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We investigate the asymptotic state of time-periodic quantum systems with regular and chaotic Floquet
states weakly coupled to a heat bath. The asymptotic occupation probabilities of these two types of states
follow fundamentally different distributions. Among regular states the probability decreases from the state in
the center of a regular island to the outermost state by orders of magnitude, while chaotic states have almost
equal probabilities. We derive an analytical expression for the occupations of regular states of kicked systems,
which depends on the winding numbers of the regular tori and the parameters temperature and driving fre-
quency. For a constant winding number within a regular island it simplifies to Boltzmann-like weights exp�
−�effEm

reg�, similar to time-independent systems. For this we introduce the regular energies Em
reg of the quantiz-

ing tori and an effective winding-number-dependent temperature 1 /�eff, different from the actual bath tem-
perature. Furthermore, the occupations of other typical Floquet states in a mixed phase space are studied, i.e.,
regular states on nonlinear resonances, beach states, and hierarchical states, giving rise to distinct features in
the occupation distribution. Avoided crossings involving a regular state lead to drastic consequences for the
entire set of occupations. We introduce a simplified rate model whose analytical solutions describe these
occupation changes quite accurately.
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I. INTRODUCTION

The response of a dynamical system to a time-periodic
driving force is ubiquitous in both classical and quantum
mechanics and plays a fundamental role in many physical
and technical applications. It opened the field for the coher-
ent control of atoms and molecules �1�, the optimal control
of chemical reactions �2�, or the manipulation of semicon-
ductor nanodevices and heterostructures in solids �3�. Under
realistic nonidealized conditions real physical systems inter-
act with their environment. If the environment contains a
vast number of degrees of freedom, the full dynamics of the
composite system is not traceable. The system is then inter-
preted as an open subsystem in mutual contact with a heat
bath and the dynamics of the subsystem is characterized by
its reduced density operator �. To evaluate the evolution of �
for an open quantum system in a time-varying strong exter-
nal field is a nontrivial task, as it is permanently driven out of
equilibrium. For only very few systems exact analytical so-
lutions of the damped dynamics are feasible, in particular a
driven two-level system �4� and a driven harmonic oscillator
�5,6�. In general systems it is studied numerically, e.g., with
focus on tunneling �see Ref. �7� and references therein�. Es-
pecially in the regime of weak interaction with the environ-
ment, standard methods, originally established for time-
independent quantum systems, have been adapted to the
demands of time-periodic systems �8–12�.

The final state of the relaxation process has so far not
received as much attention as transient phenomena, although
this can be ranked as even more fundamental and is in fact a
core question of statistical mechanics. The usual thermody-
namic concepts for the equilibrium state of time-independent
systems are not applicable, such as the canonical distribution
of Boltzmann weights, reached in the stationary limit of a
time-independent system that is weakly coupled to a heat
bath. The Boltzmann weights e−�En of the eigenstates are

unique functions of the eigenenergy with the temperature
1 /�=kBT of the heat bath as the only relevant parameter,
whereas microscopic details of the weak coupling play no
role. Such a stationary limit, in the sense of convergence to
time-independent values for all dynamical variables, is not
encountered in a periodically driven system, where energy is
permanently exchanged between the driven system and the
environment. Instead, the relaxation process finally leads to
an asymptotic state that adopts the periodicity of the driving,
and that in general depends on the microscopic details of the
coupling. The density operator of the time-periodic sub-
system is best represented in the Floquet state basis. The
Floquet states are quasiperiodic solutions of the Schrödinger
equation for the time-periodic Hamiltonian without the cou-
pling to the environment. In the Floquet basis the evolution
equation for the density matrix can be approximated within
the Floquet-Markov approach �8–12� by a Markovian quan-
tum master equation. In the long-time limit of the evolution
the Floquet states are populated with asymptotic occupation
probabilities that can be determined from a system of rate
equations. Beyond the numerical evaluation of such a master
equation, an intuitive understanding of these Floquet occu-
pations is still lacking.

A related problem occurs at avoided crossings, which are
ubiquitous in the quasienergy spectra of generic Floquet sys-
tems since the quasienergies are bounded within a finite in-
terval, 0�����, where �=2	 /
 is the driving frequency
and 
 is the driving period. As a consequence, the number of
avoided crossings grows without limit for increasing Hilbert-
space dimension, leading to a breakdown of the adiabatic
theorem �13�. In the presence of a heat bath this problem is
approached in Ref. �12� where it is shown that the reduced
density operator � is not affected by a small avoided cross-
ing, provided that it is smaller than a specific effective cou-
pling parameter and so is not “resolved” by the heat bath.
These findings justify the unevitable truncation of the, in
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general, infinite Hilbert-space dimension in numerical imple-
mentations.

One way to tackle the general challenge of finding the
Floquet occupations beyond their numerical evaluation is to
study the semiclassical regime of one-dimensional driven
systems. In their classical limit regular and chaotic motions
generically coexist. This is most clearly reflected in phase
space, where regular trajectories evolve on invariant tori and
chaotic trajectories fill the remaining phase-space regions.
According to the semiclassical eigenfunction hypothesis �14�
almost all Floquet states can be classified as either regular or
chaotic, provided that the phase-space regions are larger than
the Planck constant. The regular states localize on the regular
tori and the chaotic states typically spread out over the cha-
otic region. For a driven particle in a box coupled to a heat
bath the Floquet occupations of regular and chaotic states
were found to follow different statistical distributions �10�.
The regular states, which in this example differ only slightly
from the eigenstates of the undriven system, carry almost
Boltzmann weights, whereas all chaotic states have nearly
the same occupation probability.

In this paper we concentrate on situations characteristic
for strong driving, where both phase space and Floquet states
are strongly perturbed compared to the originally time-
independent system. We demonstrate that the Floquet occu-
pations of the states in a regular island under these condi-
tions deviate considerably from the Boltzmann result. For
kicked systems, making use of some reasonable assumptions,
we derive an analytical expression for the regular occupa-
tions. In many cases it can be well approximated by weights

of the Boltzmann type e−�effEm
reg

. This requires the introduc-
tion of the regular energies Em

reg, which are semiclassical in-
variants of the quantizing tori of the regular island, and the
parameter 1 /�eff, which is an effective temperature depend-
ing on the winding number of the regular island. Further-
more, we give an overview and interpretation for the occu-
pations of other typical Floquet states in a mixed phase
space, such as states on a resonance island chain, beach
states, and hierarchical states.

Avoided crossings in the Floquet spectrum can lead to
severe changes in the occupations if they are larger than an
effective coupling parameter. The effect can be intuitively
explained by a set of effective rate equations with an addi-
tional rate Rac between the states of the avoided crossing
�12�. It can be exploited for a switching mechanism in driven
quantum systems, e.g., a weakly driven bistable system �15�.
For the above occupation distributions for regular and cha-
otic states we demonstrate drastic consequences if a regular
state has an avoided crossing with either a regular or a cha-
otic state. We introduce a simplified rate model whose ana-
lytical solution describes the Floquet occupations accurately.

The paper is organized as follows. In Sec. II the micro-
scopic model of driven dissipative systems and the Floquet-
Markov description of its asymptotic state are sketched and
the relevant coupling operators are introduced. Section III
presents general occupation characteristics for the example
of a driven quartic oscillator �Sec. III A� and a kicked rotor
�Sec. III B�. They are related to the corresponding rate ma-
trices �Sec. III C�. In Sec. IV we derive an analytical expres-

sion for the regular occupations of kicked systems, depend-
ing on the winding numbers of the regular tori. For a
constant winding number a simplification to the Boltzmann-

like weights e−�effEm
reg

is shown �Sec. IV C�. An example
where this is not possible is also discussed �Sec. IV D�. Sec-
tion V gives an overview of the occupation characteristics of
other types of Floquet states. In Sec. VI the influence of
avoided crossings on the Floquet occupations is demon-
strated, which are compared to the analytical solutions of a
simplified rate model. Section VII summarizes the paper.

II. MASTER EQUATION IN TIME-PERIODIC
SYSTEMS

The coupling of a quantum system with the Hamiltonian
Hs�t� to a heat bath is modeled in a standard way by the
composite Hamiltonian �16�

H�t� = Hs�t� + Hb + Hsb. �1�

Herein, the bath Hamiltonian Hb=�n�pn
2 /2mn+ �mn�n

2 /2�xn
2�

describes an ensemble of noninteracting harmonic oscillators
coupled via the interaction Hamiltonian Hsb to the system. In
spatially extended systems this interaction is commonly as-
sumed to be bilinear,

Hsb = A�
n

cnxn, �2�

with some coupling operator A of the system. The properties
of the system-bath coupling are specified by the spectral den-
sity of the bath J���ª 	

2 �n�cn
2 /mn�n�����−�n�−���+�n��.

In the continuum limit the spectral density is assumed to be
a smooth function which is linear for an Ohmic bath. An
exponential cutoff beyond the spectral mode �c leads to
J���=��e−���/�c, where � is proportional to the classical
damping coefficient.

In the absence of the heat bath the solutions of the time-
dependent Schrödinger equation for the isolated system with
the 
-periodic Hamiltonian,

Hs�t + 
� = Hs�t� , �3�

are the Floquet states �
i�t��. These can be factorized into a
product

�
i�t�� = e−i�it/��ui�t�� �4�

of a phase factor with the quasienergy �i and a periodic state
vector �ui�t��,

�ui�t + 
�� = �ui�t�� , �5�

with the period 
 of the Hamiltonian.
In the presence of the heat bath the state of the system is

described by the reduced density operator ��t�. Its equation
of motion for time-periodic quantum systems has been de-
rived within the Floquet-Markov approach �8–12�: herein the
Floquet formalism ensures a nonperturbative treatment of the
coherent dynamics of the driven system. The density opera-
tor is represented in the set of the time-periodic state vectors
�ui�t��, which form a complete orthonormal basis at all times
t. The coupling to the heat bath is treated perturbatively in
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second order of Hsb, which is valid in the limit of weak
coupling between the driven system and the bath. This ap-
proximation requires a rapid decay of bath correlations com-
pared to the typical relaxation time of the system. In this
paper we use a cutoff frequency �c=100�, which is large
compared to the frequency �=2	 /
 of the driving. In the
following we restrict the discussion to the limit of large
times, much larger than the relaxation time. In this limit the
density-matrix elements �ij = �ui�t����t��uj�t�� are approxi-
mated as time independent �9,12�. Note that the correspond-
ing density operator, �i,j�ui�t���ij�uj�t��, is still time periodic
because of the inherent time dependence of the �ui�t��. In this
paper we restrict to the weak-coupling regime, where the
system-bath coupling is small compared to all quasienergy
spacings of a truncated Hilbert space �see discussion below�.
The Floquet occupations pi	�ii then obey the set of rate
equations

0 = − pi�
j

Rij + �
j

pjRji, �6�

which are independent of the damping coefficient �. Note
that the rate equations beyond this weak-coupling regime
would also contain the nondiagonal elements �ij �i� j�. The
rates

Rij ª
	

�
�
K

�Aij�K��2g�� j − �i − K��� �7�

that describe bath-induced transitions between the Floquet
states use the Fourier coefficients

Aij�K� =
1






0




dte−i�KtAij�t� �8�

of the time-periodic matrix elements

Aij�t� = �ui�t��A�uj�t�� . �9�

The correlation function g�E�=	−1n��E�J�E /�� of the bath
coupling operator contains the spectral density J��� and the
thermal occupation number n��E� of the boson bath with
temperature 1 /�.

The reduction to the set of rate equations �6� seems pos-
sible only for systems with a finite dimension of the Hilbert
space since otherwise the quasienergies densely fill the inter-
val �0,���. However, as demonstrated in Ref. �12�, near
degeneracies much smaller than the coupling strength are not
resolved by the interaction to the heat bath and do not influ-
ence the asymptotic density operator. The Hilbert dimension
can therefore be truncated, keeping only those Floquet states
of non-negligible occupation.

Equation �6� is formally identical to the familiar system of
rate equations describing the equilibrium state in time-
independent systems. In contrast, however, specifics of the
time-periodic system are present in the rates �Eq. �7��, whose
structure does in general not allow a detailed balance relation
�11�.

Coupling operator for extended and for cyclic systems

For extended systems we assume as usual �16� the linear
coupling operator

A = x �10�

in Eq. �2� for the interaction Hamiltonian Hsb with the heat
bath. For cyclic systems defined on the unit interval �0,1�
with periodic boundary conditions in x the coupling operator
x would be discontinuous at the borders of the interval and
the coupling to the heat bath would therefore not be homo-
geneous. An adapted coupling scheme with the interaction
Hamiltonian,

Hsb = 

0

2	

d�
�2

2	
sin�2	x + ���

n

cnxn��� − �n� , �11�

has been proposed in Ref. �17� for such situations. The
angles �n characterize the individual bath oscillators and are
equidistributed in the interval �0,2	�. The new spectral den-
sity

J��,�� =
	

2 �
n

cn
2

mn�n
��� − �n����� − �n� − ��� + �n��

�12�

hence factorizes into independent factors, J�� ,��
=J��� / �2	�, with the spectral density J��� as defined above
and the homogeneous angular density 1 / �2	�. The spatially
periodic interaction Hamiltonian �11� is continuous and, by
virtue of the equidistributed angles �n, models the interaction
with a homogeneous environment, where no position is
singled out. Making use of the trigonometric addition theo-
rem sin�2	x+��=sin�2	x�cos���+cos�2	x�sin���, the in-
teraction Hamiltonian �11� leads to the same system of rate
equations �Eq. �6��. But now the rates

Rij = Rij
�1� + Rij

�2� �13�

are composed of two independent contributions from the
simpler coupling operators,

A�1� = sin�2	x�/�2	� , �14�

A�2� = cos�2	x�/�2	� , �15�

respectively, to be used in the interaction Hamiltonian Hsb
in Eq. �2�. For this result we use that the mixed second-
order term �0

2	d��0
2	d��cos���sin�������−�n�����−�n�

=�0
2	d� cos���sin���=0 vanishes, while the other two terms

give rise to the operators in Eqs. �14� and �15�.

III. OCCUPATIONS OF REGULAR AND CHAOTIC
FLOQUET STATES

In this section we study the Floquet occupations for two
classes of periodically driven systems: the additively driven
quartic oscillator as a representative of a continuously driven
system and the quantum kicked rotor from the class of
kicked systems. In both cases we demonstrate that the Flo-
quet occupations of regular and chaotic Floquet states follow
tremendously different distributions. Similar observations
have been made for a driven quantum particle in a box �10�.
While there it was found that regular states carry Boltzmann
weights, we find typically significant deviations. Numerical
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results will be presented in this section and the quantitative
analysis of the occupations of the regular states will be de-
ferred to Sec. IV.

A. Driven quartic oscillator

We consider as an example of a continuously driven sys-
tem the additively driven quartic oscillator with the Hamil-
tonian

Hs�t� =
p2

2m
+ V0
 x4

x0
4 + �

x

x0
cos��t�� . �16�

We introduce the dimensionless quantities x̃=x /x0, H̃
=H /V0, p̃= p / p0 with p0=�mV0, t̃= tp0 / �x0m�, �̃

=��x0m� / p0, and also �̃=� / �x0p0�, the ratio of the Planck
constant to a typical phase-space area. In the following we
omit the overtilde and then the dimensionless Hamiltonian
reads

Hs�t� =
p2

2
+ x4 + �x cos��t� . �17�

At �=0.2 and �=5 /6 the stroboscopic Poincaré section of
the phase space �x , p� at integer multiples t=n
 of the driving

period, 
=2	 /�, features a chaotic domain �see Fig. 1�a��.
Furthermore, there are two distinct regular regions: first the
highly excited tori, which are only slightly influenced by the
driving, and second a regular island embedded in the chaotic
sea.

The Floquet states are determined using the �t , t�� tech-
nique �18�. Their energy expectation value,
�
i�t��Hs�t��
i�t��= �ui�t��Hs�t��ui�t��, oscillates with the pe-
riod of the driving. It is convenient to introduce the cycle-
averaged energy

�Ei� ª
1






t

t+


dt��ui�t���Hs�t���ui�t��� − E0. �18�

An energy shift E0 is determined by the classical periodic
orbit at the center of the regular island, such that there the
cycle-averaged energy is zero.

For a sufficiently small value of h almost all Floquet
states can be classified as either regular or chaotic according
to the semiclassical eigenfunction hypothesis �14�. The regu-
lar states are localized on the regular island and can be or-
dered by a quantum number m, whereas the chaotic states
typically spread over the entire chaotic phase-space area and
fluctuate irregularly. The different types of states are visual-
ized in phase space by means of their Husimi representation
H
�x , p�ª ����x , p���
��, i.e., the projection onto the coherent
states ���x , p�� centered at the phase-space points �x , p� �see
insets in Fig. 1�b��. In the example of Fig. 1 the small central
island is about 26 times larger than the dimensionless Planck
constant h, indicated in the lower right corner of Fig. 1�a�.
Thus, the central island supports 26 regular states. Besides,
there are 97 chaotic states, spreading over the chaotic region.
It is surrounded by regular tori, on which a further group of
infinitely many regular states are localized. The average en-
ergies �Ei� of these three different types of Floquet states
form distinct intervals with only small overlaps, as indicated
by the arrows in Fig. 1�b�. The regular states of the central
island are lowest in cycle-averaged energy, followed by the
chaotic states and finally the high excited regular states of
the surrounding tori.

The oscillator coupled to a heat bath is treated as ex-
plained in Sec. II with the linear coupling operator A=x for
this spatially extended system. We restrict the consideration
to the weak-coupling regime, where the occupations are well
described by the rate equation �6�. In Fig. 1�b� the resulting
Floquet occupations pi are shown as functions of the cycle-
averaged energies �Ei�. The monotonously falling occupa-
tions at low values of �Ei� belong to the central regular is-
land, with the state in the center of the island having the
highest occupation. At intermediate values of �Ei� one finds
the occupations of the chaotic states that fluctuate around a
mean value p̄ch, with a very small variance compared to the
range of occupations of the regular states. This is similar to
the observation for chaotic states in Ref. �10� for a driven
particle in a box. At high values of �Ei�, there are again
monotonously falling occupations belonging to the regular
states of the surrounding tori.

The observed characteristics of the occupations pi are
clearly in contrast to the naive expectation pi�e−��Ei� moti-

(a)

h-1.0

1.0

-1.0 1.0x

p

(b)

β

pi

〈Ei〉

ch regreg10−4

10−3

10−2

10−1

0.00 0.05 0.10 0.15

FIG. 1. �Color online� �a� Stroboscopic Poincaré section of the
classical phase space of the driven oscillator �Eq. �17��. The size of
the chosen dimensionless Planck constant h is indicated in the
lower right corner. �b� Floquet occupations pi vs cycle-averaged
energies �Ei� compared to the Boltzmann-like prediction
exp�−��Ei�� �dashed line�. The insets show Husimi representations
of a regular Floquet state localized in the central island, a chaotic
Floquet state, and a regular state on a surrounding torus. The pa-
rameters are �=0.2, �=5 /6, �=0.002, and �=100.
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vated by the Boltzmann weights of equilibrium thermody-
namics. Note that even the occupations of the �low-energy�
regular states notably differ from the Boltzmann result, indi-
cated by the dashed line in Fig. 1�b�. A quantitative analysis
of these observations will be presented in Sec. IV for the
numerically more convenient kicked rotor.

B. Kicked rotor

Kicked quantum systems feature all essential phase-space
characteristics of periodically driven systems. They allow for
a simplified numerical and conceptual treatment. As a para-
digmatic model for a driven system with a mixed phase
space we consider here the quantum kicked rotor. Its dynam-
ics is generated by the Hamiltonian

Hs�t� = T�p� + V�x�
�
n

��t − n
� , �19�

with the kinetic energy T�p�= p2 / �2m� and the potential
V�x�=V0 cos�2	x /x0� acting at the kicks. We study it on a
two-torus with dimensions x0 and p0=mx0 /
. We make the
Hamiltonian dimensionless by a similar transformation as in

Sec. III A, where now H̃=Hm / p0
2 and the dimensionless kick

period is 
=1. With the rescaled kick strength �
=V0�2	�2m / p0

2 the Hamiltonian reads

Hs�t� =
p2

2
+

�

�2	�2cos�2	x��
n

��t − n� . �20�

In an intermediate regime of the kick strength the Poincaré
section of the phase space features a regular island embedded
in the chaotic sea �see Fig. 2�a� for �=2.9�.

The Floquet states are evaluated as eigenstates of the time
evolution operator U over one period 
, which factorizes into
a potential and a kinetic part U=e−i
V�x�/�e−i
T�p�/�. The quan-
tization on the two-torus relates the effective Planck constant
h to the dimension N of the Hilbert space by the condition
h=2	�=1 /N. For h=1 /210 the area of the regular island
supports 23 regular states.

The asymptotic state of the kicked rotor weakly coupled
to a heat bath is again determined from Eq. �6�, with the
composite rates Rij =Rij

�1�+Rij
�2� from Eq. �13�, appropriate for

a cyclic system. The resulting Floquet occupations pi are
shown in Fig. 2�b� as functions of the cycle-averaged ener-
gies �Ei�, with E0=−� / �2	�2. The regular and chaotic states
again are ordered with respect to this quantity, as indicated
by the arrows in Fig. 2�b�. The regular states have small
values of �E� since both kinetic and potential energies are
minimal in the center of the regular island, whereas the cha-
otic states have a stronger overlap with regions of phase
space with higher energies. Similarly as for the driven oscil-
lator, the regular occupations depend monotonously on �E�,
while the occupations of the chaotic states seem uncorrelated
with the cycle-averaged energy �E� and form a plateau with
only weak fluctuations around a mean value p̄ch.

C. Rate matrix

The Floquet rate matrix Rij determines the Floquet occu-
pations via Eq. �6�. In Fig. 3 we show Rij for both the driven

oscillator in Fig. 1 �Fig. 3�a�� and the kicked rotor in Fig. 2
�Fig. 3�b��. Employing �Ei� as the ordering parameter for the
entries i , j, the regular and chaotic parts are well separated,
revealing a distinct block structure of the matrix �10�. There
are only few rates between the regular and the chaotic sub-
spaces. Similarly, the rates between the two different regular
subspaces in the case of the driven oscillator in Fig. 3�a� are
practically zero. Also by virtue of the chosen ordering, the

(a)

h-0.5

0.5

0.0 1.0x

p

(b)

(c)

β

pi

〈Ei〉

chreg

0.005

0.01

0.02

0.05

0.00 0.04 0.08 0.12

β

βeff

Ereg
m

pm

0.005

0.01

0.02

0.05

0.0000 0.0125 0.0250

FIG. 2. �Color online� �a� Stroboscopic Poincaré section of the
classical phase space of the kicked rotor �Eq. �20�� for �=2.9. The
size of the chosen dimensionless Planck constant h is indicated in
the lower right corner. �b� Floquet occupations pi vs average ener-
gies �Ei� compared to the Boltzmann-like prediction exp�−��Ei��
�dashed line�. The insets show Husimi representations of two regu-
lar and a chaotic Floquet state. �c� Floquet occupations pm of regu-
lar states vs regular energies Em

reg, defined in Eq. �21�, compared to
the Boltzmann-like prediction Eq. �40� with the inverse effective
temperature �eff=0.85� of Eq. �39� �red solid line�, compared to the
inverse bath temperature � �dashed line�. The parameters are h
=1 /210 and �=100.
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regular domains feature a band structure with particular
dominance of the first off diagonals �nearest-neighbor rates�.
The rates in the subspace of the chaotic states on the contrary
fluctuate strongly.

One can thus observe a close relation between the struc-
ture of the rate matrix Rij and the resulting set of occupa-
tions. First, the almost independent behavior of the occupa-
tions of regular states and chaotic states owes to the
relatively weak rates Rij connecting the corresponding sub-
spaces. Furthermore, the random character of the chaotic rate
submatrix gives rise to the equally random character of the
set of chaotic Floquet occupations. Note that for the kicked
rotor we find in the semiclassical limit h→0 that the mean
value p̄ch decreases since more and more regular states

emerge. Also the relative variance �pi− p̄ch�2¯ / pch
2 of the cha-

otic occupations pi decreases in this limit and we observe a
universal scaling in the semiclassical limit which can be ana-
lyzed with the help of a random-rate model �19�. These as-
pects of the chaotic occupations are not explored in this pa-
per; instead the focus is set on the regular occupations.

IV. REGULAR STATES

The observations in Figs. 1 and 2 indicate that the
asymptotic state of a time-periodic system in weak interac-
tion with a heat bath carries signatures of the classical phase-
space structure. The Floquet occupations of the regular and
the chaotic states behave very differently, e.g., as functions
of the cycle-averaged energy �E�. In this section we focus on
the asymptotic occupations of the regular states, which we
label by their quantum number m starting with m=0 for the
state in the center of the island. Figures 1�b� and 2�b� suggest
a roughly exponential dependence for the regular occupa-

tions pm as functions of the average energies �Em�. However,
the regular occupations are different from the Boltzmann
weights e−��Em� with the true inverse bath temperature �. In
fact, there is no physical reason for a coincidence with the
Boltzmann distribution when expressed in terms of the,
qualitatively suitable but arbitrary, energy measure �Em� �11�.
In the following sections we therefore make use of an alter-
native energy measure for the regular states, the regular en-
ergy Em

reg �Sec. IV A�, allowing us to consistently parametrize
the regular occupations as functions of Em

reg �Sec. IV B�. Of-
ten, this functional dependence is approximately exponential
�Sec. IV C�. Examples are presented in Sec. IV D.

A. Regular energy Em
reg

A time-periodic system is equivalent to an autonomous
system with the time as an additional coordinate, leading to
the Hamiltonian Hs��x , p ; t , pt�=Hs�x , p ; t�+ pt in the extended
phase space, which has periodic boundary conditions in t.
This allows the application of Einstein-Brillouin-Keller
�EBK�-quantization rules for the regular tori and the deter-
mination of semiclassical Floquet states on the quantizing
tori and their associated semiclassical quasienergies �20,21�.

We introduce the regular energies

Em
reg

ª ���m
m +
1

2
� − �L�m + �L�c. �21�

Herein, �m is the winding number, i.e., the ratio of the wind-
ing frequency of a trajectory on the mth torus around the
central orbit to the driving frequency �. Furthermore, �L�m is
the long-time average of the Lagrangian L= pẋ−Hs for an
arbitrary trajectory on the mth torus. For convenience we add
the time-averaged Lagrange function �L�c of the central orbit
of the island. The regular energies of Eq. �21� are related to
the semiclassical quasienergies �20,21� by

�m = Em
reg − �L�c mod �� , �22�

whereas there is no relation to the cycle-averaged energies
�Em�. The time-averaged Lagrangian �L� varies only slowly
inside the island. The winding number � likewise varies
slowly across the island. To determine � we have applied the
frequency map analysis �22� being based on a Fourier de-

FIG. 3. Density representation of the rate matrix Rij, with entries
i� j sorted by increasing �Ei� for �a� the driven oscillator �Eq. �17��
and �b� the kicked rotor �Eq. �20�� with enlarged domain of regular
island states, revealing strong nearest-neighbor rates. For param-
eters see Figs. 1 and 2, respectively.
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Ereg
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p0e−βfit(em−e0)

(a)

〈Em〉

Ereg
m

0 10 20m

(b)

FIG. 4. �Color online� Ratio between the occupations pm and an
exponential fit p0e−�fit�em−e0� for �a� the kicked rotor and �b� the
continuously driven oscillator using the regular energies em=Em

reg

�red circles� and the average energies em= �Em� �black diamonds�.
For parameters see Figs. 2 and 1, respectively.
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composition of the quasiperiodic orbits within a stable regu-
lar island. Note that due to nonlinear resonances and small
chaotic layers within a regular island the semiclassical quan-
tization might require interpolations of the quantities �m and
�L�m or the introduction of a fictitious integrable system
�21,23�.

Figure 2�c� shows the occupations pm of the regular states
of the kicked rotor as functions of regular energies Em

reg. The
functional dependence of the occupations pm is close to ex-
ponential, but also different from the Boltzmann weights

e−�Em
reg

with the true bath temperature 1 /�. However, the as-
sumption of an exponential dependence of pm vs Em

reg is ful-
filled far better than vs �Em�. This is demonstrated in Fig. 4,
where the ratio between the occupations pm and the respec-
tive exponential fit p0e−�fit�em−e0� is shown for em being the
regular energy Em

reg �red circles� and the cycle-averaged en-
ergy �Em� �black diamonds�. The fit involves the parameter
�fitª �log p1−log p0� / �e0−e1�. For the kicked rotor �Fig.
4�a��, the considered ratio for em=Em

reg is close to 1 for the
majority of regular states, whereas the ratio for em= �Em�
systematically deviates from 1 already for smaller values of
m. This indicates that the exponential scaling is far better
fulfilled by using the regular energies Em

reg.
Likewise, Fig. 4�b� shows the same ratio for the regular

states of the central island in the driven oscillator �Eq. �17��.
The regular energies are again determined according to the
above semiclassical quantization, where the frequency map
analysis is applied to the solutions of the classical equations
of motion, evaluated in the Poincaré section. Here, the qual-
ity of the fit with respect to Em

reg is only marginally better as
the fit with respect to �Em� �see Fig. 4�b��. We have evidence
that the existence of next-nearest-neighbor rates is respon-
sible for this. Note that for other examples of continuously
driven systems we typically find a better quality of the fit
with respect to Em

reg, similar to the situation in Fig. 4�a�.

B. Restriction to nearest-neighbor rates Rm,m±1

In this section, the ratio of the rates Rm,m+1 and Rm+1,m
between two neighboring regular states m and m+1 is ana-
lyzed for kicked systems. With the help of a detailed balance
condition the occupations pm can be related to the winding
numbers of the regular tori.

In the lower part of Fig. 3�b� the rate matrix Rij =Rij
�1�

+Rij
�2� �Eq. �13�� for the regular subspace of the kicked rotor

is shown. We remind the reader that the indices are ordered
by increasing �E�, coinciding with the natural order of grow-
ing quantum number m. Figure 3�b� illustrates that the
nearest-neighbor rates Rm,m�1 are dominant among the regu-
lar states. These nearest-neighbor rates are mainly contrib-
uted by the rates Rij

�1� originating from the coupling operator
A�1�=sin�2	x� / �2	�, whereas the rates Rm,m�2 between next-
nearest-neighboring states are mainly due to the contribution
Rij

�2� of the coupling operator A�2�=cos�2	x� / �2	�. In the fol-
lowing analytical considerations we will neglect the contri-
bution of Rij

�2� and in addition approximate the coupling op-
erator A�1�=sin�2	x� / �2	� inside the regular island at x
=0.5 by the linear coupling operator A=−x. Using the result-
ing rate matrix in Eq. �6�, we observe almost the same regu-

lar occupations as in Fig. 2�b�, which in first approximation
differ from the latter only by a tiny m-independent factor.
Only the occupations of the chaotic states are strongly af-
fected by the different coupling scheme, as for them the dis-
continuity of the coupling operator x at the border of the unit
cell is not negligible.

In the rate matrix due to the linear coupling operator, A
=−x, the nearest neighbors dominate strongly, and the next-
nearest-neighbor rates Rm,m�2 of regular states m and m�2
are zero for symmetry reasons. We will neglect higher-order
rates in the following analysis. Thus, the total rate balance
among the regular states can be reduced to the detailed bal-
ance condition

pm+1

pm
=

Rm,m+1

Rm+1,m
�23�

between two neighboring regular states m and m+1.
Assuming Eq. �23� and using the definition of the rates in

Eq. �7� the occupation ratio between neighboring regular
states becomes

pm+1

pm
=

�
K

�Am,m+1�K��2g��m+1 − �m − K���

�
K

�Am+1,m�K��2g��m − �m+1 − K���
�24�

=

�
K

�xm�K��2g��m + K���

�
K

�xm�K��2g��m + K���e���m+K���
, �25�

where the properties Am,m+1�K�=Am+1,m
� �−K� and g�E�

=g�−E�e−�E have been used, and where we introduced the
shorthand notations

xm ª Am+1,m �26�

for the �regular� nearest-neighbor matrix elements of the op-
erator A=−x and

�m ª �m+1 − �m �27�

in the arguments of the correlation function g�E�.
If there were just a single Fourier component xm�K��,

which is approximately the case for a weakly driven system,
then the occupation ratio would simplify to pm+1 / pm

=e−���m+K����, resulting in Boltzmann-like occupations. In
general, however, several components K have to be consid-
ered.

Multiplying numerator and denominator of the fraction in
Eq. �25� with �xm�0��−2g��m�−1,

pm+1

pm
=

�
K

�xm�K��2

�xm�0��2
g��m + K���

g��m�

�
K

�xm�K��2

�xm�0��2
g��m + K���

g��m�
e���m+K���

, �28�

we introduce ratios of the matrix elements and of the corre-
lation functions. The ratio of the correlation functions reads,
using their definition in Sec. II,
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g��m + K���
g��m�

= 
1 +
K��

�m
� e��m − 1

e���m+K��� − 1

�exp
 ��m� − ��m + K���
��c

� . �29�

The last factor in Eq. �29� is close to 1 and will be omitted in
the following, such that the �c dependence is neglected. This
is possible since we are interested here in the case �c��
and we use the fact that only small integers K contribute
significantly to the sums in Eq. �28�.

For the required ratio of the matrix elements we approxi-
mate the evolution of the coupling matrix elements xm�t� for
0� t�
 by

xm�t� � xm�t = 0�e−i�mt/��1 +
t



�ei�m
/� − 1�� , �30�

using the factorization of the time evolution operator for
kicked systems and the approximate commutation relations
with the operator x on the two-torus, �x ,e−iV�x�
/���0 and
�x ,e−iT�p�t/��� tT��p�e−iT�p�t/�. These commutation relations,
which are exact in the infinite Hilbert space, apply here in
very good approximation to the regular states, as these are
almost independent of the periodic boundary conditions on
the two-torus. The coupling matrix elements xm�t� are time-
periodic and have the Fourier components

xm�K� =
xm�t = 0�

2	2 
 �m

��
+ K�−2�1 − cos
2	

�m

��
�� ,

�31�

whose ratio simplifies to

�xm�K��2

�xm�0��2
= 
1 +

K��

�m
�−4

. �32�

Finally, inserting Eqs. �29� and �32� into the occupation
ratio of Eq. �28� yields

pm+1

pm
= F
 �m

��
,���� , �33�

with the function

F�z,b� ª
�
K

�K + z�−3�e�K+z�b − 1�−1

�
K

�K − z�−3�e�K−z�b − 1�−1
. �34�

It is invariant under an integer shift of the first argument,
F�z+K0 ,b�=F�z ,b�, with K0�Z �24�. We choose the shift
K0, such that

�m+1 − �m + K0�� = Em+1
reg − Em

reg �35�

is fulfilled, which is possible according to Eq. �22�. This
allows us to replace �m in Eq. �33� with the regular energy
spacing Em+1,m

reg
ªEm+1

reg −Em
reg, leading to

pm+1

pm
= F
Em+1,m

reg

��
,���� . �36�

Based on Eq. �21� we approximate this energy difference by
the winding number

Em+1,m
reg � ���m, �37�

which is exact for a harmonic oscillatorlike island with
m-independent winding number �m and �L�m and is a reason-
able approximation even for more generic islands. The occu-
pation ratio then becomes a function of the winding number,

pm+1

pm
= F��m,���� . �38�

With that an analytical prediction for the occupation of the
regular states of a kicked system is found, valid under the
assumption of dominant nearest-neighbor rates Rm,m�1. It is a
function of the winding number of the mth quantizing torus
and of the parameters temperature and driving frequency.

C. Assumption of constant winding number �

The function F in Eq. �38� becomes independent of m if
the winding number � is constant throughout the regular is-
land. It is then appropriate to introduce an effective tempera-
ture 1 /�eff by

�eff ª −
log F��,����

���
. �39�

With this new parameter the occupation ratios are expressed
in a form analogous to the Boltzmann weights,

pm+1/pm = e−�effEm+1,m
reg

. �40�

The ratio �eff /� is shown in Fig. 5. Its value is smaller
than 1 and it is symmetric in �. For �→0, where the kicked
system approaches its static limit, the true bath temperature
1 /� is retained. A substantial deviation from the true bath
temperature, �eff /��1, takes place around ��0.5.

For generic islands with nonconstant winding number,
where the regular energy spacings Em+1,m

reg ����m are m de-
pendent, the exponential scaling �Eq. �40�� is still approxi-
mately valid if �eff varies only moderately. Figure 5 indicates

βeff/β

ν
0.0

0.5

1.0

0.00 0.25 0.50

β�ω = 0.1

β�ω = 5

β�ω = 10

FIG. 5. Inverse effective temperature �eff /� according to Eq.
�39� vs winding number � for �c /��1 and three different
temperatures.
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that this is fulfilled especially good for values ��0.2. But
even beyond this interval we observe a good agreement of
Eq. �40� with the regular occupations. This breaks down for
islands with winding numbers varying close to �=0.5, where
�eff is particularly sensitive to variations of �. As �eff devel-
ops a pronounced m dependence there, the approximation
�40� is no longer adequate and the general equation �38� has
to be used instead, as demonstrated in Fig. 6 below.

D. Examples

Figure 2�c� shows the regular Floquet occupations of the
kicked rotor �Eq. �20�� vs the regular energies Em

reg and dem-

onstrates excellent agreement with the above predicted expo-
nential weights e−�effEm

reg
�red solid line� for almost all regular

states. The regular energies Em
reg are here slightly m depen-

dent, as the winding number decreases in the island monoto-
nously from �0=0.32 for the first �m=0� regular state to
�22=0.28 �m=22� for the outermost regular state. Deviations
from the exponential distribution occur for the outermost
regular states, m�20, only. These have a stronger weight
outside the regular island and are thus coupled stronger to
the chaotic states. The non-negligible rates between these
regular states and the chaotic states �see Fig. 3� enforce a
gradual adaptation between the outermost regular occupa-
tions and the occupation level of the chaotic states. Besides,
Fig. 2�c� shows the large discrepancy of the Boltzmann

weights e−�Em
reg

with the true bath temperature 1 /�.
The exponential distribution �Eq. �40�� requires a constant

or moderately varying winding number inside the island. If
however � varies close to �=0.5, where �eff is particularly
sensitive to variations of � �see Fig. 5�, the exponential dis-
tribution is no longer adequate. For the kicked rotor this is
the case for �→4, where the central periodic orbit bifurcates
and the regular island hence splits into two islands. As an
example, Fig. 6 shows the occupations for the kicked rotor
for �=3.9, with �0=0.44 and �19=0.38. The regular occupa-
tions in Fig. 6�c� are well described by the general prediction
�Eq. �38� �red line��, but clearly deviate from the exponential
approximation �Eq. �40��.

The derivation of the analytical occupation ratios �38� and
�40� is based on assumptions which are justified for kicked
systems only. For continuously driven systems an analogous
prediction remains a future challenge. Figure 1�b� demon-
strates that a significant and systematic deviation of the oc-
cupations from the Boltzmann result is observed also for
continuously driven systems.

For another continuously driven system, the driven par-
ticle in a box, the regular occupations are almost identical to
the Boltzmann weights e−��Em� with the true temperature 1 /�
�10�. However, in this particular example the regular region
is almost identical to the undriven system, leading to Boltz-
mann weights for the regular states by the following reason-
ing: the regular states of the driven box potential, which
emerge from the highly excited eigenstates of the undriven
box, still strongly resemble the latter and change only
slightly during the driving period 
=2	 /�. By that, one
dominant Fourier contribution K� in the coupling matrix el-
ements is singled out, xm�K��0 for K�K�. In this situation
the occupation ratio �25� simplifies to pm+1 / pm=e−���m+K����

and the detailed balance among the regular states �Eq. �23��
is fulfilled accurately. Since at the same time their cycle-
averaged energies are close to the eigenenergies in the un-
driven potential, the occupations are close to the Boltzmann
weights. Tiny deviations for the lowest regular states close to
the chaotic region are visible in Fig. 1 of Ref. �10�, which we
attribute to rates occurring between the regular and the cha-
otic Floquet states.

As substantiated in this section, systematic and much
stronger deviations from the Boltzmann behavior can occur
in generic situations, especially in situations characteristic
for strong driving, where the phase-space structure and the
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FIG. 6. �Color online� �a�–�c� Analogous to Fig. 2 for the kicked
rotor with �=3.9. The insets in �b� show Husimi representations of
two regular states. In �c� the occupations of the innermost 20 regu-
lar states, which are not yet affected by phase-space structures at the
border of the island, are well described by the analytical prediction
�red solid line� of Eq. �38�. The parameters are h=1 /400 and �
=500.
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Floquet states are strongly perturbed compared to the origi-
nal time-independent system. The strong driving allows us to
study the Floquet occupations far from the thermodynamic
equilibrium situation, encountered in the time-independent
system, and at the same time to have dominant regular struc-
tures present in the classical phase space. These host a suf-
ficiently semiclassical regime presumed, a series of regular
states, which under the condition of pronounced nearest-
neighbor rates and only small rates to the subspace of the
chaotic states are occupied with weights given by Eq. �38�.
For constant or slowly varying winding number � the occu-
pations even simplify to the exponential weights �Eq. �40��,
with the effective temperature of Eq. �39�.

A generic modification of the analytical predictions of this
section takes place as a consequence of avoided crossings.
We will go back to this point in Sec. VI.

V. IMPLICATIONS OF ADDITIONAL CLASSICAL
PHASE-SPACE STRUCTURES

The set of Floquet states in the examples of the last sec-
tion are dominated by regular states in large regular islands
and chaotic states. Apart from these, other types of Floquet
states can exist, depending on the structures in the classical
phase space and the size of the effective Planck constant h.
The following section gives an overview of the fingerprints
of such additional types of Floquet states on the distribution
of the Floquet occupations pi.

A. Nonlinear resonance chains

Apart from the islands centered at stable elliptic fixed
points of period 1, there are nonlinear r :s resonances con-
sisting of r regular islands around stable periodic orbits of
period r �see Fig. 7�a��. A trajectory on such a resonance
chain passes from an island to the sth next island and returns
after r periods to the island where it initially started. Consid-
ering the r-fold iterated map instead of the map itself, the
trajectory always remains on one and the same island.

The semiclassical quantization is done with respect to this
r-fold map of period r
 �25�. To each principal quantum
number m there exist r regular Floquet states �
ml� of differ-
ent quantum numbers l=0, . . . ,r−1 with equidistant quasien-
ergy spacing �� /r. We refer to these states as regular reso-
nance states. Each of them has equal weights in each of the
dynamically connected resonance islands, but with different
phases.

Similarly as in Eq. �21� we derive from the semiclassical
quasienergies the corresponding regular energies

Eml
reg = ��

�m
�r�

r

m +

1

2
� − �L�m + �L�c, �41�

which are independent of the quantum number l. The wind-
ing number �m

�r� refers to the r-fold iterated map.
Figure 7�b� shows the Floquet occupations pi vs the cycle-

averaged energy �Ei� for the kicked rotor with �=2.35,
where the phase space features in addition to the main regu-
lar island a 4:1 resonance around the periodic orbit of period
4 �see Fig. 7�a��. The entire resonance chain hosts 4.15 regu-
lar resonance states for h=1 /1000. The Floquet occupations
of both the regular states of the central island and the chaotic
states resemble those of Fig. 2�b�. In addition, one finds a
branch belonging to the regular resonance states. Interest-
ingly, it has a positive slope stemming from the fact that the
average energies �Eml� of the regular resonance states �
ml�
decrease with increasing quantum number m, in contrast to
the regular states of the central island. This is due to the
asymmetry of the resonance tori around their respective is-
land center in phase space. This is another clear evidence
that the cycle-averaged energy does not serve as a suitable
measure to quantify the regular occupations by exponential
weights in analogy to the Boltzmann distribution.
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FIG. 7. �Color online� �a� and �b� Analogous to Fig. 2 for the
kicked rotor with �=2.35 in presence of a 4:1-resonance chain. The
insets in �b� show Husimi representations of a regular state from the
main island, a regular resonance state, and a chaotic state. �c� Flo-
quet occupations pml of the regular resonance states vs regular en-
ergies Eml

reg, the Boltzmann-like prediction Eq. �40� with �eff

�0.98� �red solid line� compared to the inverse bath temperature �
�dashed line�. The parameters are h=1 /1000 and �=500.
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The r regular resonance states �
ml� of fixed quantum
number m have almost the same cycle-averaged energy
�Eml�. As long as the coupling to the heat bath does not
disturb the equivalence of the resonance islands, the occupa-
tions pml of the r regular resonance states of fixed principal
quantum number m are independent of the quantum number
l. In Fig. 7�b� the corresponding four branches of the occu-
pations pml therefore lie almost on top of each other and
cannot be distinguished on the scale of the figure. Small
deviations from this degeneracy exist only for the outermost
regular resonance states. These can be attributed to the oc-
currence of avoided crossings, which break the degeneracy
of �ml mod��� /r� for l=0, . . . ,r−1 and fixed m, as well as
the degeneracy of �Eml� and pml.

Now we want to explain that the occupations pml of the
regular resonance states are likewise distributed as pml

�e−�effEml
reg

, according to the exponential weights �40� with
the effective temperature 1 /�eff of Eq. �39�. We note that Eq.
�29� for the ratio of the correlation functions and Eq. �32� for
the ratio of the coupling matrix elements apply without re-
striction also to the regular resonance states. The assumed
detailed balance relation �Eq. �23��, however, is no longer
adapted to the structure of the rate matrix since here, in ad-
dition to the nearest-neighbor rates R�ml��m�1,l�, also “inter-
nal” rates exist, i.e., rates in the subspace of the r equivalent
regular resonance states l=0, . . . ,r−1 with fixed quantum
number m. Nonetheless, the total rate balance approximately
decouples for each principal quantum number m into the r
balance relations for l=0, . . . ,r−1,

pm+1,l

pml
�

R�ml��m+1,l�

R�m+1,l��ml�
. �42�

They have the same structure as Eq. �23� and turn out to be
approximately l independent, leading to approximately
l-independent occupations pml. In Eq. �42� the tiny rates
R�ml��m�l�� with m�m� and l� l� are neglected and one can
show that the contribution �l��R�ml��ml��−R�ml���ml�� vanishes
as a consequence of the equidistant quasienergy spacing for
the r regular resonance states of the same m �19�.

The decoupling into the r equivalent balance relations
�42� finally allows us to approximate the occupations pml by

the exponential weights e−�effEml
reg

of Eq. �40� with the effec-
tive temperature 1 /�eff of Eq. �39�. Figure 7�c� shows the
occupations pml of the regular resonance states vs the regular
energies Eml

reg. Even on the magnified scale of this subfigure,
compared to Fig. 7�b�, the tiny differences of the occupations
pml with different quantum numbers l are not visible. The
effective temperature 1 /�eff is nearly indistinguishable from
the actual temperature 1 /�, because the winding number
�m=0

�r� /r=0.79 /4�0.2 of the resonance islands is small and
yields a value of �eff /� very close to 1 �compare Fig. 5�.
Note that it differs, although weakly, from �eff�0.93 of the
main island. The parameter �eff is the same for each of the
four independent occupation branches pml.

The phase space of a generic time-periodic system con-
tains a hierarchy of nonlinear resonance chains and islands of
all scales. If h is sufficiently small, one has Floquet states on
these islands and we expect that the entire set of Floquet

occupations becomes increasingly structured by the branches
originating from each nonlinear resonance.

B. Beach states

The transition between regular phase-space regions and
the chaotic sea is usually not sharp, but shaped by a multi-
tude of small island chains and cantori, the fractal remains of
broken Kolmogorov-Arnol’d-Moser tori. These additional
phase-space structures can strongly inhibit the classical flux
of trajectories toward and away from the regular island and,
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FIG. 8. �Color online� �a� and �b� Analogous to Fig. 2 for the
kicked rotor with �=4.415 in the presence of a 2:1 resonance sur-
rounded by a series of strong partial barriers. The insets in �b� show
Husimi representations of a regular resonance state �m=3� and a
beach state. �c� Floquet occupations pml of the regular resonance
states vs regular energies Eml

reg, the Boltzmann-like prediction Eq.
�40� with �eff�0.76� �red solid line� compared to the inverse bath
temperature � �dashed line�. The parameters are h=1 /600 and
�=500.
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depending on the size of h, can give rise to the formation of
quantum beach states, a term introduced in Ref. �26�. These
reside on the transition layer around the regular islands and
have little overlap with the remaining chaotic sea. Typically,
beach states have very similar appearance and properties like
the regular states of the adjacent island. Due to the proximity
they partly even allow a quantization similar to the EBK-
quantization rules �26,27�.

At �=4 the central island of the kicked rotor bifurcates
into a resonance around a stable periodic orbit of period 2. It
is accompanied by a series of partial barriers with a reduced
classical flux toward and away from the islands. This is in-
dicated for �=4.415 in the stroboscopic Poincaré section of
Fig. 8�a� by the relatively high density of the chaotic orbit in

the vicinity of the island. Figure 8�b� shows the Floquet oc-
cupations pi vs the cycle-averaged energy �Ei�. The highest
occupations belong to the regular states of the resonance.
The occupations of the beach states form a separate nearly
monotonous set in the transition region between the occupa-
tions of the regular resonance states and the chaotic states.
This is a consequence of the structure in the coupling matrix
Rij, where typically the nearest-neighbor rates dominate,
similarly as for the regular states.

Furthermore, the regular occupations pml of the regular
resonance states are shown vs Eml

reg in Fig. 8�c�. In this ex-
ample the winding number �m=0

�r� /r=0.71 /2�0.35 in the
resonance islands yields a stronger deviation between � and
�eff, with �eff /��0.76, than in the example presented in
Fig. 7.

(a)

ΩΩ

h-0.5

0.5

0.0 1.0x

p

(b)

(c)

pi

〈Ei〉

res
chhierreg
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10−4

10−3

10−2

10−1

0.00 0.05 0.10

〈Ei〉

pi

2.84×10−5

2.86×10−5

0.04 0.06 0.08 0.10

FIG. 9. �Color online� �a� and �b� Analogous to Fig. 2 for the
kicked rotor with �=2.5 in the presence of a 4:1 resonance sur-
rounded by a partial barrier. The inset in �b� is the Husimi repre-
sentation of a hierarchical state. The branch with positive slope
belongs to the regular resonance states like in Fig. 7�b�. �c� Magni-
fication of �b� with emphasized data points of the hierarchical states
�large green crosses�, which are determined by the overlap criterion
from the shaded phase-space area � in �a�. The parameters are h
=1 /1000 and �=500.
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FIG. 10. �Color online� Influence of an avoided crossing be-
tween the regular states m1=5 and m2=15 on Floquet occupations.
�a� Floquet occupations pi vs cycle-averaged energies �Ei� for �
=�1=2.85 �black circles� and �=�2=2.857 175 �red dots� close to
the center of the avoided crossing. The insets show the Husimi
representations of states m1, m2 at �1 and of a corresponding hy-
bridized state at �2 �“ac”�. �b� Occupations p̄m of regular states vs
regular energies Em

reg at �=�2 �red dots� and comparison to the
analytical solution �47� of the rate model �solid gray line� and the
model with Rm,m+1=R0,1 from �12� �dashed gray line�. The arrow
indicates the effective rate Rac between states m1 and m2 according
to Eq. �44�. Note that p̄m1

and p̄m2
are measured in the diabatic

basis, in contrast to pi in �a�. The parameters are h=1 /210 and �
=100.
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C. Hierarchical states

As mentioned above, in the vicinity of regular islands
typically many partial barriers with a limited classical flux
toward and away from the island can be found, e.g., in the
form of cantori or based on stable and unstable manifolds
�28�. Depending on the ratio of h to the classical flux, partial
barriers can prevent Floquet states from spreading over the
entire chaotic domain, apart from tunneling tails. If the
phase-space area enclosed by the island and the partial bar-
rier exceeds h, these states locally resemble chaotic states.
For decreasing values of h they resolve and occupy the hier-
archy of the classical phase space better and better and are
therefore called hierarchical states �29�. The existence of
these states does not contradict the semiclassical eigenfunc-
tion hypothesis �14�, as their fraction vanishes with O�h�� in
the semiclassical limit. We apply an overlap criterion to de-
termine whether a Floquet state is hierarchical or not: it is
identified as a hierarchical state if it is not a regular state but
comparably strongly localized, such that its Husimi weight
���dxdpH
�x , p� within a large chaotic phase-space area �
away from the regular island falls below 70%, compared to a
state that is uniformly spread over the entire phase space.

Figure 9�a� shows the Poincaré section and Fig. 9�b�
shows the Floquet occupations for the kicked rotor with �
=2.5, where the fraction of hierarchical states is compara-
tively high �29�. In Fig. 9�c�, the occupations of the hierar-
chical states are emphasized. The figure indicates that their
occupations are distributed analogously to the chaotic states
which explore the entire chaotic phase-space region. Again,
the fluctuation pattern of the occupations pi has its origin in
the randomly fluctuating rates Rij in the subspace of the hi-
erarchical states, as is the case for the chaotic states.

To conclude this section, the occupation characteristics of
the beach states and the hierarchical states again confirm the
influence of the classical phase-space structure not only on
the spectrum and on the Floquet states, but eventually also
on the Floquet occupations and hence on the asymptotic state
of the system.

Note that in the above examples �Figs. 8 and 9� either of
the two types is predominant, but still representatives of the
other are present. In general, hierarchical and beach states
coexist. For example, a few of the states of intermediate
cycle-averaged energy �E� that are indicated in Fig. 9 as
hierarchical by the above overlap criterion had rather to be
classified as beach states or as states with scarring behavior,
i.e., localized on hyperbolic fixed points or on a family of
parabolic fixed points.

VI. AVOIDED CROSSINGS

Since the spectrum of Floquet systems is restricted to a
finite interval 0�����, a multitude of avoided level cross-
ings typically emerges under the variation of a parameter and
gives rise to the hybridization of the involved Floquet states.
In the case of an infinite dimensional Hilbert space the
quasienergy spectrum is dense and there is no longer an adia-
batic limit, i.e., any tiny parameter variation will hybridize
infinitely many Floquet states in a complex way �13�. How-
ever, as shown in Ref. �12�, the asymptotic density operator

� is not affected by a small avoided crossing, provided that it
is smaller than a specific effective coupling strength to the
heat bath. Thus, the interaction with the heat bath resolves
the difficulties of the dense quasienergy spectrum. In this
section we focus on the opposite limit, where a single iso-
lated avoided crossing strongly influences the entire set of
Floquet occupations.

Figure 10 presents a typical example of the kicked rotor.
In Fig. 10�a� the Floquet occupations pi are shown vs �Ei� for
two values of the kick strength near �=2.9, very close to the
parameter realization in Fig. 2. The difference of these �
values is sufficiently small, such that the classical phase
space and almost all regular states vary only marginally. For
two of the regular Floquet states, which we will denote as
states a and b, and which are initially identical to the semi-
classical modes with the quantum numbers m1=5 and m2
=15, this is however not the case. Under the variation of �
they undergo an avoided crossing at ��2.857, where they
hybridize.

The tiny � variation strongly affects the Floquet occupa-
tions, and most prominently all the regular occupations.

(a)

(b)
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0.0000 0.0125 0.0250

FIG. 11. �Color online� Influence of an avoided crossing be-
tween the regular state m1=10 and a chaotic state on the Floquet
occupations, analogous to Fig. 10 for �=�1=2.856 400 �black
circles� and �=�2=2.856 897 �red dots� close to the center of the
avoided crossing. Note in �b� that we have simulated the avoided
crossing of m1 with a chaotic state in the rate model �Eq. �47�� by
an avoided crossing between m1 and m=22, the last regular state.
The parameters are h=1 /210 and �=100.
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Away from the avoided crossing ��1=2.856 35�, the regular
occupations monotonously decrease with �Ei�, similar as in
Fig. 2�b�. When approaching the center of the avoided cross-
ing ��2=2.857 175� the monotonous behavior is locally dis-
turbed: the states a and b, as a consequence of their hybrid-
ization, have shifted mean energies �Ea� and �Eb� as well as
modified occupations pa� pb. In Fig. 10�a� the data points of
the states a and b at �2 �marked as “ac”� are therefore found
indistinguishable on top of each other. Beyond that, also the
occupations pm of all regular states with quantum numbers m
from the interval �m1 ,m2� change severely. They are close to
the value of occupation pa� pb of the hybridized states. In
contrast, their mean energies �Em� do not change notably
under the tiny � variation, like those of the semiclassical
modes m1 and m2. The relative occupations pm / pm+1 among
the regular states with quantum numbers outside the range
�m1 ,m2� are also not affected. Only the absolute values of
their occupations pm are shifted due to the normalization
�ipi=1. The latter is also the origin of a shift of the chaotic
occupation plateau p̄ch.

This example demonstrates that the presence of avoided
crossings can change the entire character of the occupation
distribution. To explain this impact the authors of Ref. �12�
introduced an effective rate equation,

0 = − p̄i�
j

R̄ij + �
j

p̄jR̄ji, �43�

which refers to a representation in the local diabatic basis of
the avoided crossing, denoted by an overbar. In the diabatic
basis the states a and b are replaced with states that remain
invariant at the avoided crossing, i.e., the semiclassical
modes m1 and m2 in the case of an avoided crossing of two

regular states. In Eq. �43� the typically negligible rates R̄m1m2
,

R̄m2m1
are replaced with a new effective rate �12�,

Rac
ª

�

���/��2 + 4d2 , �44�

which acts between the states m1 and m2. The gap size �,
i.e., the minimal quasienergy splitting ��a−�b� of states a and
b and the dimensionless distance from its center d= ��̄m1
− �̄m2

� /� are characteristic properties of the avoided cross-

ing. Unlike the rates R̄ij, which are nearly constant in the
vicinity of the avoided crossing, the additional rate Rac

changes dramatically. The composite rate �=� j�R̄m1j + R̄m2j�
− �2	 /���KĀm1m1

�K�Ām2m2
�K�g�−K��� plays the role of an

effective coupling strength and the characteristic parameter
�� /� determines whether Rac can become dominant at the
center of the avoided crossing d=0. In the examples of Figs.
10 and 11 the condition �� /��1 is fulfilled and the rate Rac

consequently dominates around d�0 with respect to other
rates in Eq. �43�. Note that this requires the system-bath cou-
pling strength to be sufficiently small, a limit which has been
already presumed in Eq. �6�. The dominance of Rac is respon-
sible for the local disruption of the formerly exponential be-
havior of the regular occupations: as Rac exceeds all other
rates, it induces occupation equality of the states m1 and m2.
The relative occupations of the regular states below m1 and

above m2 still follow the approximate detailed balance �Eq.
�23��, with rates acting predominantly between nearest
neighbors. Finally, the other regular states, m1�m�m2, al-
though also still having dominant nearest-neighbor rates, no
longer have exponentially scaling occupations since the ad-
ditional rate Rac between m1 and m2 breaks the detailed bal-
ance. These conditions explain the observed signature of the
avoided crossing in the occupation characteristics and are
substantiated by a simplified rate model introduced in the
following section.

A second example, with an avoided crossing between the
regular state m1=10 and a chaotic state, is presented in Fig.
11�a�. Here, the occupation of the state m1 is forced down to
the chaotic occupation level in the vicinity of the avoided
crossing �red dots�. Moreover, the entire subset of occupa-
tions pm with m�m1 is disturbed from the original exponen-
tial scaling �black circles�. With a similar reasoning as above,
this behavior is explained by the additional rate Rac and a
simplified rate model �see below�.

These consequences of avoided crossings also explain
why the transition between the occupations of regular and
chaotic states appears so “smoothly”; see, e.g., Figs. 1 and 2.
As the outer regular states or the beach states most likely
undergo avoided crossings with chaotic states, the occupa-
tion probabilities normally feature a transition to the plateau
p̄ch of the chaotic occupations.

We emphasize that the observed implication of an avoided
level crossing is a remarkable effect bound to the nonequi-
librium character of the driven system, with possible appli-
cations, e.g., bath-induced switching in a driven double-well
potential �15�. In a time-independent system, on the contrary,
an avoided crossing entails only a local shift in the occupa-
tions of the two involved states and leaves the Boltzmann
distribution of the entire set of occupations unchanged.

Simplified rate model

To account for the local modifications of the occupations
pm, which are entailed by an avoided crossing, we apply a
simplified analytically solvable model for the set of rate
equations �43�. It is based on the nearest-neighbor rate model
in Ref. �12�. It is restricted to the chain of regular states and,
at first in the absence of an avoided crossing, assumes that
each of them is coupled only to its directly neighboring
states. Under this circumstance the detailed balance is ful-
filled. The primary parameter of the model is the rate ratio of
the first two states, gªR0,1 /R1,0. We approximate the rate
ratio Rm,m+1 /Rm+1,m as independent of m, i.e.,
Rm,m+1 /Rm+1,m	g for all m. According to Eqs. �38� and �23�
the approximation is especially suited for regular islands
with a constant winding number �.

The rates themselves however differ from state to state. In
contrast to Ref. �12�, where Rm,m+1 /R0,1 is presumed as con-
stant, we make use of the approximation

Rm,m+1

R0,1
= m + 1. �45�

This relation holds exactly for the states of a harmonic os-
cillator with a linear coupling to the heat bath. The coupling
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matrix elements fulfill Am,m+1=�m+1A0,1, a property that is
easily shown with the help of the associated algebra of ladder
operators. Analogously one can prove relation �45� for the
regular states of a time-periodic system if the regular tori are
elliptic, coinciding with those of a harmonic oscillator, and
assume m-independent winding numbers. Beyond the appli-
cation to elliptic islands of constant winding number we pre-
sume Eq. �45� for arbitrary islands, which seems to be in
general a good approximation.

To account for an avoided crossing between the states m1
and m2 the model introduces the additional rates Rm1m2
=Rm2m1

=Rac from Eq. �44�. By the action of Rac the flux
Fm,m−1ªpmRm,m−1− pm−1Rm−1,m becomes nonzero for all m1
�m�m2. The rate equation �43� translates to the flux equa-
tions

0 = F1,0,

0 = Fm+1,m − Fm,m−1, m � 0,m1,m2,

�pm1
− pm2

�Rac = Fm1+1,m1
− Fm1,m1−1,

− �pm1
− pm2

�Rac = Fm2+1,m2
− Fm2,m2−1, �46�

with the solution Fm,m−1=Fª �pm1
− pm2

�Rac for m1�m
�m2 and Fm,m−1=0, otherwise. Eventually, the occupations
assume the values

pm = �
p0gm, m � m1

pm1��1 − gm2−m1�
rm

1 + rm2

+ gm−m1� , m1 � m � m2

pm2
gm−m2, m2 � m ,

�
�47�

with rmªRac�k=1
m−m1�gm−m1−k /Rm1+k,m1+k−1�. For Rac�R1,0

the parameter rm2
diverges and pm2

/ pm1
= �1−gm2−m1�

�rm2
/ �1+rm2

��+gm2−m1 approaches 1. Note that the model so-
lution �47� relies on the nearest-neighbor coupling and on the
m independence of Rm,m+1 /Rm+1,m. The ratio Rm,m+1 /R0,1 of
Eq. �45� leads to rm= �Rac /R1,0��k=1

m−m1�gm−m1−k / �m1+k��.
In Figs. 10�b� and 11�b� we apply the simplified rate

model to regular states for a kick strength close to the center
of the avoided crossing and compare its solution �Eq. �47�� to
the occupations p̄m from the solution of the rate equations
�6�. The regular energies Ereg are not well defined for the
hybridizing states of the avoided crossing, but are well
defined for the respective diabatic states m1 and m2. That is
why the occupations in these subfigures are represented
in the diabatic basis by means of the orthogonal trans-
formation p̄m1

=�2pa+�2pb and p̄m2
=�2pa+�2pb with �2

= �1+d /�1+d2� /2 and �2+�2=1. The comparison indicates
that the rate model based on assumption �45� reproduces the
local disturbance of the exponential scaling for the states
m1�m�m2 very accurately. In contrast, the simpler as-
sumption �12� of m-independent rates, Rm,m+1 /R0,1=1, does
not reproduce the m dependence of the occupations between
m1 and m2 �dashed line�.

For the example in Fig. 11�b� the rate model seems at first
sight not applicable since it does not account for chaotic
states. We therefore apply the model as if the avoided cross-
ing were between the regular state m1=10 and the outermost
regular state m=22, and still obtain a good agreement be-
tween the observed pm and the model solutions. This is pos-
sible, as the occupation of the regular state m=22 differs
only weakly from the plateau of chaotic occupations.

VII. SUMMARY

A core question of statistical mechanics is the character-
ization of the asymptotic state approached by a quantum sys-
tem when it interacts with a thermal reservoir. In the familiar
equilibrium thermodynamics of time-independent systems in
the weak-coupling limit it is answered by the canonical dis-
tribution, where the eigenstates of the isolated quantum sys-
tem are occupied with the statistical weights pi�e−�Ei. In a
time-periodic quantum system, where an external field per-
manently pumps energy into the system and prevents its re-
laxation to equilibrium, this is in general an intricate ques-
tion, which cannot be answered by deduction from the time-
independent case. Here, the asymptotic state under a weak
coupling to the thermal reservoir becomes time periodic and
is best characterized by the time-independent occupations pi
of the Floquet states. We demonstrate that the Floquet occu-
pations can be classified according to the semiclassical char-
acter of the Floquet states. The occupations of the chaotic
Floquet states fluctuate weakly around a mean value p̄ch �10�.
The regular Floquet states on the contrary acquire probabili-
ties that are roughly exponentially distributed. The validity
of this observation is also confirmed by the occupation char-
acteristics of other types of Floquet states, which still reflects
their regular or chaotic nature: beach states, which are very
similar to the regular states and situated close, but outside the
regular island they form a correlated set of occupations,
which is qualitatively comparable to the regular occupations.
In contrast, the occupations of hierarchical states, which have
the properties of chaotic states but live in a restricted region
of the chaotic phase space, are distributed analogously to the
chaotic states.

In contrast to previous studies of a driven particle in a box
�10�, where the regular states carry occupations close to the
Boltzmann weights, we observe that in general the regular
occupations can considerably deviate from the Boltzmann
result. This observation is possible as we focus on time-
periodic systems where the classical phase space and the
Floquet states are strongly perturbed compared to the origi-
nally time-independent system. In kicked systems the occu-
pations of the regular states can be well approximated by a
function F��m ,���� depending on the classical winding
numbers �m of the regular tori, and the parameters tempera-
ture 1 /� and driving frequency �. For a constant or suffi-
ciently moderately varying winding number within the regu-
lar island the distribution of the regular occupations can even
be described by weights of the Boltzmann type, pm

�e−�effEm
reg

, depending on the regular energies Em
reg. The ef-

fective temperature 1 /�eff is evaluated as a function of the
winding number in the regular island. As the driven system is
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not in an equilibrium state, the proper definition of a non-
equilibrium temperature is a subtle problem �30�. The critical
question for future investigations is whether the quantity �eff
is accessible by a measurement.

A situation where purely classical information is no
longer sufficient to account for the observed occupations is
present at avoided crossings, which are ubiquitous in the
quasienergy spectra of Floquet systems. Avoided crossings
involving a regular state give rise to strong changes in the set
of Floquet occupations. We give an intuitive explanation of
this effect, based on the additional rate Rac from Ref. �12�,
and introduce a simplified rate model whose analytical solu-
tions describe the numerical data accurately.

In conclusion, with the presented characterizations of the
Floquet occupations we demonstrate that ubiquitous signa-

tures of the classical dynamics are reflected in the asymptotic
density matrix of the open quantum system. In this way it is
feasible to draw an intuitive picture of the asymptotic state,
shedding light on the statistical mechanics of time-periodic
quantum systems.
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