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We study via Monte Carlo simulation the dynamics of the Nagel-Schreckenberg model on a finite system of
length L with open boundary conditions and parallel updates. We find numerically that in both the high and low
density regimes the autocorrelation function of the system density behaves like 1− �t� /� with a finite support
�−� ,��. This is in contrast to the usual exponential decay typical of equilibrium systems. Furthermore, our
results suggest that in fact �=L /c, and in the special case of maximum velocity vmax=1 �corresponding to the
totally asymmetric simple exclusion process� we can identify the exact dependence of c on the input, output
and hopping rates. We also emphasize that the parameter � corresponds to the integrated autocorrelation time,
which plays a fundamental role in quantifying the statistical errors in Monte Carlo simulations of these models.
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I. INTRODUCTION

The totally asymmetric simple exclusion process
�TASEP� �1� is a simple transport model, of fundamental
importance in nonequilibrium statistical mechanics. In addi-
tion to its mathematical richness, it has applications ranging
from molecular biology to freeway traffic.

A TASEP consists of a chain of length L, with each site
being either occupied by a particle or not, on which particles
hop from left to right. See Fig. 1. If site i=1 is vacant a
particle will enter the system with probability �. If site i
=L is occupied the particle will leave the system with prob-
ability �. In the bulk of the system, a particle on site i will
hop to site i+1 with probably 1− p provided i+1 is vacant,
otherwise it remains at site i.

TASEPs exhibit boundary-induced phase transitions, gov-
erned by the parameters �, �, and p. In general, for a given
p, there exist three possible phases, depending on � and �: a
low-density phase, a high-density phase, and a maximum-
current �or maximum-flow� phase.

In the context of traffic models, it is most appropriate to
update all sites in parallel at each time step. The stationary
distribution of the TASEP with fully parallel updates �2,3� is
known exactly. �For reviews of the stationary properties of
TASEPs with random sequential updates see �4,5�.� The
Nagel-Schreckenberg �NaSch� model �6� is an important
generalization of the parallel-update TASEP, in which par-
ticles can move up to vmax�N sites per time step. The
NaSch model is generally considered to be the minimal

model for traffic on freeways �7�. While many results are
known rigorously for the TASEP, our understanding of the
NaSch model and its further generalizations typically rely on
numerical simulation. This is particularly true of traffic net-
work models, in which the NaSch model is often a compo-
nent �see for example �8–10��.

In the current article we focus on dynamic �auto�correla-
tion functions. The autocorrelations of the TASEP with ran-
dom sequential update have been studied in �11,12� and dis-
play a separation of time scales between relaxation of local
density fluctuations and collective domain wall motion. In
particular, it was recently observed �12� that the TASEP with
random sequential update exhibits nontrivial oscillations in
the power spectrum of the system density, in the low and
high density phases. In this article, we further elucidate the
nature of these nontrivial oscillations, and demonstrate that
they extend to the NaSch model generally. We emphasize
that all the simulations performed in this work used fully
parallel updates, including our simulations of TASEP �which
we view as the special case of the NaSch model with vmax
=1�.

Density autocorrelations

The system density, n, which is simply the fraction of
sites which are occupied, is an important quantity in many
applications, including traffic modeling. The relationship be-
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FIG. 1. A TASEP with L=10.
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tween density and flow is known as the fundamental diagram
in the traffic engineering literature. While the stationary-state
expectation �n� of n is well understood for the NaSch model,
and in fact known rigorously for the TASEP, the dynamic
behavior of nt is nontrivial. In this paper we numerically
study the autocorrelation function �n�t�ª ��n0nt�
− �n�2� /var�n� of the general NaSch model, and find a very
simple form for its finite-size scaling. Up to very small cor-
rections, our simulations show that in both the high and low
density phases we simply have

�n�t� = �1 − �t�/� , �t� � � ,

0, �t� � � ,
	 �1�

for some constant ��L.
The linear decay in Eq. �1� is in sharp contrast to the usual

exponential decay typical of equilibrium systems. In fact, as
discussed in section 2.2, there are good theoretical reasons to
believe that �n�t� must ultimately decay exponentially on
sufficiently long time scales, rather than exhibit the strictly
finite support suggested by Eq. �1�. However, as demon-
strated by the simulations in Secs. III and IV, any corrections
to the finite-support behavior displayed in Eq. �1� are ex-
tremely weak, and in practice Eq. �1� provides a very accu-
rate approximation to the behavior of �n�t� throughout the
low and high density phases. In particular, Eq. �1� provides a
very good approximation to �n�t� for values of p relevant for
traffic modeling.

The Fourier series of �n�t� gives the power spectrum of n,
and we note that taking the Fourier series of Eq. �1� does
indeed produce oscillations as reported in �12�. Indeed, we
have



t=−	

	

�n�t�ei
t =
1

�

1 − cos �


1 − cos 

. �2�

The discussion in �12� focused on the case vmax=1, with
random sequential updates. However, our simulations show
that Eq. �1�, and hence Eq. �2�, hold more generally for the
NaSch model with arbitrary vmax.

The specific form �Eq. �1�� of the autocorrelation function
has some interesting consequences for the design of Monte
Carlo simulations. In particular, as discussed in Sec. II, as-
suming the validity of Eq. �1� we immediately have �
=2�int,n where �int,n is the integrated autocorrelation time of
n. The integrated autocorrelation time can be interpreted
loosely as the number of time steps between “effectively
independent” samples. It is therefore reasonable to conjec-
ture that the parameter � should equal the amount of time it
takes a fluctuation of the stationary state to traverse the sys-
tem. If we let v denote the speed of such a fluctuation then
we might reasonably expect that �=L /v. In Sec. III we
present numerical results that strongly suggest that in fact,
for TASEP, we have

� = L/�vc��,�,p�� �3�

where vc�� ,� , p�, the collective velocity �2,13�, is known
exactly. The results �1� and �3� are consistent with the sug-
gestions in �12� that the physical origins of the observed
oscillations in the power spectrum of n are related to the time

needed for a fluctuation to traverse the entire system.
Furthermore, while no exact expression for

vc�� ,� , p ,vmax� is known for the general NaSch model, the
simulations presented in Sec. IV demonstrate that the scaling
form �Eq. �3�� extends to general vmax. In addition, in the
deterministic limit �p=0� simple physical arguments produce
an exact relationship between vc and vmax which is in excel-
lent agreement with the numerical results.

The remainder of this article is organized as follows. In
Sec. II, we briefly review some pertinent general theory re-
lating to autocorrelations and then discuss some general con-
sequences of Eq. �1�. In Sec. III, we present our numerical
evidence supporting Eqs. �1� and �3� for TASEP, and also
describe the exact expression for vc�� ,� , p� in this case. We
also explain relationship between Eqs. �1� and �3� and the
results presented in �12�. In Sec. IV, we briefly review the
definition of the NaSch model before presenting our numeri-
cal results for �n�t� in this case. Finally, we conclude in Sec.
V with a discussion.

II. AUTOCORRELATIONS

We begin by briefly recalling some standard definitions
and results. Consider a Monte Carlo simulation of an ergodic
Markov chain, and assume that sufficient time has passed
that the system has reached stationarity. If one now measures
an observable X at each time step one obtains a stationary
time series X1 ,X2 , . . . whose autocovariance function is de-
fined to be

CX�t� ª �X0Xt� − �X0�2. �4�

The expectation � · � here is with respect to the stationary
distribution, and we note that CX�0�=var�X�. The corre-
sponding autocorrelation function is then defined as

�X�t� ª
CX�t�
CX�0�

. �5�

Finally, assuming CX�t� to be absolutely summable, its Fou-
rier transform defines the spectral density

fX�
� ª 

t=−	

	

CX�t�ei
t. �6�

The spectral density is closely related to the Fourier trans-
form of the time series. Specifically, given any stationary
time series X1 ,X2 , . . . ,XT we can define its discrete Fourier
transform to be

X̂�
� ª
1
�T



t=1

T

Xte
i
t �7�

with 
=2�m /T and m=0,1 , . . . ,T−1. It is then straightfor-
ward to show �14� that for large T we have

��X̂�
��2� = fX�
� + O� 1

T

 . �8�

A. Autocorrelation times

We now discuss the implications of the general form �Eq.
�1�� on two key time scales, the integrated autocorrelation
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time and the exponential autocorrelation time.

1. Integrated autocorrelation time

From �X�t� the integrated autocorrelation time is defined
�15� as

�int,X ª
1

2 

t=−	

	

�X�t� . �9�

If X̄ denotes the sample mean of X1 ,X2 , . . . ,XT then the vari-

ance of X̄ satisfies �15�

var�X̄� � 2�int,X
var�X�

T
, T → 	 . �10�

It is Eq. �10� that accounts for the key role played by the
integrated autocorrelation time in the statistical analysis of
Markov-chain Monte Carlo time series. If instead of a corre-
lated time series, one considers a sequence of independent
random variables, then the variance of the sample mean is
simply var�X� /T. It is in this sense that �int,X determines how
many time steps we need to wait between two “effectively
independent” samples.

It can now be seen immediately from Eq. �9� that, as
noted in the introduction, Eqs. �1� and �3� imply

2�int,n = 

t=−���

��� �1 −
�t�
�

 �11�

=� + O��−1� �12�

=
L

�vc�
+ O�L−1� . �13�

Equation �13� provides a very simple exact expression for
�int,n in terms of the physical parameters of the model. It is
quite rare to have such an expression for a non-trivial model.

2. Exponential autocorrelation time

Typically, we expect that �X�t��exp�−t /�exp� as t→	,
which defines the exponential autocorrelation time �exp.
More precisely �15�, one defines the exponential autocorre-
lation time of observable X to be

�exp,X ª lim sup
�t�→	

− �t�
log �X�t�

, �14�

and then the exponential autocorrelation time of the system
as

�exp ª sup
X

�exp,X, �15�

where the supremum is taken over all observables X. The
autocorrelation time �exp measures the decay rate of the
slowest mode of the system, and it therefore sets the scale for
the number of initial time steps to discard from a simulation,
in order to avoid bias from initial nonstationarity. All observ-
ables that are not orthogonal to this slowest mode satisfy
�exp,X=�exp.

For the TASEP in continuous time, �exp was computed
analytically in �16,17� using the exact Bethe Ansatz solution.
In particular, it was found that �exp is O�1� with respect to L
in the high and low density phases. We would expect the
same behavior to hold generally for the NaSch model.

However, if �n�t� were to have strictly finite support as
claimed in Eq. �1�, then we would have −�t� / log �n�t�=0 for
all �t���, implying that �exp,n��exp. This would then mean
that n is orthogonal to the slowest relaxation mode, which
seems implausible. We thus conclude that although Eq. �1�
provides a very good approximation, �n�t� cannot actually
have a strictly finite support.

B. Finite-size scaling of �n(t) finite-size scaling of density
autocorrelation function

To obtain a more precise ansatz for �n�t� we therefore fix
some k�N satisfying k� ��� and set

�n�t� = �1 − �t�/� , �t� � k ,

Be−�t�/�exp, �t� � k + 1.
	 �16�

Since we know empirically that Eq. �1� is a very good ap-
proximation, it must be the case that k /��1 as �→	. Let us
then write �=k+
, where the only assumption we make re-
garding 
 is that 
 /�→0 as �→	. Since the continuum limit
of ��x�� should define a continuous function of x�R we
choose the parameter B by demanding that 1− �t� /�
=Be−�t��exp when �t�=k, which yields

�n�t� = �1 − �t�/� , �t� � k ,


e−��t�−k�/�exp/� , �t� � k .
	 �17�

It is worth noting that the two expressions �1� and �17�
lead to the same leading-order expression �13� for �int,n. In-
deed, inserting Eq. �17� into Eq. �9� we obtain

2�int,n = � + �
�1 − 
� +
2


e1/�exp − 1

1

�
. �18�

Since �e1/�exp−1�−1=O�1� for �exp=O�1�, the terms arising
from the exponential decay of �n�t� are O�
� in the low and
high density phases.

III. TASEP

We begin this section by comparing the power spectrum
found in �12� with the Fourier transform of Eq. �1�. We then
present the exact result for the collective velocity for TASEP,
before presenting the results of our simulations.

A. Power spectrum

Let N denote the number of occupied sites in a TASEP

system, and let N̂�
� denote the discrete Fourier transform of
a particular time series N1 ,N2 , . . . ,NT, as defined in Eq. �7�.
The quantity I�
�ªT��N̂�
��2� is what �12� refer to as the
power spectrum of N. They find that for the continuous-time
TASEP in the low-density phase
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I�
�
T

�
2v

2

A

D
�1 − e−D
2L/v3

cos�L


v

� , �19�

where A, D, and v are parameters, which �12� set empirically
to v�0.4, D�20 and A�1 /500.

We now attempt to compare Eq. �19� with the correspond-
ing result derived from Eq. �1�. From Eq. �8� we see that

fN�
����N̂�
��2� as T→	, hence we should compare Eq.
�19� with fN�
�=L2fn�
�, where fn�
� is computed via Eq.
�1�. Although our empirical observations of the behavior �Eq.
�1�� were made in the discrete time case of fully parallel
updates, Eq. �1� can be interpreted as a well defined continu-
ous function on R. In fact, the fully parallel update rule be-
comes equivalent to the random sequential update in the

limit 
→0 of rescaled variables 1− p=
, �= �̃
 and �= �̃
.

Here, �̃ and �̃ are the usual injection and extraction rates of
the TASEP in continuous time.

To compare with the continuous time result �19�, we com-
pute fn�
� via the continuous-time Fourier transform, so that
Eqs. �1� and �3� predict

fN�
� =
2�vc�

2 var�n�L�1 − cos� L


�vc�

� . �20�

Now, since 
=2�m /T, for sufficiently large T we have
exp�D
2L /v3��1. This is exactly the regime used by �12� in
their Fig. 3 �L=1000 or L=32000 and T=106�. Therefore, in
this regime we can identify Eq. �19� with Eq. �20� if v
= �vc� and

A

D
= var�n�L . �21�

Some remarks are in order. First, for the deterministic
�p=0� parallel-update TASEP, the static variance var�n� can
be computed analytically from the known results for the two-
point function �3�. In the low density phase it is given by

var�n� =
��1 − ��
�1 + ��3

1

L
+ O�L−2� , �22�

and for the high density region � is replaced by �. We expect
that var�n�=O�1 /L� would remain true when p�0, and in-
deed for vmax�1 as well. In general, therefore, we expect the
prefactor in �20� to be O�1� in L.

Finally, we note that �12� fit Eq. �19� to their data with a
very small value of A /D. This small value follows from the
fact that the numerical simulations in �12� were performed
along the mean field line of the TASEP with random sequen-
tial update, where, theoretically, var�n� is identically zero. It
is surprising that �12� were still able to extract a meaningful
signal on this line.

B. Collective velocity

The stationary distribution of the TASEP with fully paral-
lel updates �2,3� is known exactly. In particular, if �
�� , 1−�p such TASEPs reside in a low-density phase,
while for ��� , 1−�p a high-density phase results, with
�=��1−�p defining a coexistence line of the two phases

�corresponding to a first order phase transition�. For � ,�
�1−�p by contrast, the system resides in a maximum-
current phase, in which the density is precisely 1/2.

The collective velocity �13� is the drift of the center of
mass of a momentary local fluctuation of the stationary state,
and is related to the current �flow� J and bulk density �b via
vc=�J��b� /��b. An exact expression for vc�� ,� , p� is avail-
able �2� for the case of parallel-update TASEP. If we define,
for convenience, the function

g�x,p� =
�1 − p���1 − x�2 − p�
�1 − x�2 + p�2x − 1�

, �23�

then

vc��,�,p� = �g��,p� , low density phase,

− g��,p� , high density phase.
	 �24�

The negativity of the collective velocity in the high-density
phase is simply due to the fact that it is the propagation of
holes from right to left, rather than of particles from left to
right, that is important in this phase.

Using these exact expressions for vc the expression �3�
now becomes

� = �L/g��,p� , � � �, 1 − �p ,

L/g��,p� , � � �, 1 − �p .
	 �25�

We note that for p=0 we have �vc�=1 identically throughout
the high and low density regimes so that we simply have �
=L in this case. We also note that in the low-density �high-
density� phase � is independent of � ���.

C. Simulations

We now turn our attention to our Monte Carlo simula-
tions. We simulated the parallel-update TASEP at a variety of
values of �, �, and p corresponding to both the low and high
density phases, for system sizes L=103, 5�103, and 104.
Each simulation consisted of 104L /vc iterations, with the first
103L /vc time steps discarded to ensure negligible bias due to
initial nonstationarity �initially the system was empty�. As-
suming the validity of Eq. �3�, this implies we generated
1.8�104�int,n samples of the stationary distribution in each
simulation.

For each simulation, we measured n at each iteration, and
from the resulting time series we estimated the autocorrela-
tion function �n�t� using the standard estimators �15�. Figure
2 shows a finite-size scaling plot of �n�t� assuming the ansatz
given by Eq. �1� with �=L, in the p=0 case. The agreement
is clearly very good, and the sharpness of the cusp at t=L
suggests that any corrections to the finite-support ansatz �Eq.
�1�� are very small.

Figures 3 and 4 show finite-size scaling plots of �n�t� for
p=0.25,0.5, assuming the ansatz given by Eqs. �1� and �25�.
There is again excellent data collapse, however we note that
there is some noticeable curvature near the edge of the sup-
port, so that the sharp cusp present in the p=0 case becomes
smoothed out somewhat for p�0. As discussed in section
2.2, this does not affect the use of Eq. �13� for setting Monte
Carlo error bars, but it would be interesting from a theoreti-
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cal perspective to better understand how this curvature de-
pends on the model parameters p, �, �, and L �as well as
vmax; c.f. the discussion in Sec. IV�. We remark that many
other quantities �including the fundamental diagram� have
cusps at p=0 which are smoothed out for p�0.

IV. NAGEL-SCHRECKENBERG MODEL

An important generalization of the TASEP is the Nagel-
Schreckenberg model �6�, in which each particle �vehicle�
can move up to vmax�N sites per iteration. Although the
precise form of the phase diagram depends on vmax, the
NaSch model exhibits, in general, the same three qualita-
tively distinct phases as the TASEP �21�. We now briefly
review the dynamical rules defining the NaSch model. Sup-
pose at time t�N a vehicle with speed vt� �0,1 , . . . ,vmax� is
located on site xt, and has headway �number of empty sites to
its right� equal to ht. Then the maximum speed this vehicle
can safely achieve at the next time step is taken to be vsafe
=min�vt+1,vmax,ht�, which allows for unit acceleration pro-
vided the speed limit is obeyed and crashes are avoided.
Provided vsafe�0, a random deceleration is then applied so

that with probability p the new speed is vt+1=vsafe−1, other-
wise vt+1=vsafe. Finally, in the bulk of the system, the vehicle
hops vt+1 sites to its right, so that xt+1=xt+vt+1. All vehicles
in the bulk of the system are updated in this way in parallel.
The bulk dynamics clearly reduces to parallel-update TASEP
when vmax=1.

It remains to consider the boundary dynamics. We again
wish to apply open boundary conditions, however choosing
an appropriate implementation of such boundary conditions
for the NaSch model is actually surprisingly subtle, and has
been an active topic of research over recent years �18–23�. In
particular, it was argued in �21� that in order to observe the
maximum-current phase when vmax�1 one needs to imple-
ment the inflow of vehicles into the system in a rather careful
manner.

Since our interest in the present context is confined to the
high and low density phases however, we have chosen to
implement the boundary conditions in the following simple
way. We augment the system, which has sites 1� i�L, with
two boundary sites; one at i=0 and another at i=L+1. With
probability � a vehicle with speed vmax is inserted on site 0,
and we immediately compute vsafe for this vehicle. If vsafe
�0 we move the vehicle to site vsafe otherwise we delete it.
The output is performed similarly. With probability 1−� we
insert a vehicle on site L+1, which then acts as a blockage to
vehicles exiting the system. If the rightmost vehicle in the
system has xt�L−vmax we define its new speed to be vsafe
and attempt to move the vehicle to site xt+1=xt+vsafe. If
xt+1�L the vehicle is removed from the system. When
vmax=1 the above prescription reduces to the boundary rules
for the simple TASEP described in Sec. I

Simulations

We now describe our simulations of the NaSch model as
defined above. To our knowledge, no rigorous results are
known for vc when vmax�1. However, for the deterministic
case �p=0� we expect that
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FIG. 4. �Color online� Finite-size scaling plot of �n�t� for p
=0.5 parallel-update TASEP in the high-density and low-density
phases, for L=103 ,5�103 ,104 and a variety of � ,�. The choices of
� ,� shown correspond to four distinct values of vc providing strong
evidence for the conjecture �Eq. �25��.
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FIG. 2. �Color online� Finite-size scaling plot of �n�t� for p=0
parallel-update TASEP in the high-density and low-density phases,
for L=103 ,5�103 ,104 and a variety of � ,�.
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FIG. 3. �Color online� Finite-size scaling plot of �n�t� for p
=0.25 parallel-update TASEP in the high-density and low-density
phases, for L=103 ,5�103 ,104 and a variety of � ,�. The choices of
� ,� shown correspond to four distinct values of vc providing strong
evidence for the conjecture �Eq. �25��.
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vc = �vmax, low density phase,

− 1, high density phase,
	 �26�

for any vmax, since in the low-density phase the deterministic
movement of vehicles from left to right should control the
dynamics, while in the high-density phase we expect that it is
the movement of holes �traveling with speed 1� from right to
left which is important. More generally, we expect the form
Eq. �24� to remain valid, but with an unknown function g,
that will in general depend on vmax.

Figure 5 presents a finite-size scaling plot of �n�t� ob-
tained by simulating the NaSch model with vmax=3 and p
=0, with system sizes L=103, 5�103 and 104 and a variety
of values of � ,� corresponding to both the low and high
density phases. The data collapse is excellent, providing
strong evidence for the ansatz obtained from Eqs. �1�, �3�,
and �26�. As for the case of p=0 when vmax=1 we note the
sharpness of the cusp at t=L / �vc�, again suggesting that any
corrections to the ansatz �Eq. �1�� are very small. Each simu-
lation performed consisted of 104L / �vc� iterations �with vc
given by Eq. �26��, with the first 103L / �vc� time-steps dis-
carded. The above simulations were also performed for
vmax=5 with identical results.

Finally, we also considered the case of vmax=3 with p
=0.25. For vmax�1 and p�0 we are not aware of any exact
predictions for vc, however it seems reasonable to conjecture
that vc is independent of ���� in the low �high� density
phase. We therefore simulated the NaSch model with vmax
=3, p=0.25, and �=0.25 at four different values of ���,
which should then correspond to a single value of vc. By

considering a single value of vc we can still use a finite-size
scaling plot of �n�t� to test the conjectures �Eqs. �1� and �3��.
Figure 6 provides strong evidence to support their validity at
vmax�1 and p�0. By varying the value of �vc� used to pro-
duce the scaling plot of �n�t� so that the support edge lay at
�vc�t /L=1 we obtained vc�2.65. We remark that, assuming
the validity of Eqs. �1� and �3�, this method can be used as a
way to obtain approximate values of �vc� when vmax�1 and
p�0.

V. DISCUSSION

We have studied the NaSch model in the low and high
density phases via Monte Carlo simulation, and found that to
a very good approximation the autocorrelation function for
the system density behaves as 1− �vct� /L with a finite support
�−L / �vc� ,L / �vc��, where vc is the collective velocity. For the
case of vmax=1 an exact theoretical result is known for vc for
all p� �0,1�. When vmax�1 no rigorous results for vc are
known, however we conjecture that when p=0 we simply
have vc=vmax in the low-density phase and vc=−1 in the
high-density phase. This result agrees with the exact result in
the special case of vmax=1 and with numerical simulations
for vmax=3,5. It seems reasonable to expect that it is valid
for all vmax for the deterministic NaSch model.
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