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We investigate propagation and control of weak-light spatial solitons in a resonant three-level atomic system
with a periodic modulated control field. It is shown that the periodic modulation acts like periodic potential
which resists the propagation of the soliton in transverse direction. The soliton could be trapped by the periodic
potential in the input channel. When the modulation is canceled, the soliton propagates in its initial incident
direction. The periodic modulation of control field could be used to control the propagation of the weak-light
probe soliton. Due to the good localization efficiency of the periodic potential, an excellent switching is
realized for the probe soliton. These properties may have potential applications in all-optical switching, optical
information processing and other fields.
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Control of light propagation in periodic configuration me-
dium has attracted intense research interest, due to its fasci-
nating physical phenomena and potential applications in all-
optical control and so on �1–5�. Nonlinearity in such
configuration may give rise to lattice solitons or discrete soli-
tons �6,7�, and they have also been observed in experiments
recently �6,8–10�. This periodic can be transverse �2–4,6�,
longitudinal �11�, or simultaneous in transverse and longitu-
dinal directions �12,13�. They all have precision control
functions on the propagation of spatial solitons in a homoge-
neous periodic configuration �2,4� or at the interface of two
different periodic materials �7�. However, previous re-
searches mainly utilize far off-resonant excitation and in-
tense laser fields to generate enough nonlinearity and avoid
large absorption. By virtue of quantum interference effect,
electromagnetically induced transparency �EIT� windows
can be generated in resonant medium �14�, which provide the
possibility to form solitons at weak-light intensity �15–18�.
Due to the requirement of low light intensity, weak-light soli-
tons imply superiority in potential applications. Very re-
cently, Hang et al. have studied weak-light bright and dark
solitons in atomic system with a resonant standing wave con-
trol field �19�, in which the standing wave field serving as a
stabilizing factor for the soliton.

In this paper, we study propagation and control of weak-
light spatial soliton in a resonant lambda-type atomic system.
Through introducing the periodic modulation on the control
field, the refractive index of the medium is modified periodi-
cally for the probe field, which is equivalent to create peri-
odic potential in transverse direction. Different from the
standing wave field, the periodic modulated control field en-
sures the medium always in EIT conditions. Then the me-
dium plays the role as a periodic medium and provides some
propagation channels for the probe soliton. Whether the soli-
ton propagates in its incident direction or the soliton is well
trapped in the input channel could be switched by the peri-

odic modulation. The localization efficiency of the trapped
soliton is very close to 1, which shows good switching per-
formance of the periodic potential. These properties may
have potential applications in optical information processing,
optical engineering and so on.

We carry out our study in a closed resonant three-level
atomic system, as illustrated in Fig. 1. A lifetime broadened
lambda-type atomic system interacts with a weak, pulsed
probe field ��1�→ �2� transition� and a strong, continuous
wave control field ��3�→ �2� transition� with transverse peri-
odic modulation. Due to spontaneous emission, there exists a
decay of each atomic state. In this scheme, we consider that
the state �1� is the ground state and the decay rate of the state
�3� is very small, which can be realized by adopting a hyper-
fine ground state or a metastable state. Under rotating-wave
approximation, the Hamiltonian of the system in the interac-
tion picture is expressed by

Hint = − ���1�2��2� + ��1 − �2��3��3��

− ���p�2��1� + �c�3��2� + H.c.� . �1�

From the Hamiltonian and the Liouville equation, we obtain
the following motion equations for the density matrix ele-
ments describing the atomic response,

�̇11 = i��p
��21 − �p�12� + �21�22 + �31�33, �2�

�̇33 = i��c�23 − �c
��32� + �23�22 − �31�33, �3�
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FIG. 1. Energy level diagram and laser excitation scheme.
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�̇21 = i��p�11 − �p�22 + �c
��31� + �i�1 − �21��21, �4�

�̇23 = i��p�13 − �c
��22 + �c

��33� + �i�2 − �23��23, �5�

�̇31 = i��c�21 − �p�32� + �i��1 − �2� − �31��31, �6�

together with �ij = �� ji�� �i� j� and the conservation condition
�11+�22+�33=1. Here, 2�p�c� is the Rabi frequency of the
probe �control� field for the relevant transition, expressed by
�p�c�= ��21�3��Ep�c� / �2�� with �ij being the dipole matrix el-
ement of the transition �i�→ �j�. �1=�p−�21 and �2=�c
−�23 are the detunings of probe field and control field from
corresponding resonant transition �� is angular frequency�.
�ij is the decay rates from state �i� to state �j�. The coherence
decay rates are defined as �21= ��21+�23� /2+�21

col, �23
= ��21+�23+�31� /2+�23

col and �31=�31 /2+�31
col with �ij

col aris-
ing from the collision broadening.

Considering the probe-field propagation along z axis and

diffraction along x axis, it can be described by E� p�x ,z , t�
= 1

2Ep exp�ikpz− i�pt�+c.c. with Ep being a slowly varying
function of time t and distance z and c.c. standing for com-
plex conjugate operation. The interaction of atoms with
fields induces a polarization that oscillates at the frequency
of the weak-probe field. By performing a quantum average
of the dipole moment over the ensemble of the atoms, we
find the polarization

P� �x,z,t� = N�12�21 exp�ikpz − i�pt� + c.c., �7�

where N being the atomic density. The evolution of the
weak-probe field is described by the Maxwell equation

�2E� p −
1

c2

�2E� p

�t2 =
1

	0c2

�2P� p

�t2 . �8�

Under slowly varying envelope approximation, i.e.,
�Ep /�z
kpEp and �Ep /�t
�pEp, then � �

�z − 1
c

�
�t �Ep�2ikpEp

and Eq. �8� is reduced to

i	 �

�z
+

1

c

�

�t

�p +

c

2�p

�2�p

�x2 + ��21 = 0, �9�

here the coefficient �=N�p��12�2 / �2	0�c� with c being the
light velocity in vacuum. We consider a steady state propa-
gation regime in which the probe-field envelopes have large
enough temporal widths and hence their time evolution could
be neglected �16,20,21�. Thus, the probe beam is governed
by the following wave equation

i
��p

�z
+

c

2�p

�2�p

�x2 + ��21 = 0. �10�

The intensity of the probe field �p is taken to be much
weaker than that of the control field �c, which dresses the
levels �2� and �3� and leads to the destructive interference for
the transitions from the ground state to the two dressed lev-
els, then the depletion of the ground state �1� will be not
significant. We use the perturbation method to solve the mo-
tion equations of density matrix elements in steady state and
the density matrix elements are expressed as �ij =�n=0

+� �ij
�n�.

Assuming the system is prepared initially on the ground

state, the zeroth-order solution will be �11
�0�=1 and other ele-

ments are equal to zero. Under the weak-probe approxima-
tion, we get the matrix element �21 up to the third order:

�21
�1� =

d3�p

D
, �11�

�21
�2� = 0, �12�

�21
�3� =

− d3�2��c�2 + d2d3 + d3
2�4��c�2 + �2 + �2

2�/��c�2�
D�D�2

 ��p�2�p, �13�

where the new parameters d2=�1+ i�, d3=�1−�2 and D
= ��c�2−d2d3 are introduced for convenience. In the deriva-
tion of Eqs. �11�–�13�, we select a metastable state as state
�3� which makes �31 be negligible ��31=0�, and take �21
=�23=� for simplicity. In addition, the collision effect in
cold dilute atomic gas is very weak so it has been ignored in
this paper. Thus we obtain the following nonlinear
Shrödinger �NLS� equation governing the propagation of the
weak-probe field:

i
��p

�z
+

c

2�p

�2�p

�x2 + �
d3

D
�1 − �mr + imi���p�2��p = 0,

�14�

here mi=d3� / �D�2, mr= �2��c�2+�1d3+d3
2�4��c�2+�2+�2

2� /
��c�2� / �D�2.

In order to make analysis convenient, we introduce some
new variables �=z /Ld, �=x /R, Ld=�pR2 /c, u=�p /�p0,
�p0=1 /�m0 and m0=mr��c=�c0� to further simplify the
above NLS equation, where Ld and R are characterization
diffraction length and beam radius, respectively. Then Eq.
�14� is transformed to the following dimensionless equation:

i
�u

��
+

1

2

�2u

��2 + �ar + iai�	1 −
mr + imi

m0
�u�2
u = 0, �15�

with

ar = �Ld

���c�2 − �1��1 − �2����1 − �2�
���c�2 − �1��1 − �2��2 + ��1 − �2�2�2

2 , �16�

and

ai = �Ld
�2��1 − �2�2

���c�2 − �1��1 − �2��2 + ��1 − �2�2�2
2 �17�

relating to the control field and detunings. Noticing that ai
� ��1−�2�2 when ��c�2−�1��1−�2��0, so ai can be greatly
suppressed if let ��1−�2�2 sufficiently small. Under this con-
sideration, the absorption of the medium will play no signifi-
cant role and the system could be approximately thought as a
conservative one. In fact, this case can be easily realized by
using a strong control field and choosing proper parameters
just near the EIT window. With this consideration, ar�ai
and mr�mi will be simultaneously achieved. If the control
field is homogeneous ��c=�c0� and ar�0, Eq. �15� should
have the bright soliton solution of the form as u
= 1

��ar�
1
l sec h� �−��

l �ei���+ar�−��2−1/l2��/2� with the incident angle
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� and the width l of the beam �19�. However, for the inho-
mogeneous control field, the coefficients ar and mr are com-
plicated, and thus the analytical solution of Eq. �15� cannot
be obtained.

From the above analysis, we notice that the condition of
ar�0 and ar�ai is necessary for generating bright solitons
in this system. Fortunately, this condition is easy to be satis-
fied by tuning the Rabi frequency of the control field �c,
probe detuning �1 and two-photon detuning �=�1−�2,
which determine ar and ai via Eqs. �16� and �17�. We inves-
tigate the dependencies of ar and ai on those three param-
eters �c, �1, and �, and show the results in Fig. 2, where we
have considered our model in realistic atomic system via
selecting energy levels of 3S0, 3P1 and 3P0 as atomic states
�1�, �2�, and �3� in laser-cooled gas of magnesium atoms, in
which the decay time of �2� is about 5.1 ms �22�. In Fig. 2,
the parameters �=4.0108 cm−1 s−1, wavelength of probe
beam �p=457 nm, R=40 �m, and then Ld=2.2 cm are em-
ployed. By taking �1=−1.7108 s−1 and �=−1.0
105 s−1, the dependency of ar and ai on the Rabi fre-
quency of the control field �c is shown in Fig. 2�a�, from
which one can see that with the increase of �c the magnitude
of ar decreases and gradually approaches to zero, though the
absorption coefficient, i.e., ai, decreases simultaneously. The
inset shows the dependency for smaller �c, in which ar is
transformed from ar�0 to ar�0, accompanying greatly en-
hancement of the absorption coefficient ai. We plot the de-
pendency of ar�ai� on the probe detuning �1 in Fig. 2�b�
when �c=4.3106 s−1, �=−1.0105 s−1, and �=−0.8
105 s−1. It is shown that ar�ai� will almost vanish when
increasing the probe detuning along positive direction. Fig-
ure 2�c� shows the dependency of ar�ai� on the two-photon
detuning � with �c=4.3106 s−1 and �1=−1.7108 s−1,
from which it can be seen that ar�ai� decreases with � and
will keep a small magnitude for positive �. It should be men-
tioned that at two-photon resonance ��=0�, i.e., in the center
of the EIT window, ar=ai=0 will be established �as shown in
Fig. 2�c��, which is not expected for generating solitons and

that is why we should choose parameters near the EIT win-
dow. Actually, in all these cases in Fig. 2, ai is several orders
of magnitude smaller than ar except the case for the inset in
Fig. 2�a�.

We then consider the control field to be a periodic pattern
of �c=�c0�1+A cos�B��� with A characterizing modulation
depth and B denoting modulation period. Such periodic
modulation of the control field may be achieved by using a
standing wave field formed by two beams with adverse trans-
verse components of wave vector and same longitudinal
components of wave vector. Comparing Eq. �15� with the
NLS equation of continuous model describing solitons in
optical lattice �4,5�, one can see that the periodic modulation
of the control field would also arise a periodic potential like
the optical lattices or waveguide array for the probe field. So
the atomic system may possess the similar properties with
optical lattices or waveguide arrays. Each period takes effect
as a propagation channel for the soliton. If the soliton is
input in one channel with a tilt angle, it will meet the peri-
odic potential barrier in transverse direction during propaga-
tion. The potential barrier will resist the transverse propaga-
tion of the soliton, and trap the soliton in the incident
channel.

Based on the above analysis, the proper parameters to
support the formation of the solitons are easy to be realized.
By taking �c0=4.3106 s−1, �p0=1.79105 s−1, �1
=−1.7108 s−1, �=−1.0105 s−1, �=4.0108 cm−1 s−1,
�p=457 nm, R=40 �m, and Ld=2.2 cm, ar�ai and mr
�mi are achieved simultaneously. The weak-light spatial
soliton will propagate stably and with almost no loss in this
atomic system. According to the bright soliton solution of
Eq. �15� with homogeneous control field, we use a hyper-
bolic secant beam of u�� ,0�=u0 sec h���ei�� with the am-
plitude u0= �ar��c=�c0��−1/2 as initial probe field.

As the periodic modulation acts like periodic potentials,
the probe soliton may be trapped by the periodic potential,
which provides a switching effect for the weak-probe soliton.
We try to use the modulated control field to switch the probe
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FIG. 2. �Color online� Dependencies of ar and
ai on �a� the Rabi frequency of the control field
�c, �b� probe detuning �1, and �c� two-photon
detuning �. Other parameters are given in the
text.
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soliton in a tilt direction. Top panels of Fig. 3 show the
solitons propagate along their own incident direction when it
is input at a certain angle and without the periodic modula-
tion of control field. In this case, the medium acts as a ho-
mogeneous EIT medium for the probe solitons. However, the
periodic potential could prevents the soliton from propagat-
ing in its incident direction. It makes the soliton be localized
and propagate only in the input channel, as shown in the
bottom panels of Fig. 3. Here we take the modulation depth
A=0.2 and period B=0.5 in the derivation of the below pan-
els of Fig. 3. The probe solitons is well trapped by the deep
lattice potential and oscillate in a lattice channel. When the
lattice width is too small, i.e., for larger periods, parts of the
soliton energy would leak into other lattices. Therefore, we
consider the lattice width for period B=0.5 to be commen-
surate to the soliton width. If considering smaller modulation
period, the probe soliton could also be trapped, but oscillate
in a wider lattice channel. For weak modulation of the con-
trol field, the probe soliton will traverse the lattice potential

and cannot be trapped in the lattice channel. So we only
consider the case of deep modulation of the control field
here. Therefore, the periodic modulation of the control field
may be used as a switching for trapping or releasing the
soliton in the propagation direction.

To show clearly the trap of the soliton by the periodic
potential, we plot the input and output profiles as well as the
periodic modulation in Fig. 4 corresponding the cases of the
below panels of Fig. 3. The soliton is completely localized in
the region of modulation enhancement of a period, which
implies that only the region of modulation enhancement
plays the role of the propagation channels for the soliton.
Though the input beam initially covers some region of weak-
ened modulation, it will be eventually trapped into the adja-
cent propagation channel. The output intensity of the probe
beam is almost stronger than its input intensity, due to its
localization in the channel.

The localization efficiency of the soliton is evaluated by
comparing the soliton power trapped in the channel with the
total power of the probe beam. The soliton power localized
in the input channel and the total power of the beam are
calculated by Pe=−�/2

+�/2�u�� ,���2d� and Pt=−�
+��u�� ,���2d�,

respectively. We compute the localization efficiency Rp
= Pe / Pt for the case of Fig. 3�f�, and show the result in Fig.
5. It can be seen that a small rising of the localization effi-
ciency appears at first due to radiation of the beam from the
weakened modulation region into the propagation channel.
With the propagation, the soliton is well trapped in the input
channel and the localization efficiency is approximate to 1,
which implies excellent localization performance of the pe-
riodic potential. The solitons input in other tilt angles have
almost the same localization efficiency with Fig. 5, so they
are not plotted in this paper any more.

In conclusion, we have investigated the propagation and
control of the weak-light soliton via periodic modulation of
the control field in an EIT medium. The periodic modulation
modifies the refractive index to be periodic, which acts as
periodic potential in transverse direction for the weak-probe
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soliton. In fact, the region of the modulation enhancement in
a period is equivalent to a propagation channel for the soli-
ton. The probe soliton could be well trapped in the input

channel by the periodic potential. If there is no the periodic
modulation, the soliton will propagate stably in its input di-
rection. The good localization efficiency of the periodic po-
tential implies its excellent switching performance. There-
fore, the periodic modulation could be used for controlling
the weak-light soliton, and function as a soliton switching.
These properties may provide some advantages in soliton
communication and optical information processing.
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