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Spatially nonlocal transport describes the evolution of solute concentration due to mass transfer over long
ranges. Such long-range mass transfer, present in many flow situations, changes the character of mixing and
consequent chemical reactions. We study mixing in terms of the scalar dissipation and reaction rates for
mixing-limited equilibrium reactions, using the space-fractional advection-dispersion equation �fADE� to
model long range mass transfer. The scalar dissipation and global reaction rates decay as power-laws at late
time. As opposed to the Fickian �local� transport model, local reaction rates are not zero where the concentra-
tion has zero gradient. As �, the fractional derivative exponent, decreases from two in the fADE, the reaction
rate grows larger at the position of zero gradient, due to long-range transfer of reactants from distances larger
than Fick’s law allows. The reaction rates are also greater far from the reactant source for non-Fickian
transport; however, the globally integrated reaction rate decreases with smaller �. This behavior may provide
a method to investigate spatial nonlocality as a proper model of upscaling: the reaction products would be
found in places precluded by Fickian dispersion, and overall reaction rates are suppressed.
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I. INTRODUCTION

Fick’s law has been commonly used to model tracer dis-
persion in flows. In this transport framework, the evolution
of the tracer concentration c�x , t� is governed by the
advection-dispersion equation �ADE�

�c�x,t�
�t

+ v
�c�x,t�

�x
= D

�2c�x,t�
�x2 , �1�

where v is the flow velocity, and D the dispersion coefficient.
The ADE describes mass accumulation or depletion due

to the difference in advective and dispersive fluxes immedi-
ately upstream and downstream of any point. It also de-
scribes the probability density function of the location of
particles undergoing Brownian motion with a deterministic
drift �e.g., �1�� and a random increment that is Gaussian with
zero mean and variance 2D�, where � is a constant mass
transfer time scale. The typical spatial mass transfer scales
are given by advection, la=v� and dispersion ld=�D�. While
the former measures a constant displacement in the flow, the
latter quantifies the mixing length, which is the typical length
over which concentration contrasts are dissipated. For a

unit-mass, pointlike, tracer injection in an infinite medium,
both the centroid travel distance and the centered second
moment �i.e., variance� of c�x , t� grow linearly with time.
This is known as Fickian behavior.

A wide array of physical systems display non-Fickian be-
havior for transport �e.g., �2–5��. The non-Fickian behavior is
characterized by superlinear or sublinear growth of the cen-
troid and variance of the tracer distribution, heavy tails of the
spatial distribution, and early or late arrival times. Various
models exist that capture such behavior. These are typically
characterized by spatially and temporally nonlocal transport
equations that can account for long-range mass transfer from
distant locations, and variability of mass transfer times.
Among these models are projector formalisms �6�, continu-
ous time random walks �7� and spatially fractional
advection-dispersion equations �fADE� �8–11�.

We focus on the fADE, which models long-range mass
transfer. While this is one of a large variety of spatially non-
local equations, we use it for several reasons: it is the gov-
erning equation of the density of Lévy motion, which is com-
monly observed in many physical settings �12�; it has been
used to explain anomalous behavior of well-studied field-
scale aquifer tracer tests �13�; and the model yields tractable
solutions that give insight into the general effect of spatially
nonlocal transport on mixing and chemical reaction. For sim-
plicity we consider one-dimensional and symmetric disper-
sion characterized by �e.g., Refs. �8,9��:*bolster@nd.edu
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�c�x,t�
�t

+ v
�c�x,t�

�x
= D�

��c�x,t�
� �x��

, �2�

where 1���2. The generalized dispersion coefficient D�

has units �L�T−1�. The Riesz fractional derivative may be
defined through its Fourier transform by

��c�x,t�
� �x��

� − �
−�

�

exp�ikx��k��c̃�k,t�
dk

2�
, �3�

although slightly different definitions do exist �see, e.g.,
�14��. We specify natural boundary conditions �concentration
and its derivatives are zero� at x= ��. The structure of the
equation changes slightly within the context of the fADE, if
one has a finite domain with boundary effects �see for ex-
ample �15� for details�. Note that Eq. �2� describes the evo-
lution of the distribution density of a Lévy motion with a
constant mean drift and random increments � characterized
by a density function that decays with the asymptotic power
law ���−1−�. Therefore, unlike Brownian motion governed by
the ADE, the fADE lacks a typical dissipation scale.

While the accurate prediction of conservative solute mo-
tion is very important in its own right, an emerging need is to
be able to properly calculate mixing, because it is a primary
driver in many chemical reactions �e.g., �16–18��, and also
leads to solute dilution, as opposed to mere spreading. For
transport described by the ADE, mixing has been quantified
by the scalar dissipation rate �e.g., �19–21��. This quantity is
global, that is, a spatially integrated measure for mixing. Its
local counterpart is quantified in terms of concentration gra-
dients. This reflects that short range mass transfer is the
dominant mixing process. For Fickian transport this happens
on the mixing scale ld=�D�. For transport described by the
fADE there is no typical mass transfer scale. Thus, the local
measures defined for the ADE do not apply here, and mixing
has to be described in terms of global measures, which inte-
grate mass fluxes over all spatial scales.

Lacking a characteristic scale of mass transfer or dissipa-
tion, the fADE is expected to describe different solute mix-
ing than the Fickian formulation. Indeed it can be expected
that anomalous transport will affect mixing processes and
reactions in a nontrivial way. The influence of subdiffusive
and superdiffusive transport on reaction/diffusion front
propagation has received much attention �e.g., �22–27��. The
effect of large motion deviations on the propagation speed
and shape of reaction/diffusion fronts is often counter intui-
tive. Lévy motion, while engendering fast growth of the front
when there is no reaction, causes a slowing of the front when
simple Fisher-type reactions are present, due to the “strand-
ing” of small amounts of reactants far from the bulk of the
plume �e.g., Refs. �22,23��. These small, distant “packets”
are rapidly removed via reaction �23�, an effect that is miss-
ing from the Fickian model. This suggests that the global
degree of mixing induced by Lévy motion will also have the
largest control on global reaction rates. Because of the non-
locality of the mixing, the behavior of the reaction front
should propagate throughout a moving cloud of reactants.
Here, we consider a different type of reaction to those pre-
viously considered, namely an equilibrium bimolecular reac-

tion. Unlike previous studies �e.g., �22–25�� we do not focus
on front propagation, but rather investigate the global mixing
and subsequent impact on mixing-driven reactions in a Lévy
motion regime.

The choice of this type of reaction is motivated by the
work of �18�, who show that, within the context of the ADE
for mixing-limited equilibrium reactions, the local reaction
rate r can be calculated as the product of a speciation term
�that depends on the reaction� and the mixing factor
D�c ·�c. This concept was extended to a temporally nonlo-
cal model in the multirate mass transfer formulation by
�28,29�. Here, we examine the reaction rates and mixing that
would occur within the fADE formulation, particularly as
they relate to mass transfer over relatively large distances
�e.g., �30��.

II. SPATIAL FRACTIONAL ADVECTION DISPERSION
REACTION SYSTEM

We consider a mixing-limited chemical reaction of two
solutes of concentrations c1 and c2 that react and precipitate
to form c3 with local chemical equilibrium conditions �18�.
c1 and c2 are transported by space-fractional dispersion,

�ci�x,t�
�t

+ v
�ci�x,t�

�x
− D�

��ci�x,t�
� �x��

= r�x,t� i = 1,2, �4�

while c3 is immobile

�c3�x,t�
�t

= − r�x,t� . �5�

The two species c1 and c2 are in local equilibrium such that

c1�x,t�c2�x,t� = K �6�

with K the equilibrium constant. We can now define a con-
servative component u�x , t�=c1�x , t�−c2�x , t� that satisfies
Eq. �2�. Using the equilibrium condition in Eq. �6� and the
definition of u the species concentration can be written as
c1,2�x , t��c1,2�u�x , t��. Doing so results in

c1,2�x,t� = �
u�x,t�

2
+�u�x,t�2

4
+ K . �7�

III. CALCULATION OF LOCAL REACTION RATE

Following �18�, the reaction rate can be calculated by in-
serting ci�u�x , t�� from �7� into �4�, resulting in

r�x,t� =
dc

du

�u

�t
+

dc

du
q

�u

�x
− D�

��−1

� �x��−1	 dc

du

�u

�x

 . �8�

Using the generalized Leibnitz product rule for fractional
calculus �e.g., �31��

��−1

� �x��−1	 dc

du

�u

�x

 =

dc

du

��u

� �x��
+ �

k=1

� �� − 1

k

 ��−ku

� �x��−k

�k

�xk	 dc

du

 .

�9�

Combining Eqs. �2�, �8�, and �9� allows us to calculate the
reaction rate as
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r�x,t� = D��
k=1

� �� − 1

k

 ��−ku

� �x��−k

�k

�xk

dc

du
. �10�

For �=2, all terms for k�1 in the binomial series � �−1
k � are

zero, and this expression reduces to the one derived by �18�.
This infinite sum and dependence of r on multiple fractional
derivatives of u reflects, and retains, the nonlocal nature of
the fADE. In short, particles do not have to begin directly
next to one another to interact during some short time period.
This expression suggests that estimating reactions in the
fADE formulation is not as simple as the case of the classical
ADE, where it is just the product of a local mixing and
speciation term. Here, the relationship is more complex and
depends on multiple derivatives of u as well as more com-
plicated speciation terms.

We illustrate the spatial behavior of the conservative com-
ponent u�x , t� and the reaction rate r�x , t� in an example char-
acterized by the equilibrium constant K=0.1. The initial con-
dition we consider is u�x , t=0�=	�x�. Decreasing the index �
shifts more of the mass of u into the tails �Fig. 1�. The local
reaction rate r�x , t� given in Eq. �10� for �=2 �Fig. 2� dis-
plays a double hump with zero reaction rate at x−vt=0,
which is because the gradient of u�x , t� is zero here. All
non-Fickian �
2 curves display a very interesting feature:
the reaction rate at the centroid at x−vt=0 is not zero. This
point actually has the greatest reaction rate for the lowest
value ��=1.1� investigated here. This is noteworthy, because
while the value of � codes the tails of conservative solute
transport, it dictates the extreme distances that one reactive
solute can infringe upon another through long range mass
transfer. Hence the regions of greatest reaction rates are very
different from classical small-range Fickian dispersion. The
nonlocal expression Eq. �10� for the reaction rate r illustrates
why the reaction rate is not zero at the peak concentration
point. When �
2, r depends on all higher-order �nonlocal�
derivatives of u and not just the gradient �as is the case for
�=2�. The enlarged range over which reactions may occur
suggests that the global reaction rates �and other measures of
plume mixing� may also be larger for smaller values of �.

IV. GLOBAL MEASURES OF MIXING AND REACTION

Let us consider the global reaction rate R�t�
=�−�

� r�x , t�dx. Applying this integral to Eq. �10� and succes-
sively applying integration by parts we obtain

R = D��
�

��−1u

� �x��−1

�u

�x

d2c

du2dx . �11�

It is interesting that this global measure can be simplified
such as this �i.e., the infinite sum in Eq. �10� disappears�, and
leads us to speculate that other global measures may also
display this type of simplification.

As a global mixing measure we consider the scalar dissi-
pation rate which is defined by �19� M�t�=− �

�t��u2�x , t�dx.
Multiplying Eq. �2� by u�x , t� and integrating over space
gives

M = D��
−�

� ��−1u

� �x��−1

�u

�x
dx . �12�

Note that for Fickian transport ��=2�, the local scalar dissi-
pation and reaction rates are defined in terms of the concen-
tration gradient because it is �local� mass transfer from short
distances that determines mixing. For transport as described
by the fADE Eq. �2�, mixing is a nonlocal phenomenon. This
is expressed by Eq. �10� for the local reaction rate. Due to the
long-range mass transfer mechanisms that are inherent in the
fADE, it seems to be intuitive that mixing needs to be de-
scribed by a global measure that integrates mass transfer
over all scales.

Now we derive an explicit expression for M�t� for the
scenario described above, that is, a pointlike initial condition
in a coordinate system moving with velocity v. The solution
to the fADE with a Dirac-delta initial condition can be writ-
ten as

u�x,t� = �
−�

�

e−D�t�k��+ikx dk

2�
. �13�

Integrating u2�x , t� over the spatial domain and taking a time
derivative gives the scalar dissipation rate
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FIG. 2. �Color online� Local reaction rate r with a delta initial
condition for u for various values of � at t=1 /D� and K=0.1.
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FIG. 1. �Color online� The conservative component u�x , t� with
a delta initial condition for various values of � for K=0.1 and at
t=1 /D�.
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M =
��1/��

2�2�2�2D��1/� t−��+1�/�. �14�

This is a power law in time that scales as t−��+1�/�. Note that
Fickian mixing is characterized by a t−3/2 scaling. In analogy
to anomalous transport we term mixing that deviates from
this behavior as “anomalous mixing,” which occurs for all
��2. The behavior for various values of � is shown in Fig.
3. At early times mixing is larger for smaller values of �.
This is because smaller values of � enable larger degrees of
long range mass transfer thus making it more effective at
smoothing out concentration contrasts and inducing more ef-
ficient mixing. At late times the systems with lower � have
lower rates of mixing reflecting the fact that the enhanced
early time mixing has led to a better mixed state. It is worth
noting that all curves cross at the same point marking the
time where anomalous mixing transitions from being greater
to smaller than Fickian mixing.

This behavior suggests that the greater early-time mixing
associated with small � may generate significant increases in
the global reaction rates R. The integrand in Eq. �11� for R is
equal to the one in Eq. �12� for M multiplied by the stoichi-
ometric term d2c /du2. Some authors ��32�� show that under
certain circumstances it is reasonable to assume that the spe-
ciation term is approximately constant, meaning that R is
then directly proportional to the scalar dissipation rate M.
However, a close look �Fig. 4� shows that this is not true
during an initial transient region, where the reaction rates do
not follow this power-law behavior at early times �with
greater decreases for lower values of ��. This is a reflection
of the nonconstant stochiometric term d2c /du2. For very
large values of u, d2c /du2 tends to become very small ��29��.
The net effect is that the global reaction rate remains smaller
at all times as the value of � decreases. These decreased
rates, along with the simple observation that reactions are
predicted to occur in regions precluded by Fickian formula-

tions �Fig. 2�, should allow independent tests of the veracity
of the fADE as a proper model of upscaled transport. From a
practical perspective, if traditional ADE models are used to
predict reactions in systems where a nonlocal model is more
appropriate, the location and amount of reaction occurring
could be drastically incorrect. This would, for example, have
severe implications for the design and implementation of re-
mediation strategies that rely on delivery of reactive compo-
nents �e.g., �33��.

V. CONCLUSION

In conclusion, we have studied mixing and subsequent
chemical reactions that occur in a system with long range
mass transfer. We chose the fADE to model this. We find that
long range mass transfer leads to anomalous non-Fickian
mixing, which is characterized by the scaling behavior M

 t−��+1�/�. In particular, the smaller �, the greater the mixing
rate at early times reflecting the fact that long-range mass
transfer smooths out concentration contrasts more rapidly. As
has been previously commented upon, the impact of Lévy
motion on reactive system can be counterintuitive �e.g.,
�23��. In particular, within this study we note that the anoma-
lous mixing induced by Lévy flights leads to the occurrence
of reactions in regions where no such reaction could occur
within a Fickian system. In some cases the regions of zero
reaction within a Fickian system can even become the re-
gions of maximum reaction within a Lévy motion system.
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