
Metastability in Schloegl’s second model for autocatalysis: Lattice-gas realization
with particle diffusion

Xiaofang Guo,1 Y. De Decker,2 and J. W. Evans1

1Ames Laboratory–US DOE, and Department of Physics & Astronomy and Department of Mathematics,
Iowa State University, Ames, Iowa 50011, USA

2Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine,
Code Postal 231, B-1050 Brussels, Belgium

�Received 14 September 2009; revised manuscript received 24 July 2010; published 23 August 2010�

We analyze metastability associated with a discontinuous nonequilibrium phase transition in a stochastic
lattice-gas realization of Schloegl’s second model for autocatalysis. This model realization involves spontane-
ous annihilation, autocatalytic creation, and diffusion of particles on a square lattice, where creation at empty
sites requires an adjacent diagonal pair of particles. This model, also known as the quadratic contact process,
exhibits discontinuous transition between a populated active state and a particle-free vacuum or “poisoned”
state, as well as generic two-phase coexistence. The poisoned state exists for all particle annihilation rates p
�0 and hop rates h�0 and is an absorbing state in the sense of Markovian processes. The active or reactive
steady state exists only for p below a critical value, pe= pe�h�, but a metastable extension appears for a range
of higher p up to an effective upper spinodal point, ps+= ps+�h� �i.e., ps+� pe�. For selected h, we assess the
location of ps+�h� by characterizing both the poisoning kinetics and the propagation of interfaces separating
vacuum and active states as a function of p.
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I. INTRODUCTION

There has been long-standing interest in discontinuous
phase transitions for systems in thermodynamic equilibrium,
and particularly in associated metastability and nucleation
phenomena �1,2�. For example, in the mean-field van der
Waals description of a fluid below a critical temperature, one
finds van der Waals loops. These loops reflect phase separa-
tion where a stable high-density liquid state exists for pres-
sures above an equistability pressure for coexistence with a
dilute gas state. This stable liquid state extends to a meta-
stable liquid state for a range of lower pressures down to a
well-defined spinodal point �3�. The equistability pressure is
determined by a Maxwell construction. In statistical-
mechanical analyses of fluid systems, the equistability pres-
sure corresponds to the location of a discontinuous transition.
Furthermore, these analyses indicate a dependence of spin-
odal behavior on system size �1,2�. In fact, for the equilib-
rium Ising model for an infinite system �4–6�, it has been
shown that there does not exist a unique analytical extension
of the stable steady state to a metastable state. It is possible
to generate a family of C� metastable extensions by running
an appropriate choice of model dynamics from a suitable
initial state for a period of time increasing exponentially with
the inverse distance from the equistability point �4–6�. How-
ever, this family of extensions does not provide much insight
into the location of any effective spinodal point for an infi-
nite system. Indeed, there is no natural unique definition of
such a spinodal point for these equilibrium thermodynamic
systems.

Nonequilibrium systems provide an even richer variety of
phase transition or bifurcation behavior �7,8� than equilib-
rium systems, although there are also strong analogies.
Mean-field analysis often reveals bistability of nonequilib-
rium steady states providing the analog of van der Waals

loops. The boundary of the nonequilibrium bistable regime at
a saddle-node bifurcation corresponds to an equilibrium
spinodal point. The complete disappearance of nonequilib-
rium bistability at a cusp bifurcation is the analog of an
equilibrium critical point �8,9�.

A natural goal for such nonequilibrium systems is to ad-
vance beyond the mean-field level to statistical-mechanical
analyses. Along these lines, there are a large number of stud-
ies of nonequilibrium continuous phase transitions in lattice-
gas models which have focused on universality �10–12�.
However, increasing attention is being paid to analysis of
various phenomena in reaction–diffusion-type models exhib-
iting discontinuous transitions: propagation and fluctuation
behavior of interfaces between active and poisoned states
�13–18�, epidemic properties of an active droplet embedded
in an absorbing or poisoned state �19,20�, and nucleation of
droplets within a metastable active state �14,18,21�.

It is well recognized that lattice-gas reaction-diffusion
models with discontinuous transitions exhibit metastability
�9�. However, just as for equilibrium systems, one does not
expect the existence of a unique analytical extension of
stable states to metastable states beyond transition points,
and thus one does not expect spinodal points to be uniquely
or well defined for infinite systems �24,25�. Nonetheless, the
concept of a spinodal provides a valuable tool for interpreta-
tion of model dynamics, so further analysis is appropriate.
Interestingly, for nonequilibrium systems, there exist both
additional challenges and advantages relative to equilibrium
systems. The challenges derive from the feature that there
does not exist a thermodynamic framework for analysis of
these systems, so, e.g., critical droplets within the metastable
state cannot be described in terms of a free-energy functional
�1�. On the other hand, for models exhibiting mean-field bi-
stability, one can recover true bistability in the statistical-
mechanical model in the regime of rapid hopping of at least
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one type of reactant particle. In this regime of “efficient stir-
ring,” spinodal points can become perfectly well defined just
as in a mean-field theory �even if spatial correlations persist
in the model� �9,22�.

In this study, we consider Schloegl’s second model for
autocatalysis in a reactive system of particles, X. This model
traditionally includes the following mechanistic steps
�8,16–18,23–27�:

X → � �spontaneous annihilation� ,

2X → 3X�autocatalytic creation� . �1�

Spontaneous annihilation occurs at rate p, and autocatalytic
creation requires existing nearby pairs of particles �and oc-
curs at suitably prescribed rates, as discussed below�. The
most general formulation of the model also includes sponta-
neous creation �→X, but this process is excluded in our
study. Traditional off-lattice formulations also include the au-
tocatalytic annihilation process 3X→2X in order to avoid
population explosion �8,23�. However, in lattice formula-
tions, autocatalytic particle creation requires an empty site
�, which automatically limits population growth. Thus, par-
ticle creation in the lattice model is more accurately repre-
sented as 2X+ � →3X �16–18,26,27�. Particle diffusion is
typically operative.

Both off-lattice and lattice formulations display cubic
mean-field kinetics, i.e., the rate of change of particle con-
centration C is a cubic function of C �8,18,23,27�. Upon
increasing the annihilation rate p, there is a bifurcation in the
steady states from mean-field bistability �where a stable ac-
tive steady state with finite population C�0 coexists with
the stable C=0 vacuum state� to monostability �where the
vacuum state is the unique stable steady state� �18�.

In this contribution, we will restrict our attention to a
statistical-mechanical analysis of a specific realization of
Schloegl’s second model on a square lattice with particle
hopping at rate h�0, which is also known as the quadratic
contact process �QCP� �16–18,27�. This realization displays
a discontinuous transition from an active state to the vacuum
state when p exceeds pe�h�. One also finds evidence for a
metastable extension of the active steady state into a regime
pe�h�� p� ps+�h�, where ps+�h� denotes an effective upper
spinodal point. This spinodal point is of particular interest in
our study. We extend previous investigations �18� by provid-
ing other more reliable simulation strategies to estimate
ps+�h�, a comprehensive analytical investigation of the lattice
model at the level of the pair approximation, and suggest a
coarse-grained modeling strategy to describe non-mean-field
model behavior. Our focus here is exclusively on behavior in
the limit of infinite system size, rather than considering finite
systems where a variety of approaches to defining spinodals
have been considered �1,28�. For completeness, we note that
this model also displays “generic two-phase coexistence” of
stable active and vacuum states for a finite range pf�h�� p
� pe�h�, where pe�h�− pf�h�→0 “quickly,” as h increases
above zero �18�.

In Sec. II, we describe in detail the realization of the QCP
analyzed in this paper, and also present the hierarchical form
of the exact master equation for this model. In Sec. III, we

present simulation results for “moderate” hop rate. We ana-
lyze both the poisoning kinetics in the vicinity of the effec-
tive spinodal point and the propagation of interfaces separat-
ing active and vacuum states. Next, in Sec. IV, we present an
analysis of the above two features of model behavior within
the pair approximation to the exact master equations. This
facilitates the interpretation of the simulation results. Finally,
in Sec. V, we discuss the development of coarse-grained con-
tinuum Langevin reaction-diffusion equations �RDEs� de-
scribing the model at a level beyond the traditional mean-
field site approximation. Specifically, these RDEs are based
on the pair approximation and can thus more accurately de-
scribe reaction kinetics for moderate h. Finally, conclusions
are provided in Sec. VI.

II. MODEL SPECIFICATION AND HIERACHICAL
MASTER EQUATIONS

Our realization of Schloegl’s second model, or equiva-
lently of the QCP, on a square lattice as a stochastic Markov-
ian process involves the following components �18–27�: �i�
particle annihilation occurring randomly at rate p; �ii� par-
ticle creation at empty sites requiring one or more diagonally
adjacent pairs of occupied sites; specifically, the creation rate
is given by k /4, where k is the number of adjacent diagonal
occupied pairs and thus can take the value of k=0, 1, 2, or 4;
and �iii� hopping of particles to any adjacent empty sites at
rate h �per target site�. Figure 1 provides a schematic of these
processes. Again C denotes the particle concentration, i.e.,
the fraction of filled or occupied sites. For any p�0, the
“vacuum state” with C=0 corresponds to an absorbing
steady state from which the system cannot escape. However,
there also exists an active or reactive steady state with C
=Ceq�p��0 for 0� p� pe�h�, and our focus in this work will
be on the metastable state which “extends” this active state
into the regime pe�h�� p� ps+�h� for some ill-defined ps+�h�
�see Fig. 2�a��.

Note that for p�1, the lattice is almost completely popu-
lated in the active state. Thus, effectively particle creation
occurs at empty sites with rate 1, and as a result one has

FIG. 1. �Color online� Schematic of particle annihilation, auto-
catalytic creation, and hopping processes in Schloegl’s second
model or the QCP on a square lattice. Particles are denoted by filled
circles ��� and empty sites are denoted by open circles ���. Rates
for the various processes are also indicated, and the bar through the
arrow indicates that the process is inactive.
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Ceq�p�=1− p+O�p2�, independent of h. In the limit h→�,
“rapid stirring” will destroy all spatial correlations given the
lack of interactions between particles in this model. Thus,
traditional mean-field kinetics will apply where Ceq�p�= 1

2
+ 1

2 �1−4p�1/2 and pe���=2 /9 as explained in Sec. II C �18�.
Also, as h→�, the lifetime of the metastable state will di-
verge, so one recovers a regime of true bistability terminated
by a well-defined upper spinodal, ps+���=1 /4 �9,18�.

While kinetic Monte Carlo �KMC� simulation will be uti-
lized below to provide precise results for the behavior of C
for finite hop rate h, it is instructive to present the exact
master equation for the QCP with h�0 in the form of an
infinite coupled hierarchy �29�. It will be useful to explore
the predictions of truncation approximations to these equa-
tions. Here, we fully enumerate and simplify these equations
for spatially homogeneous states, but just present the simpli-
fied version of the equations for the more general case of
spatially inhomogeneous states.

A. Spatially homogeneous states

First, consider spatially homogeneous states of the QCP
with h�0 on an infinite square lattice. Here, “spatially ho-
mogenous” means in a statistical or ensemble averaged
sense. Individual realizations of the process exhibit spatial
correlations and fluctuations. We let “x” denote an occupied
site and “o” denote an empty site. Then, P�x�=C denotes the
probability of an occupied site, P�o�=1−C denotes the prob-
ability of an empty site, P�x x� denotes the probability of an
adjacent occupied pair, P�o o� denotes the probability of an
adjacent empty pair, P�o−o� denotes the probability of an
empty pair separated by a site of unspecified state, etc. Con-
servation of probability ensures that all configurational prob-
abilities can be written as combinations of such probabilities
for configurations with just empty sites, e.g., P�x�=1− P�o�,
P�x o�= P�o�− P�o o�, P�x x�=1−2P�o�+ P�o o�, etc.
�30�. Alternatively, one could write all configurational prob-
abilities in terms of those with just occupied-site configura-
tions. For the QCP, we favor empty site configurations when

developing the master equations. This facilitates more sub-
stantial simplification of the form of the equations, as illus-
trated below. Empty site configurations were similarly fa-
vored in analysis of models which include just irreversible
cooperative creation of particles �with no annihilation or
hopping�, usually referred to as “cooperative sequential ad-
sorption” models �30�. The exact form of the first two such
hierarchical master equations in an infinite coupled set be-
comes

d/dtP�o� = p � P�x� − �4 �
1

4
� P� x

o o x

o
�

+ 4 �
1

2
� P� x

o o x

x
� + 1 � 1 � P� x

x o x

x
��

= p � P�x� − P	x

o x

 , �2a�

d/dtP�o o � = 2p � P�o x � − 2 � �2 �
1

4
� P� x

o o x

o
�

+ 1 �
1

2
� P� x

o o x

x
��

+ 2h � �P�o x o �

+ 2 � P	 o

o x

 − P�o o x �

− 2 � P	 x

o o

�

= 2p � P�o x � − P	 x

o o x



+ 2h � �P�o − o � + 2 � P	 o

o −



− 3 � P�o o �� . �2b�

The first gain terms in Eqs. �2a� and �2b� �proportional to
p� correspond to particle annihilation. The second group of
loss terms after the first equality corresponds to autocatalytic
creation. The integer prefactor indicates the number of
equivalent configurations �accounting for rotational symme-
tries�, and the fractional prefactor indicates the associated
creation rate.

An exact reduction of this group of contributions is pos-
sible due to the specific values selected for the creation rates
�29� and is shown after the second equality. Particle hopping
terms are absent in the P�o� equation since hopping pre-
serves particle number. However, such contributions do ap-
pear as the last group of terms �proportional to h� in the

FIG. 2. Steady-state behavior for the particle concentration
Ceq�p� versus p in the QCP with particle hopping at rate h. Plots
show stable steady states as solid lines, metastable steady states as
dashed lines, and indicate the locations of pe and ps+: �a� h=1
�simulation results�; �b� h=� �exact mean-field behavior with an
unstable steady state shown as a dotted line�.
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P�o o� equation �2b�. The complete form of these terms,
shown after the first equality, includes both gain terms due to
a particle hopping out of one site of the pair of sites of
interest to a neighboring empty site, thus creating an empty
pair. There are also loss terms due to a particle hopping onto
the empty pair of interest. An exact simplification is possible
for these hopping terms exploiting conservation of probabil-
ity �31�, and this is shown after the second equality in Eq.
�2b�. Again the integer prefactor indicates the number of
equivalent contributions.

It should be noted that these exact hierarchical equations
consistently recover mean-field kinetics in the limit h→�
where all multisite configurational probabilities factor as
products of constituent single-site probabilities. This reduc-
tion is clearly realized and quantified at the level of higher-
order truncation approximations to the hierarchical equations
as described in Sec. IV.

B. Spatially inhomogeneous states

For a more complete analysis of model behavior, one can
extend the above hierarchical master equations to consider
spatially nonuniform or inhomogeneous states in an infinite
system �29�. As above, this characterization refers to en-
semble averaged states. In particular, one can use these gen-
eralized equations to analyze the propagation of planar inter-
faces separating vacuum and active states to determine
annihilation rates p= peq�h ,S�, corresponding to stationarity
of these interfaces �which here depend on the slope or orien-
tation S of the interface�.

To this end, we introduce location-dependent probabilities
for specific configurations of sites, e.g., P�oi,j� for the prob-
ability that site �i , j� is empty, P�oi,j oi+1,j� for the probabil-
ity that the adjacent pair of sites �i , j� and �i+1, j� are both
empty, an analogous quantity for the probability of a vertical
pair of empty sites, etc. Then, after exact reduction or sim-
plification of the type described above for uniform states, the
first two equations in the exact set of hierarchical master
equations describing the evolution of these quantities have
the form

d/dtP�oi,j� = pP�xi,j� −
1

4
P	xi,j+1

oi,j xi+1,j



−
1

4
P	 oi,j xi+1,j

xi,j−1

 −

1

4
P	 xi,j+1

xi−1,j oi,j



−
1

4
P	xi−1,j oi,j

xi,j−1

 + h�P�oi+1,j� + P�oi−1,j�

+ P�oi,j+1� + P�oi,j−1� − 4P�oi,j�� , �3a�

d/dtP�oi,j oi+1,j � = pP�oi,j xi+1,j � + pP�xi,j oi+1,j �

−
1

4
P� xi,j+1

xi−1,j oi,j oi+1,j � − ¯

+ h�P�oi−1,j − oi+1,j �

+ P	oi,j+1

− oi+1,j

 + ¯

− 6P�oi,j oi+1,j �� . �3b�

For further insight into the exact reduction procedure for the
autocatalytic particle creation terms, see Ref. �29�, which
treats the QCP with h=0. For the QCP with h�0, additional
terms corresponding to hopping appear in both the P�oi,j�
and P�oi,j oi+1,j� equations. These have been simplified by
exact reduction �31,32�. Note that for vertical interfaces or
more general states which are translationally invariant in the
vertical direction, probabilities are independent of j leading
to significant simplification of Eqs. �3�; a different simplifi-
cation applies for diagonal interfaces �cf. Ref. �29��.

C. Mean-field behavior

As noted above, in the regime of very large hop rate h,
where the system is well stirred, all multisite configuration
probabilities factorize in terms of constituent single-site
probabilities. The site-dependent particle concentration, Ci,j
= P�xi,j�=1− P�oi,j�, will vary slowly with position reflecting
a characteristic length for spatial inhomogeneities on the or-
der of h1/2. Thus, it is natural to introduce a coarse-grained
continuum concentration C(r� = �i , j�a) for lattice constant
“a,” leaving implicit the t dependence. Then, applying the
factorization to Eq. �3a�, it immediately follows that the evo-
lution of this concentration is described exactly as h→� by
the mean-field RDE �18,27�

�C/�t = R�C� + D�2C . �4�

In Eq. �4�, R�C�=−pC+C2�1−C� describes the cubic mean-
field kinetics, and D=a2h denotes the diffusion coefficient.
One finds a stable active steady state satisfying p=C�1−C�,
so that Ceq= 1

2 + 1
2 �1−4p�1/2 for 0� p� ps+= 1

4 , as well as a
stable vacuum steady state C=0 for all p. Here, ps+= 1

4 de-
notes the �mean-field� upper spinodal. Note that one can
write

R�C� = − d/dC U�C�, with U�C� = 1
2 pC2 − 1

3C3 + 1
4C4.

�5�

The effective free-energy density, U�C�, has a double-well
form for 0� p� ps+= 1

4 , and reduces to U�C�= 1
4C2�2 /3

−C�2 at equistability p= pe=2 /9 with equal well heights
�18,27�. To elucidate the significance of pe, we note that the
velocity V�p� with which the active state displaces the
vacuum state in the bistable region can be determined by
analysis of the RDE �4�. One finds that this velocity satisfies
V�p�	D1/2�3�1−4p�1/2−1� for 0� p� ps+= 1

4 and vanishes
at p= pe=2 /9 �3,18�. Thus, pe corresponds to the location of
the discontinuous transition for the QCP with hopping in the
limit as h→�, i.e., the above analysis constitutes the non-
equilibrium analog of a Maxwell construction. See Fig. 2�b�
for a plot of mean-field steady-state behavior.
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III. SIMULATION RESULTS: SPINODAL POINTS,
POISONING KINETICS, AND INTERFACE PROPAGATION

We first describe results from conventional KMC simula-
tions which were performed primarily to characterize the
poisoning kinetics for p� pe, i.e., the approach of the system
to the vacuum state, for our QCP realization of Schloegl’s
model. In these simulations, processes are implemented with
probabilities in proportion to the physical rates. Simulations
become less efficient for increasing h, as more time is spent
on implementing hopping of an often high concentration of
mobile particles. This KMC simulation challenge for large
hop rates applies for both idealized and realistic atomistic
models of reaction-limited processes.

A. Nucleation-mediated poisoning

Of particular interest in this study is the poisoning kinet-
ics of the QCP for moderate hop rates h for p� pe and spe-
cifically around the effective spinodal point. As p� pe in-
creases, one should find a transition from slow poisoning
mediated by nucleation and growth of supercritical vacuum
droplets within a metastable active state to a faster poisoning
associated with spinodal decomposition �17,18�. Thus, our
first strategy to estimate the spinodal location comes from
direct inspection of simulation images of evolving �poison-
ing� configurations for various p’s.

Previous simulation studies have determined the variation
with h of the annihilation rate, pe= pe�h�, below which a
stable active steady state exists �18�, specifically pe�h�
=0.0944, 0.1990, 0.2150, and 0.2222• for h=0, 1, 4, and �,
respectively �see Table I�. In addition, these studies have
determined a distinct annihilation rate, pf= pf�h�, such that
pf�h�� pe�h� and both active and vacuum states are stable
against local perturbations by the other state in the regime
pf�h�� p� pe�h� �16–18�. The model is described as exhib-
iting generic two-phase coexistence in this regime. The ori-
gin of this behavior resides in the feature that the equistabil-
ity point for planar interfaces separating active and vacuum
states depends on the orientation of the interface. Specifi-
cally, pe�h� is the equistability point for diagonal interfaces
and pf�h� for horizontal or vertical interfaces. From the KMC

simulation, one finds that pe�h=0+�=0.094 43 and
pf�h=0+�=0.0869 �16�. Thus, the width of the generic two-
phase coexistence region satisfies pe− pf=0.0075 for h=0+,
but it quickly decreases to very small values pe− pf
�0.0001 for h�0.02 �18�.

In Fig. 3, we show evolution in the QCP with h=1 from a
completely filled lattice for various p� pe�h=1�
0.197. In
Figs. 3�a� and 3�b� for p�0.210, it is clear that poisoning
occurs via nucleation and growth of vacuum droplets. How-
ever, as p increases to 0.214, Figs. 3�c�–3�e� suggest a tran-
sition in the mechanism of poisoning. Tentatively, we assign
an effective spinodal point of ps+�h=1�
0.213. In Fig. 4, we
show the analogous evolution for the QCP with h=4 for
various p� pe�h=4�
0.215. Figures 4�a� and 4�b� for p
�0.234 reveal nucleation-mediated poisoning, but Figs.
4�c�–4�e� suggest a transition to a different mechanism for
higher p. Tentatively, we assign an effective spinodal point
of ps+�h=4�
0.236 �see Table I�.

A more detailed characterization of nucleation-mediated
poisoning for pe� p� ps+ is possible. One can utilize con-
cepts from Avrami theory �33� combined with recent postu-
lates for the nucleation rate in these nonequilibrium systems
�17,18,21�. We propose that the nucleation rate for supercriti-
cal droplets of the vacuum state within the metastable active
state has the form knuc	exp�−cnuc /
pe�, where 
pe= p− pe.
After nucleation, these droplets grow with a velocity scaling
like Vgrow	
pe. Then, according to Avrami theory, nucle-
ation kinetics is controlled by a characteristic time �nuc
	 �Vgrow�−2/3�knuc�−1/3. Specifically, after a “brief” transient
period where the concentration quickly reaches a metastable
state value Cm, one has �33�

TABLE I. KMC simulation and pair-approximation results for
pe, ps+, the width of the metastable regime �ps+= ps+− pe, and KMC
results for cnuc in the QCP with particle hop rate h�0. Note that
KMC values for �ps+ and cnuc vary nonmonotonically for small h
with �ps+=0.005 and cnuc=0.012 for h=0.1, and �ps+=0.006 and
cnuc=0.048 for h=0.4. See Ref. �18� for further discussion.

pe ps+ �ps+ cnuc

h=0 KMC 0.094 0.101 0.007 0.024

h=0 pair approx. 0.1083 0.1250 0.0167

h=1 KMC 0.199 0.213 0.014 0.14

h=1 pair approx. 0.2079 0.2329 0.0250

h=4 KMC 0.215 0.236 0.021 0.36

h=4 pair approx. 0.2181 0.2451 0.0270

h=� exact 0.2222• 0.2500 0.0278 �

FIG. 3. Simulated evolution in the QCP with h=1 starting from
a filled 1024�1024 site lattice �which quickly evolves to a meta-
stable active state� for �a� p=0.208; t=480, 960, 1440; �b� p
=0.210; t=240, 480, 720; �c� p=0.212; t=96, 192, 288; �d� p
=0.213; t=96, 192, 288; and �e� p=0.214; t=96, 192, 288.
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C�t�/Cm 
 exp�− A�t/�nuc�3�, choosing

�nuc = �
pe�−2/3exp�cnuc/�3
pe�� . �6�

Figure 5 confirms this behavior for nucleation-mediated poi-
soning kinetics for the QCP with h=1 for p=0.208–0.211
above pe�h=1�=0.199 and below ps+�h=1�
0.213. We ex-
tract an estimate of cnuc�h=1�
0.14 which reflects the mag-
nitude of the effective barrier for nucleation of supercritical
vacuum droplets �18�. We have performed a similar analysis
of nucleation-mediated poisoning kinetics with h=4 for p

=0.233–0.235 above pe�h=4�=0.215 and below ps+�h=4�

0.236. As expected �18�, we extract an even higher esti-
mate of cnuc�h=4�
0.36–0.37. Note that significantly
smaller values of cnuc were obtained previously for h be-
tween 0 and 0.4 �see Table I� �18�.

As an aside, we remark that for h=0, previous studies
have indicated very weak metastability. Indeed, inspection of
evolving configurations during poisoning for h=0 does not
reveal such a clear distinction between nucleation-mediated
poisoning and spinodal decomposition �see Fig. 6�. Analysis
of rapid poisoning kinetics for p� ps+ suggests that perhaps
ps+�h=0�=0.100–0.101.

B. Rapid poisoning via spinodal decomposition

A second strategy to assess the location of effective spin-
odal point is based on the idea that the rate of rapid poison-
ing in the regime p� ps+ should depend primarily on the
distance, 
ps+= p− ps+�0, above an effective spinodal. Spe-
cifically, C�t� should roughly have the form C�t�
c�
ps+t�,
so that curves for C versus 
ps+t for different p’s should
collapse for the appropriate choice of ps+ �14,17,18�. The
application of this idea requires selection of a suitable regime
�ps+��pmin� p� pmax in which to analyze the kinetics. In
fact, we choose two different regimes for higher or lower
�= pmin− ps+ based on the above initial estimates of ps+. We
do this in order to assess the dependence of our refined esti-
mates based on poisoning kinetics of ps+ on �. Figure 7�a�
shows poisoning kinetics in the QCP for h=1 for a range of
p=0.220–0.235 ��
0.007� above pe�h=1�=0.199, suggest-
ing ps+�h=1�=0.207–0.208. However, kinetics shown in
Fig. 7�b� for p=0.215–0.225 ��
0.002� suggests that
ps+�h=1�=0.209–0.210. A similar analysis of poisoning ki-
netics in the QCP for h=4 for a range of p=0.245–0.270
��
0.009� above pe�h=4�=0.215 suggests that ps+�h=4�
=0.226–0.227. However, kinetics for p=0.240–0.260 ��

0.004� suggests that ps+�h=4�=0.228–0.229. Thus, the es-
timate of ps+ appears to consistently increase as � becomes
smaller. In Sec. IV, with the aid of the analytical pair ap-
proximation for model kinetics, we will discuss how to ob-

FIG. 4. Simulated evolution in the QCP with h=4 starting from
a filled 512�512 site lattice �which quickly evolves to a metastable
active state� for �a� p=0.232; t=290, 580, 870; �b� p=0.234; t
=116, 232, 348; �c� p=0.235; t=58, 116, 174; �d� p=0.236; t=58,
116, 174; and �e� p=0.237; t=58, 116, 174.

FIG. 5. Simulation results for nucleation-mediated poisoning ki-
netics in the QCP for h=1 for p=0.208–0.211 between pe�h=1�
=0.197 and ps+�h=1�
0.213. Curves in the right frames are col-
lapsed by rescaling in terms of a characteristic time �char. We choose
�char=�nuc from Eq. �6� and adjust the parameter cnuc to achieve
optimal collapse �given here by cnuc=0.14 rather than 0.15�.

FIG. 6. Simulated evolution in the QCP with h=0 starting from
a filled 1024�1024 site lattice �which quickly evolves to a meta-
stable active state� for �a� p=0.098; t=455, 2275, 4090; �b� p
=0.100; t=455, 910, 1365; and �c� p=0.101; t=455, 910, 1365.
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tain a refined estimate of ps+ accounting for this dependence
on �.

C. Interface propagation

Finally, we comment on yet another third strategy to pro-
vide insight into the effective ps+. This strategy is motivated
by the mean-field results described at the end of Sec. II
which suggest that the velocity of propagation, V�p��0, of
the vacuum state displacing the metastable active state for
p� pe might have distinctive �e.g., singular� behavior ap-
proaching ps+. One complication in the lattice-gas realization
of the model is that such propagation is transient in the sense
that the metastable active state eventually spontaneously poi-
sons. This becomes more of an issue for p approaching ps+
�the regime of primary interest here� where spontaneous
nucleation and growth of the vacuum state becomes more
facile. To partly ameliorate this problem, we have previously
adopted a percolation-theoretic approach defining the inter-
face as the set of empty sites connected to the bulk vacuum
state which have filled neighbors �18�. This allowed us to
ignore possibly large droplets of the vacuum state nucleated
ahead of the front in the metastable active state. However,
eventually the vacuum droplets embedded in the metastable
active state grow and percolate, causing an artificial diver-
gence of the velocity of interface defined by the above algo-
rithm.

To avoid this complication, here we adopt a different and
less conventional, but simpler definition of the interface, as

well as of its location and thus velocity. We initialize a �large
finite� system with a sharp planar interface separating the
vacuum state on one side and a completely filled lattice on
the other. Then, we determine the subsequent mean location
of this interface by comparing the concentration profile �av-
eraged along the interface� with that of a reference sharp
interface having the vacuum state on one side and an appro-
priate evolving “benchmark” uniform state on the other. This
benchmark uniform state corresponds to a poisoning state
which started from an initially completely filled state �see the
schematic in Fig. 8�. This strategy gives a well-defined inter-
face location even for p� ps+ where the nonvacuum state
poisons very rapidly. To interpret simulation results, two ob-
servations should be made regarding this definition of inter-
face location and velocity motivated by behavior in a mean-
field model: �i� as p→ps+ from below, one expects that it
will take longer for the interface to reach its true asymptotic
velocity �which is nonanalytic at ps+� and �ii� for p� ps+, the
propagating front is expected to accelerate �with changing
shape�.

Simulation results for this interface velocity V�p� versus p
in the QCP with h=1 are shown in Fig. 9 where V�p� is
determined as the difference between interface location at
initial time ti
60 and that at a range of final times tf. Note
that V�p� for h=1 is effectively independent of interface ori-
entation, and the p value where V�p�=0 corresponds to
pe�h=1�
 pf�h=1� �see the inset to Fig. 9�. The results for
V�p� are largely independent of tf up to p
0.212, but then
�V�p�� becomes larger for longer tf and for higher p. This is
consistent with mean-field-type acceleration of the front for
p� ps+. These observations suggest that ps+�h=1�
0.212,
reasonably consistent with the estimate from Fig. 3.

To summarize, we have introduced three distinct strate-
gies to assess the location of the effective spinodal point.
These produce quite consistent estimates, e.g., ps+�h=1�

0.213, 0.209–0.210 �refined to 0.213 below in Sec. IV�,

FIG. 7. Simulation results for “rapid” poisoning kinetics in the
QCP for h=1 for p above ps+�h�: �a� p=0.220–0.235 data suggest-
ing that ps+�h=1�=0.207–0.208; �b� p=0.215–0.225 data suggest-
ing that ps+�h=1�=0.209–0.210.

FIG. 8. �Color online� Schematic for determination of the loca-
tion x�t� of a vertical interface between the vacuum state and an
initially filled “poisoning state” from the concentration profiles in
the QCP for p� pe. Profiles are shown as solid curves passing
through discrete average concentrations Ci= �Ci,j� j for column i,
where �i , j� is the site label on the square lattice. x�t� matches the
location of the reference sharp interface �dashed curves�, so that

iCi�t�=
i�x�t�C�t�, where C�t�→0 as t→� denotes the concentra-
tion of a uniform initially filled state. Profiles shown are taken from
pair-approximation simulations with h=1 and p=0.235 exceeding
ps+
0.233. An analogous definition is possible for other interface
orientations.
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and 0.212 from the first, second, and third strategies, respec-
tively, recalling that pe�h=1�
0.197.

IV. PAIR-APPROXIMATION RESULTS: SPINODAL
POINTS, POISONING KINETICS, AND INTERFACE

PROPAGATION

The lowest-order site approximation to the exact hierar-
chical master equations ignores all spatial correlations and
adopts a mean-field factorization of multisite probabilities in
terms of constituent single-site probabilities. Unfortunately,
this approximation for spatially homogeneous states com-
pletely fails to capture any h dependence of the reaction
kinetics, a feature which is of primary interest here. How-
ever, this h dependence is described at least approximately
by higher-order approximations. Here, we consider only the
pair approximation �29,34�.

A. Spatially uniform states

Starting with the hierarchical master equations �2� for spa-
tially uniform states, this Kirkwood-type approximation fac-
torizes multisite probabilities in the particle creation terms as
products of the m constituent pair probabilities and divides
by P�o�m−1 to avoid overcounting of the shared central empty
site. In addition, hopping terms involving the probabilities of
separated pairs of empty sites are factorized as P�o�2. Since
P�x�=1− P�o� and P�x o�= P�o�− P�o o�, the pair approxi-
mation can be written to yield the closed pair of equations

d/dtP�o� = pP�x� − P�x o �2/P�o�

= p�1 − P�o�� − �P�o� − P�o o ��2/P�o� , �7a�

d/dtP�o o � = 2pP�x o � − P�x o �2P�o o �/P�o�2

+ 6h�P�o�2 − P�o o ��

= 2p�P�o� − P�o o �� − �P�o�

− P�o o ��2P�o o �/P�o�2

+ 6h�P�o�2 − P�o o �� . �7b�

Below it is convenient to let K= P�x o� / P�o� denote the
conditional probability or conditional concentration of find-
ing a particle adjacent to a prescribed empty site. Due to the
presence of spatial correlations, K is distinct from the con-
centration C= P�x�=1− P�o�. Then, noting that P�x o�
=K�1−C� and P�o o�= �1−K��1−C�, the pair approxima-
tion yields

d/dtC = − pC + K2�1 − C� , �8a�

d/dtK + �1 − K��1 − C�−1d/dtC

= �− 2p + K�1 − K��K − 6h�K − C� . �8b�

The hopping term in Eq. �8b� forces K→C, as h→�, thus
eliminating spatial correlations and correctly recovering
mean-field behavior. This, of course, is a general feature for
reaction-diffusion systems with no particle interactions, as
noted in Sec. II C.

Solving Eqs. �8� for the steady-state behavior determines
Ceq and Keq versus p in the pair approximation including
their h dependence. See Fig. 10 for Ceq versus p when h=1.
One strategy is to eliminate C generating a relationship be-
tween the “natural” variable K and the parameter p,

6h�p − K�1 − K�� + �p + K2��2p − K�1 − K�� = 0 or K = 0.

�9�

This relationship, which in general yields p versus K by solv-
ing a quadratic, immediately reveals simple behavior for
both h=0 and h→�. Given the dependence of K on p, one
can then assess that for C on p. For example, when p�1,
one finds that

FIG. 9. Simulation results for the propagation velocity V�p� for
an interface between vacuum and poisoning states in the QCP with
h=1 defined as in Fig. 6 where velocity is measured as the differ-
ence in location between times ti=60 and tf �shown�. Results de-
pend on tf just below and above p= ps+
0.213. Inset: V�p� over a
broader range of p.

FIG. 10. Steady-state behavior in the pair approximation for the
particle concentration Ceq�p� versus p with h=1. The format and
notation are the same as those for Fig. 2.
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Ceq = 1 − p + O�p2�, Keq = 1 − �2 + 6h��1 + 6h�−1p + O�p2� .

�10�

The differing linear terms show that spatial correlations per-
sist even for small p when h��. Alternatively, one can
eliminate p from steady-state form of Eqs. �8� to obtain Keq
as a function of Ceq, thus obtaining

Keq 
 Ceq�1 − Ceq�1 − Ceq�/�6h��, for h � 1, �11a�

Keq 
 Ceq�2 − Ceq�−1�1 − 6h�2 − Ceq��1 − Ceq�/Ceq�−1,

for h � 1. �11b�

Either approach provides insight into spinodal behavior, for
example, showing that

ps+�pair� 
 1/4 − 1/�48h�, for h � 1,

ps+�pair� 
 1/8 + h, for h � 1. �12�

In addition, one finds a transition in behavior from

Ceq = 1
2 �1 + p�−1�1 + 4p + �1 − 8p�1/2�, for h = 0 to

Ceq = 1
2 �1 + �1 − 4p�1/2�, for h = � . �13�

Next, we utilize numerical analysis of the pair-
approximation equations to provide additional insight into
poisoning kinetics for the cases h=1 and h=4 analyzed by
the KMC simulation in Sec. III. Specifically, we analyze the

rapid poisoning kinetics for p� ps+ choosing ranges of pmin
� p� pmax for the same distance �= pmin− ps+ above ps+ as in
the simulation studies. However, Fig. 11�a� shows pair-
approximation kinetics in the QCP for h=1 for a range of
p=0.240–0.255 ��
0.007� suggesting that ps+�h=1�
=0.224–0.225, and Fig. 11�b� shows p=0.235–0.245 ��

0.002� suggesting that ps+�h=1�=0.229–0.230. Thus,
even the latter small-� estimate is about 0.003 below the
correct value of ps+�pair�
0.2329 for h=1 obtained from an
exact steady-state analysis in the pair approximation �see
Table I�. If this correction is applied to the �
0.002 simu-
lations in Fig. 6�b�, one obtains a refined simulation estimate
of ps+�h=1�
0.213 �consistent with direct analysis from
Fig. 3�. Similar pair-approximation analysis for h=4 �35�
suggests a refined simulation estimate of ps+�h=4�
0.235
�consistent with direct analysis from Fig. 4�. Note that these
refined estimates deviate from previous cruder estimates �18�
for fixed �.

B. Spatially nonuniform states

Finally, we discuss the extension of the pair approxima-
tion to the description of spatially nonuniform states. In par-
ticular, we wish to analyze the propagation of an interface
between the active and vacuum states to determine the equi-
stability pressure pe�h� and related quantities. In addition, we
wish to assess the characteristics of interface propagation for
p� pe�h�, particularly for p
 ps+�h� �analogous to the simu-
lation studies in Sec. III�. The truncation procedure based on

FIG. 11. Pair-approximation results for the
poisoning kinetics in the QCP for h=1 for �a� p
=0.240–0.255 data suggesting that ps+�h=1�
=0.224–0.225; �b� p=0.235–0.245 data suggest-
ing that ps+�h=1�=0.229–0.230.
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factorization of probabilities naturally extends to the infinite
hierarchy �3� for spatially nonuniform states at the level of
either the site or pair approximation. In either case, the result
is a set of discrete RDEs for the site-dependent particle con-
centration, and also for related pair probabilities in the case
of the pair approximation. An early example of this proce-
dure for a lattice-gas reaction model at the level of the site
approximation is found in Ref. �36�, and for the QCP with
h=0 at the level of the site and pair approximations it is
found in Ref. �29�. The extension of the latter analysis to
include diffusion terms is straightforward and has been
implemented here. We present results at the pair-
approximation level based on analysis of these coupled dis-
crete RDEs. For special cases of vertical or diagonal inter-
faces, these can be simplified as in Ref. �29�.

We have noted previously that the QCP for h�0 exhibits
generic two-phase coexistence �16–18�. This feature derives
from the property that the equistability or stationarity point,
p= peq�h ,S�, for a planar interface separating active and
vacuum states depends on the orientation or slope S of the
interface. This property is preserved in the spatially nonuni-
form site and pair approximations. Table II shows the depen-
dence of the annihilation rates for stationarity of vertical �or
horizontal� interfaces and of diagonal interfaces as a function
of h in the pair approximation. Note that peq for diagonal
interfaces corresponds to pe in the exact QCP. There are
some complications associated with propagation failure of
vertical interfaces for these discrete RDEs �29,37� which will
be discussed elsewhere. However, the main observation here
is that pair approximation predicts that the orientation depen-
dence of interface propagation and equistability quickly di-
minishes with increasing h �although not as quickly as actual
model behavior determined from simulations �18��. Thus,
this dependence on interface orientation can be ignored for
the cases h=1 and h=4 on which we focus here.

Our primary interest here is in analyzing the variation of
velocity of propagation, V�p��0, for p� pe of an interface
between a vacuum state and a state which is initially a filled
lattice. Note that V�p� for h=1 is effectively independent of
interface orientation. This analysis is the analog of the simu-
lation analysis of interface propagation in Fig. 9. Within the
pair approximation, this corresponds to the vacuum state dis-
placing the metastable active state for pe� p� ps+ or displac-

ing a poisoning state for p� ps+. Results for V�p� versus p in
the QCP with h=1, where pe�h=1�=0.2079 and ps+�h=1�
=0.2329 in the pair approximation, are shown in Fig. 12.
Note again that V�p�=0 corresponds to p= pe�h=1�
 pf�h
=1� �see the inset to Fig. 12�. Here, V�p� is determined as the
difference between the interface location at initial time ti
=30 and that at a range of final times tf. The result is largely
independent of tf up to p
0.232 just below ps+=0.233, but
�V�p�� becomes larger for longer tf and for higher p, consis-
tent with acceleration of the front for p� ps+. Thus, the be-
havior is entirely analogous to that in Fig. 9. As an aside, we
note the effectiveness of the pair approximation in recover-
ing the simulated behavior of V�p� versus p over a broad
range of 0� p� ps+. Compare the insets in Figs. 9 and 12.

V. CONTINUUM RDEs BASED ON THE PAIR
APPROXIMATION

Mean-field continuum Langevin reaction-diffusion equa-
tions �RDEs� �38,39� have provided a useful conceptual
framework for analysis of fluctuation effects in reaction-
diffusion systems, where the hop rate is sufficiently large to
ensure effective mixing and thus mean-field reaction kinet-
ics, but not so large as to completely quench fluctuations �9�.
However, for our analysis of the QCP with moderate particle
hop rates, there are significant deviations from mean-field
reaction kinetics as reflected in the shift of the spinodal
points from the h→� mean-field value of 1/4 toward 1/8.
Consequently, we are motivated to incorporate a higher-level
pair-approximation description of reaction kinetics into a
continuum RDE formulation. One strategy for deriving con-
tinuum RDEs without noise terms is to coarse grain the dis-
crete RDEs which follow from the spatially nonuniform
form of the exact hierarchical master equations after apply-
ing the appropriate factorization approximation. This analy-
sis will not yield noise terms, but these might come from
separate consideration of suitable birth-death master equa-
tions for discrete populations of relevant “species” in an ar-
ray of spatial cells �1,38,39�.

TABLE II. Pair-approximation results for the QCP with particle
hop rate h. Values of p for equistability of vertical interfaces,
peq�S=��, and diagonal interfaces, peq�S=1�, between active and
vacuum states, and for the upper spinodal, ps+. For h=4, we find
that peq�S�
 pe=0.218 094 and ps+=0.245 07.

Pair approx. peq�S=� or 0� peq�S=1�= pe ps+

h=0 0.1060 0.1083 1 /8=0.1250

h=0.01 0.11759 0.11863 0.13429

h=0.05 0.14335 0.14368 0.15997

h=0.10 0.16018 0.16035 0.17828

h=0.20 0.17776 0.17784 0.19801

h=0.50 0.197546 0.197573 0.22078

h=1.0 0.207900 0.207909 0.23292

FIG. 12. Pair-approximation results for the propagation velocity
V�p� for an interface between vacuum and poisoning states in the
QCP with h=1 defined as in Fig. 7 where velocity is measured as
the difference in location between times ti=60 and tf �shown�. Re-
sults depend on tf just below and above p= ps+
0.233. Inset: V�p�
over a broader range of p �agreeing well with simulation results in
the inset to Fig. 9�.
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To coarse grain the discrete RDEs, we start with the form
of Eqs. �3� factorized in the pair approximation to yield evo-
lution equations for the site-dependent probabilities of empty
sites and adjacent empty pairs at various locations. We then
rewrite these in terms of coarse-grained continuum variables
to describe their spatial variation after applying suitable Tay-
lor expansions �cf. Ref. �40��. Note that concentration gradi-
ents can induce different nearest-neighbor correlations in
horizontal and vertical directions, so we use two correspond-
ing variables. Leaving implicit the t dependence, the com-
plete set of variables is

U„r� = �i, j�a… = P�oi,j�,

V„r� = �i + 1
2 , j�a… = P�oi,j oi+1,j �,

W„r� = �i, j + 1
2�a… = P�oi,j oi,j+1 � , �14�

where the location r� for the pair probabilities is chosen mid-
way between the pair of sites, and again a is the lattice con-
stant. Examples of Taylor expansions used in developing the
equation for U(r� = �i , j�a) are

P�oi�1,j� = U�r�� � aUx�r�� + 1
2a2Uxx�r�� + ¯ , for r� = �i, j�a ,

�15a�

P�oi,j oi,j�1 � = V�r�� �
1
2aVy�r�� + 1

8a2Vyy�r�� + ¯ ,

for r� = �i, j�a . �15b�

An example of an expansion used in developing the equation
for V(r� = �i+ 1

2 , j�a) is

P�oi+1,j oi+1,j�1 � = W�r�� + 1
2aWx�r�� �

1
2aWy�r�� + 1

8a2Wxx�r��

+ 1
8a2Wyy�r�� �

1
4a2Wxy�r�� + ¯ ,

for r� = �i + 1
2 , j�a . �16�

Thus, upon substitution of such expressions into the pair-
approximation factored form of Eqs. �3�, one obtains

�/�tU = p�1 − U� − U−1�U − V��U − W� + 1/8a2�U − V�Wyy

+ 1/8a2�U − W�Vxx + a2h�Uxx + Uyy� , �17a�

�/�tV = 2p�U − V� − U−2V�U − V��U − W� + 6h�U2 − V�

+ a2hU�7/2Uxx + 1
2Uyy� + 1

4a2pUxx + other, �17b�

where “other” denotes additional O�a2� terms. The W equa-
tion follows from that for V by rotational symmetry. Note
that for a spatially uniform system where V=W, Eqs. �17�
recover the pair-approximation kinetics �7� and steady states
described previously.

Addition of noise terms to RDEs of the above type would
allow simulation at the level of the pair approximation of
metastability and nucleation-mediated poisoning �phenom-
ena described in Sec. III and quantified in Fig. 5�. Standard
procedures are available at the mean-field level to generate
such noise terms which include separate nonconserved con-
tributions due to particle annihilation and creation, and con-
served contributions due to diffusion �18,38,39�. For a for-
mulation at the level of the pair approximation, insight into
the noise terms associated with particle annihilation and cre-

ation might come from analysis of appropriate master equa-
tions describing the evolution of finite populations of, say, oo
and xo pairs of sites within a finite system. Then, coarse
graining to obtain the associated Fokker-Planck equations
would indicate the form of multiplicative Langevin noise
terms to be included in the RDEs for the corresponding
coarse-grained pair probabilities. Details will be presented
elsewhere �41�.

VI. CONCLUSIONS

We have analyzed a stochastic realization of Schloegl’s
second model for autocatalysis with particle diffusion on a
square lattice, also known as the quadratic contact process.
This model provides an ideal testing ground to explore fun-
damental issues related to discontinuous phase transitions
and associated metastability phenomena in nonequilibrium
reaction-diffusion models. Based on analysis for equilibrium
Ising-type models, one does not expect that an unambiguous
or precise definition is possible for the spinodal point in our
nonequilibrium model for an infinite lattice. Nonetheless, the
concept of a spinodal appears to provide a useful tool for
analyzing poisoning kinetics, particularly for moderate or
large hop rates.

Our combination of simulation and pair-approximation
analysis is effective in characterizing behavior associated
with metastability. In particular, we are able to determine the
location of the effective spinodal point as a function of par-
ticle hop rate. This analysis in part exploited the strategy of
analyzing the poisoning kinetics, akin to dynamical analyses
of spinodal behavior in equilibrium systems �4,5�. In addi-
tion, we explore interface propagation in the vicinity of an
effective spinodal point to assess its location. In the context
of lattice-gas reaction models, there have been many studies
of interface propagation between a stable active state and a
poisoned adsorbing state �9,14–18�. This is analogous to the
propagation of trigger waves between two stable states in
mean-field models �8�. There have also been many lattice-
gas model studies of interface propagation between stable
and unstable states which exhibits more pathological features
�42�. The analysis here is closer to the former case, although
propagation of the poisoned state into the metastable active
state is a transient phenomenon.

Finally, this work also promotes the possibility of devel-
oping coarse-grained stochastic reaction-diffusion equations
at a level beyond the standard mean-field treatment. Such
equations could describe behavior associated with metasta-
bility for moderate hop rates where mean-field kinetics is not
accurate.
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