pairs of elements. The same analysis can be repeated starting
from the first line of Eq. (5); performing the asymptotic limit
and recasting the result in term of RDFs gives

1
Kp(gllgo) = lim 2—ln Lp(m, u)
s—0 LS

--2f dr{g(r>1n§'0((’r)) L5 - gom]},
©)

which provides the relative entropy between the RDFs when
elements fluctuations are taken into account.

A last comment regards the meaning of this construction
when a uniform reference distribution g;=1/J is employed.
In this case Eq. (4) provides the number of occurrences of
the global PF Eq. (1) up to a constant factor and the relative
entropy D(pllq) reduces to the Shannon entropy [17] up to an
additive constant. Expressing this condition in terms of
RDFs supplies the measurement of the relative entropies
[Egs. (8) and (9)] respect to the “noninformative” reference
system go=1,

SU=Ky(gll) S =Kpgl1) (10)

exploiting Eqgs. (8) and (9) we recognize that the entropies
[Eq. (10)] exactly reproduce the two-body contribution to the
Boltzmann entropy expansion in the canonical ensemble [18]
and in the grand canonical ensemble [19,20], respectively.

B. Maximum entropy solution of the inverse problem

We consider a monoatomic system whose interactions are
governed by a genuine pairwise additive potential ¢(r) and
assume that for a given condition of temperature 7" and den-
sity p the RDF of the system go(r) is known. We refer to this
system as the rarget. The interaction potential of the system
is supposed to be unknown, only the RDF is given.

We propose a solution of the inverse problem based on
the maximum entropy principle [13] constrained by the in-
formation encoded in the RDF of the target system. Namely
we build a probability distribution p in the model system
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which fulfills the properties of maximizing the Shannon en-
tropy consistently with the condition of vanishing relative
entropy with respect to go(r),

K(g 1 gy) =0, (11)

where the model RDF g(r) is obtained by averaging the glo-
bal PF [Eq. (1)] over an ensemble of configuration extracted
according to p. Formally this task is achieved by computing
the maximum of the functional,

Fp}=S{p} + aK(gip}l go). (12)
where S{p} is the Shannon entropy,
S{p}z_zpn lnpn (13)

and « is a Lagrange multiplier. The stationary point of Eq.
(12) provides the equilibrium distribution constrained by the
target RDF and we will show that the knowledge of this
function allows to introduce a notion of interaction potential
in the model system. This quantity will be identified with the
target potential thus providing a solution of the inverse prob-
lem.

1. Low density solution

In the low density limit the general strategy previously
described can be easily carried out. In order to evaluate the
stationary point of the functional (12), we perform an expan-
sion of the Shannon entropy in correlation functions. Leav-
ing aside the ideal-gas contribution which does not depend
on the configurational degrees of freedom we have

S{p}= > s". (14)

n=2

Formula (14) provides an expansion of the excess entropy
organized in powers of the density and in the low density
limit the whole series is dominated by the two-body contri-
bution S@.

The solution of the inverse problem is straightforward and
proceeds in two steps. First of all we maximize the two-body
Shannon entropy assuming that the dynamics in the model
system is governed by an (unknown) pairwise additive po-
tential ¢,,(r). For pairwise additive interactions the configu-
rational part of the internal energy can be expressed as

-2 [ g, (15)

so the ME estimate of the two-body entropy functional sub-
jected to the average value of the internal energy is given by
the stationary configuration of the functional,

Flgy=57+ a[§ f drg(r) (1) = U} (16)

maximizing [Eq. (16)] and imposing the constraint [Eq. (15)]
together with the thermodynamic relation B=4dS/dU pro-
vides the solution,
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g(r) = e Ponln) (17)

which is the ME estimate of the two-body equilibrium dis-
tribution for a system with pairwise interactions [21]. We
recognize the first order contribution in the cluster expansion
of the RDF.

The second step is realized by imposing Eq. (11) which
allows to evaluate the ME estimate of the interaction poten-
tial ¢,,(r) constrained by the target RDF. Since the vanishing
of the relative entropy implies the equality of the two RDFs
we obtain

Bd)m(r):_ln gO(r)’ (18)

which is the ME solution of the inverse problem at low den-
sity.

2. High density solution: A Monte Carlo approach

The correlators expansion of the excess entropy [Eq. (14)]
for a high density system contains, apart from the two-body
contribution, all higher order terms. Since these quantities
are unknown a direct maximization procedure of the excess
entropy, like the one performed in the low density limit, is
unfeasible. However, if the interaction potential is pairwise
additive, the RDF still codifies all the information needed to
the solution of the inverse problem. This is a direct conse-
quence of the Henderson theorem [1]: the RDF determines
the interaction potential up to a constant, so its knowledge
sets the whole configurational part of the phase space distri-
bution function and all the higher order terms in the entropy
expansion are theoretically determined if the two-body con-
tribution is given. Anyhow, since the explicit computation of
these terms would require the knowledge of the interaction
potential, a direct maximization procedure cannot be per-
formed and a different approach has to be adopted.

The general strategy to achieve the entropy maximization
is to recur to a “Monte-Carlo-like” (MC) approach in which
the configuration space of the model system is sampled along
a random path. So, as in the standard Metropolis-Monte
Carlo (MMC) algorithm, the dynamical evolution of the sys-
tem is defined by introducing a notion of trial configurations
and a transition probability between neighbor states. We shall
see that the stochastic nature of the MC dynamics together
with a suitable choice of the transition probability will allow
to generate a path in the configuration space of the model
system which maximizes the excess entropy [Eq. (13)] con-
sistently with the relative entropy constraint [Eq. (11)].

Let us define the building blocks of this procedure. As-
sume that we have performed s MC iterations. For each point
of the path we compute a local sampling of the PF and sum
up these measurements in the global pair function (1). Then
we select a reference particle and compute a local sampling
of the PF n'), at the same time the particle is randomly
moved and the new local sampling of the PF is stored in the
array n®. This procedure provides two different samplings
of the global PF at the level s+1,

(2

mY=m+n" m®=m+n? (19)

the trial configuration m® is accepted with a probability
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P = min[ 1, f(m"D,m®)], (20)

where f is the transition probability which determines the
stochastic evolution law. The iteration of this procedure al-
lows to generate the whole ensemble of configurations of the
model system.

Now we impose the constraint [Eq. (11)]. To achieve this
task we define the transition probability by the requirement
that the global PF Eq. (1) built along the path maximizes the
likelihood function (5) with the reference pair function wu,
defined in term of the target RDF via the relation,

i = 4mprigo(r) or (1)

If we are able to impose this condition then Egs. (6) guaran-
tees that, asymptotically, the relative entropy between the
model and target RDFs vanishes and the constraint [Eq. (11)]
is satisfied. For this purpose we try to guess a formula for the
transition probability written in term of a likelihood ratio,

L(m™, )

f= e ™ where SA=ln——=——
L(m?, )

(22)

so trial samples with a likelihood higher than m'") are auto-
matically accepted, otherwise they are accepted with a prob-
ability given by f. For s> 1 we can make use of the Stirling
approximation (5) for the log-likelihood terms in Eq. (22).
Moreover, since the n; are of order 1 while the m; are of
order s we can expand in power of s the logarithms appear-
ing in Eq. (5). Performing this approximation to the first
order in 1/s provides

J
SN= (nl(»z) - ngl))lnﬂ, (23)
S .

i=1 i

this formula can be obtained starting from both the expres-
sions for the log-likelihood given in Eq. (5), so the transition
probability [Eq. (23)] turns out to be invariant respect to the
boundary condition imposed in the model system.

Equation (23) computes the difference among n") and n®
weighting each shell with a term

egs) = lnﬂ (24)
S

that represents the “error” after s iterations between the ref-
erence and the measured values of the global PE. So O\
realizes a feedback in the model system, since it behaves as
a controller which selects the configurations in the model
ensemble on the basis of the error [Eq. (24)]. This controller
operates only by considering the error in actual state s and,
adopting the common language of the feedback control sys-
tems [22], we will call this quantity a “proportional” control-
ler.

The transition probability [Eq. (23)], realized as a propor-
tional controller, suffers of a difficulty which is commonly
encountered in many feedback controlled systems whenever
the controller is realized only through a proportional term:
the presence of an offset between the measured process vari-
able and the target reference function. Indeed a MC simula-
tion built with this transition probability produces a model
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RDF which is a “biased” reconstruction of the target one, so
the formula guessed for S\ turns out to be inadeguate to
enforce a complete maximization of the likelihood function
L(m, ). A possible solution of this problem can be accom-
plished by realizing the control mechanism as a proportional-
integral controller (PI) [22]. So we propose a modified ex-
pression for S\ given by

7
O\ = E (ngz) - ngl))ufs) (25)

i=1

where u; is a function of the error [Eq. (24)] which depends
on three different contributions: a proportional term that de-
termines the reaction to the current error, an integral term
which keeps into account the sum of all the former ones and
a background value which allows to include a priori knowl-
edge on the system. The output of the PI is given by a
weighted sum of these three quantities,

N

ul® = k‘f,”e,(»s) + 2 kel g (0 (26)
a=1

where k, and k; are the (s dependent) coefficients of the

proportional and of the integral terms.

A transition probability defined in term of the PI [Eq.
(26)] ensures that the model RDF converges to its reference
value. Furthermore the implementation of this controller al-
lows one to define an interaction potential in the model sys-
tem. In fact, as long as the measured PF converges to its
reference value, the error [Eq. (24)] goes to zero. In this limit
the proportional term of [Eq. (26)] becomes negligible and
the integral approaches to a constant finite value. Formally
we can define the model potential as the asymptotic limit of
PI controller (B=1/kzT),

Beb(ri) = lim u® = D) ki@el® 4 40, (27)
a=1

§—0

So the MC dynamics built with the PI control system be-
haves as a constructive tool for the computation of the model
potential. During a MC simulation the model system is sub-
jected to a transient dynamical phase in which the transition
probability evolves during the path; as long as the path pro-
ceeds the PI builds the model potential [Eq. (27)] and the
transition probability approaches to a stationary regime.
Once the equilibrium has been reached the system evolves
according to a stationary transition probability and behaves
as a Markov chain, in which the potential is given by Eq.
(27).

3. Computation of the PI coefficients

Let us come back to the issue of the correct definition of
the coefficients k, and k;. Usually the PI parameters are
tuned with the aim to ensure a fast and stable convergence of
the measured process variable to its reference value. In this
case we propose a criterium, for fixing these parameters,
which comes again from statistical considerations. We ob-
serve that if the model system is sampled with the expected
distribution [Eq. (2)], the global PF approaches to su; as long
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as s increases. So we introduce the reduced variables x; de-
fined by

Ml +X; (28)
SH; SHM;

and we expand the distribution function (2) in series around
x;=0. Performing this expansion together with the usual
Stirling approximation provides

J

Pm) =11

i=1 NV2msu;

o~ (112 (m; = sp)spey) (29)

so for large values of s the global PF is distributed according
to a product of J Gaussian distributions [23]. Since the re-
duced variables x; are distributed according to a standard
normal distribution, the variable defined as

J
1w (m;—su;)?
2 . i i
= R 30
X Jz SH; (30)

follows a y-square distribution with J degrees of freedom.

So we define the PI coefficients in order to implement the
condition y?=1. Enforcing this condition in the model sys-
tem guarantees that the global PF has the correct fluctuation
around its average value and excludes spurious correlation
among different shells. This can be done by introducing a
new PI which performs a dynamic control on the coefficients
k, and k;, so we set

Ay

kl()s) = CI(X(Z_\‘) - 1) + CZE (X?a) - 1)5
a=1

K =d\(xgy = 1) +dr 2 (X = 1 (31)
a=1

where c¢|,c,,d,,d, are the PI parameters. Further details con-
cerning the implementation of this control mechanism will
be given in Sec. III.

III. APPLICATIONS

In order to illustrate the features of the technique here
proposed we have solved two systems which have been
widely analyzed in the literature concerning the inversion
methods [4,11]: a simple Lennard-Jones fluid and a model
for liquid aluminum [24].

We briefly describe the general strategy adopted in the
analysis of both systems. The target RDF has been evaluated
recurring to a MMC simulation in the NVT ensemble. The
configuration space of the target system is a cubic volume of
linear length L with N, pointlike particle and the periodic
boundary conditions together with the minimum image con-
vention have been adopted. The target potential ¢(r) is trun-
cated at L/2 and the system evolves starting from an FCC
lattice; after about 5X 10> MMC steps the energy of the
system approaches to a constant value and the system
evolves around equilibrium. Once at equilibrium a local sam-
pling of the PF is performed for each configuration and the
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average value of w is built, then the target g(r) is computed.
Due to the minimum image convention this method provides
a reliable RDF up to the edge value ry;=L/2. The error on
the target RDF can be estimated by dividing the whole simu-
lation in blocks and by computing the standard deviation
Og(r) between the blocks.

Once the g(r) has been computed the inverse procedure
for the determination of the pair potential described in Sec. II
can be applied. The model system is realized exactly as the
target one, so the configuration spaces of the two systems are
identical. The PI coefficients are dynamically defined by Eqs.
(31) which ensure the correct equilibrium fluctuation of the
model RDF. A direct analysis of the system response evi-
dences that an optimal choice of the parameters appearing in
Eq. (31) is given by

K= (xt) - D +1x 10-321 (X =1

kY =5 % 107k, (32)

where the ratio between k, and k; has been set to a constant
value. This choice guarantees a smooth convergence of the
measured PF to the target reference value. It is worth noting
that performing a different choice (inside a range of values
which does not produce an oscillating behavior) has only the
effect of changing the rate of convergence of the model sys-
tem but does not affect the convergence value. Furthermore,
the same set of parameters given by Eq. (32) have been used
both in the analysis of the Lennard-Jones fluid and of the
liquid aluminum, providing an equally good convergence in-
dependently of the details of the system.

We observe that the target RDF of both the systems under
inspection exhibits a hard core structure, i.e., g(r)=0 for r
<ry. This information can be imposed in the model by in-
troducing a hard sphere (HS) background potential, u®=c0
for r<r, and zero otherwise, which initializes the PI control-
ler [Eq. (26)]. Due to this term any trial configuration con-
taining particle at a distance lower than r is automatically
rejected. Consistently with the background potential, we
choose an equilibrium HS configuration as the starting point
for the MC path. Then the reverse procedure starts and the
system evolves according to the transition probability [Eq.
(25)]; after each iteration we compute the output of the PI
[Eq. (26)] and the expression of the transition probability is
updated. Since the RDF of the starting configuration is no-
ticeably different from the reference value, the x? is sensibly
higher than 1 and the PI coefficients [Eq. (32)] grow very
fast; this phase is characterized by a highly nonstationary
dynamical evolution of the transition probability [Eq. (25)].

In order to improve the convergence of the model poten-
tial it is convenient to split the simulation into two phases.
So, when the y? has reached a value quite close to 1 the
actual configuration and the final expression of the PI output
are stored in a file and we stop the simulation. Then these
quantities are used as input values for the background poten-
tial and for the initial configuration and we start the “refine-
ment phase.” Since the system is closer to equilibrium, the PI
[Eq. (32)] works in a different regime with respect to the
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Bom(r)

FIG. 1. Results for the Lennard-Jones system. The target poten-
tial (continuous line) and the model potential (filled circles) are
plotted.

previous phase; so the system evolves smoothly to equilib-
rium and the transition probability approaches to its
asymptotic value. This phase can be repeated many times in
order to obtain a better refinement of the model potential.

As a final check of the goodness of the results provided
by this procedure we perform a standard MMC simulation
using the model potential and we compare the corresponding
RDF with the target one. If the difference of the two RDFs is
not bigger than their intrinsical noise we conclude that the
model potential [Eq. (27)] is equivalent to the target one and
the reconstruction procedure stops; otherwise further refine-
ment phases could be needed.

A. Lennard-Jones potential

The system is defined by a Lennard-Jones potential,

12 6
) =4e[<§> - (%) } (33)

with argonlike parameters o=3.405 A and e/kzT=119.76.
The MMC simulation for the determination of the target
RDF is performed on a system of 864 particle at the reduced
density p*=po°=0.84 and reduced temperature T*=k,T/€
=0.75, near the triple point. The g(r;) has been evaluated up
to r*=r/o=>5.0 which corresponds to L/2; the width of the
shells for the measure of the g(r;) was 6r=2.5X 1072 A and
the number of measured points was 686. We performed 2
X 10* cycles after equilibration. The experimental error on
the RDF was estimated by computing the standard deviation
dg(r;) between 50 blocks of 4 X 10% cycles each. The largest
value for 8g(r;) was about 2 X 1072 with an average value of
7X1073,

The complete inverse simulation procedure took 2.4
X 10* iteration. A first phase of 6 X 10° steps was performed
starting from the FCC lattice and then the refinement phase
was repeated three times for 6 X 103 steps each. The result
for the interaction potential is reported in Fig. 1, the maxi-
mum difference between the model potential and the
Lennard-Jones reference one was less than 5X 1072 with an
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FIG. 2. Results for aluminum. The aluminum potential (continu-
ous line) and the model potential (filled circles) are plotted.

average value of 1 X 1072. The average difference between
the model and the target RDFs was equal to 4 X 1073; this
value is inside the average noise of the RDF, so the model
potential of Fig. 1 can be considered identical to the
Lennard-Jones one.

B. Model potential of aluminum

The system is defined by a model potential for liquid alu-
minum [24]. The MMC simulation for the determination of
the target RDF was performed on a system of 864 particle at
the density p=0.0527 A= and T=1051 K. The g(r; has
been evaluated up to r=12.70 A which corresponds to L/2;
the width of the shells for the measure of the g(r;) was or
=2.5X 1072 A and the number of measured points was 508.
We performed 2 X 10* cycles after equilibration. The experi-
mental error on the RDF was estimated by computing the
standard deviation g(r;)) between 50 blocks of 4 X 10?
cycles each. The largest value for 8g(r;) was about 2 X 1072
with an average value of 6 X 1073

The inverse simulation procedure took 2.6 X 10* iteration.
A first phase of 6X 103 steps was performed starting from
the FCC lattice and then the refinement phase was repeated
twice for 6 X 10° steps each and once for 8 X 10* steps. The
result for the interaction potential is reported in Fig. 2, the
maximum difference between the model potential and the Al
model reference value was less than 2 X 1072 with an average
value of 7X 1073, Even in this case the average difference
between the model and the target RDFs is inside the typical
noise of the RDF. Analyzing Fig. 2 we observe a difference
between the target and model potential of the order of 1
X 1072 in the range from 7 to 11 A. This error is due to a
correlated statistical fluctuation in the reconstruction proce-
dure and can be further reduced by increasing the informa-
tion content in the target RDF used as input.

IV. DISCUSSION AND CONCLUSIONS

The method presented so far supplies an accurate solution
to the issue of determining the interaction potential from the
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radial distribution function. This technique bases its theoret-
ical support on the maximum entropy principle of informa-
tion theory which provides a general tool for the statistical
inference on the basis of partial knowledge. The method is
formally summarized by Eq. (12) which describes the maxi-
mization of the configurational entropy (S term) constrained
by the information codified in the target system (K term).
The ME solution is sought inside a Monte Carlo scheme
where the maximization of configurational entropy is real-
ized through the MC random displacements and the accep-
tance criterion for the trial configurations is built consistently
with the physical input provided by the target RDF. The po-
tential emerges as the asymptotic expression of the transition
probability and, for pairwise potentials, it reproduces com-
pletely the interactions of the target system. This method
fulfills some nice properties that, in our opinion, make it a
valid tool for the extraction of potential. Actually the expres-
sion of the transition probability [Eq. (25)] is motivated only
by the constraint [Eq. (11)] and does not rely on any ulterior
hypothesis concerning the physical nature of the target sys-
tem, so we expect that the general strategy depicted in the
present paper could be of wide applicability. Nevertheless,
the convergence of the model potential is ensured by a feed-
back control mechanism and the coefficients of [Eq. (26)] are
tuned by an independent PI which operates a control on the
fluctuation of the model RDF around the target reference
value. This further controller avoids spurious correlations in
the model RDF and guarantees that no information, besides
the one codified in the target RDF, is transferred to the model
during the simulation.

Results of Sec. III show that the extracted potential [Eq.
(27)] accurately reproduces the original pair interaction both
for the Lennard-Jones fluid and for the liquid aluminum
model. A comparison between these results and the ones pre-
sented in [4,11] evidences a very satisfactory accuracy, de-
spite a modest computational effort. This level of agreement
turns out to be highly remarkable since the systems lie in the
high density region of the state space where it is expected
that the RDF should be quite insensitive to the details of the
interaction; moreover the aluminum potential exhibits well
defined oscillations even at short distances, where B¢(r) is
still positive. As a further control we have verified that the
method provides the correct results in a different region of
the (p,T) plane; so the procedure described in Sec. III has
been repeated for a Lennard-Jones fluid at p*=0.5, T"=1. As
expected, the interaction potential approaches the correct re-
sult with a convergence rate even faster than in the high
density case (about 1X 10* steps were needed to obtain an
accuracy comparable with the result of Fig. 1). This analysis
indicates that our procedure for the solution of the inverse
problem provides reliable results independently both from
the density of the system and the shape of the potential under
inspection, so it fulfills the requirements of a “satisfactory
inversion scheme” as stated in [2].

The interpretation of the transition probability as a feed-
back controller represents a key point for the accomplish-
ment of the solution discussed in the present paper. Actually,
the adoption of this point of view motivates the introduction
of the integral term and gives rise to the model interaction
potential [Eq. (27)]. We want to point out that this is not the
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only way to impose the constraint [Eq. (11)]. For example,
the offset between the target reference function w and the
model global PF can be made null by using a proportional
controller with an infinite value of the coefficient k. Pursu-
ing this approach leads to the “pure minimization methods”
[9,10] in which only trial configurations with a higher like-
lihood function (or with a lower y? in the language of [10])
are accepted. The drawback of this approach is that, due to
the lacking of the integral term, the interaction potential can-
not be directly computed.

We conclude our discussion with some comments con-
cerning the extension of this procedure to other systems than
the simple monoatomic fluid analyzed in the present paper.
The method is based on ME principle which holds for any
system at equilibrium. For simple fluids a K term realized as
the relative entropy (8,9) between the RDFs is able to con-
strain the whole configurational part of the probability distri-
bution function in the model system. The information closed
loop realized by the PI controller [Eq. (26)] then allows one
to determine completely the interaction potential. Con-
versely, if we are dealing with more complex systems, that
contain further degrees of freedom beside the position of the
center of mass of the atoms, a ME solution is always pos-
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sible, which will correspond to an effective potential. If,
however, the complete target potential is sought, then it is
necessary to match the relevant degrees of freedom of the
systems with further involvement of information; for in-
stance the experimental three body correlation function and
the inclusion of higher order terms in the definition of K
would be necessary if a three body interaction is present. As
a final remark, we point out that this inversion technique has
been discussed assuming that the RDF of the target system is
given. However, since experimental data are expressed in
term of the structure factor, a preliminary transformation to
the real space RDF has to be performed in order to extract
the interaction potential of a real system. This procedure may
be hampered by the limited range of the structure factor or
by the unsatisfactory k-resolution so, again, the use of the
ME methods could reveal a useful tool to overcome those
problems in optimal way.
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