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Considering the higher-order nonlinearities in a material can significantly change its behavior. We suggest
the extended nonlinear Schrödinger equation to describe the propagation of ultrashort optical pulses through a
dispersive medium with higher-order nonlinearities. Soliton trains are generated through the modulational
instability and we point out the influence of the septic nonlinearity in the modulational instability gain.
Experimental values are used for the numerical simulations and the input plane wave leads to the development
of pulse trains, depending upon the sign of the septic nonlinearity.
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I. INTRODUCTION

Most of the past research interest in propagation of soli-
tons is normally confined to Kerr media which is the mani-
festation of small nonlinear coefficient and nonresonant in-
teraction. The cubic nonlinear Schrödinger �CNLS� equation
has been widely used to model the propagation of light pulse
in this system. However, even at the moderate pulse inten-
sity, higher-order nonlinearities manifest themselves in a ma-
terial with higher-order nonlinear susceptibilities �1�. One of
the simplest case are the materials with ��5� susceptibilities
which are modeling by the cubic-quintic NLS �CQNLS�
equation. On the basis of experimental observations, the
cubic-quintic nonlinearity was proposed as an empirical de-
scription of special glasses. In particular, in a recent experi-
ment it has been established that the optical susceptibility of
CdSxSe1−x-doped glass possesses a considerable level of
fifth-order susceptibility ��5�. In addition it has been further
verified that there exists significant nonlinear effect due to
��5� in a transparent glass in intense femtosecond pulse at
620 nm �2�. In semiconductor double-doped optical fibers
�3�, the doping of silica fibers with two appropriate semicon-
ductor particles may lead to an increased value of third-order
susceptibility ��3� and a decreased value of ��5�. By properly
choosing the characteristics of two dopants one can choose
the sign of ��3� and ��5�. The saturation is also observed to
increase with the reduced-photon energy. Further, experi-
mental results of nonlinear absorption �4� in semiconductor
doped glass, organic polymers and other composite materials
show that nonlinearity saturates at moderate intensities. On
the theoretical side, one-dimensional �5�, and multidimen-
sional �6� solitons in uniform cubic-quintic media have been
studied in many works. In general a self-defocusing ��5� is
needed to account for the saturation of ��3�. Thus, in order to
investigate pulse propagation in such materials it is neces-
sary to consider higher-order nonlinearities in place of the
usual Kerr nonlinearity. However, when the saturation is

very strong, a self-focusing ��7� is also needed. Quite re-
cently an experiment has been reported in material such as
chalcogenide glass which exhibits not only third- and fifth-
order nonlinearities but even seventh-order nonlinearity �7�.
In other word, chalcogenide glass can be classified as a
cubic-quintic-septic nonlinear material.

The above mentioned development have generated re-
newed interest in the investigation of optical pulse propaga-
tion in higher-order nonlinear media. In particular, the study
of modulational instability �MI� in non-Kerr media has re-
ceiving particular attention. In fact, it is well established that
when the input is a continuous wave �CW� light which
propagates through a fiber, it can become unstable for a small
perturbation under specific conditions. This is the so-called
MI. The phenomenon has been observed in many branch of
physics such as nonlinear optics �8,9�, plasma physics �10�,
nonlinear electrical transmission lines �11�, Bose-Einstein
condensate �BEC� �12,13�, biophysics �14� just to cite few.
Recently, the author �15� has obtained the analytical expres-
sion for the MI gain and then numerically studied the dy-
namics of the solitons induced by the MI. In particular, the
effects of higher-order dispersion and cubic-quintic nonlinear
terms on the evolution of MI were studied. Since the nonlin-
earity is known to affect the MI band and the maximum gain
�16�, it is then important to investigate the effects of septic
nonlinearity on the MI phenomenon.

In this paper we study, for the first time to our knowledge,
the derivation of the MI gain in the generalized cubic-
quintic-septic nonlinear Schrödinger �CQSNLS� equation
with higher-order dispersion, self-steepening and Raman
terms as suggested by experimental results �7�. This model is
relevant to some applications in which higher-order nonlin-
earities are important. In particular the evolution of a soliton
train induced by MI due to the effect of the new septic non-
linearity is also indicated. The paper is organized as follows:
The model of equation with cubic-quintic-septic nonlinearity
which describes soliton evolution in non-Kerr media with
parabolic nonlinearity is discussed in Sec. II. In Sec. III, the
linear stability analysis of the MI is formulated and the ana-
lytical expressions of the gain of MI is obtained. Typical
outcomes of the nonlinear development of the MI, in the
form of regular and irregular patterns, are reported in Sec.
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IV. We focus on the role played by the septic nonlinear co-
efficient. Section V concludes the paper.

II. MODEL

Like all electromagnetic phenomena, the propagation of
optical fields in fibers is governed by Maxwell‘s equations.
The derivation of a basic equation that governs propagation
of optical pulses in CNLS equation have been obtained in
�17�. Since higher-order nonlinearities manifest themselves
as deviations from the cubic nonlinear response, we have
modified the CNLS equation to suit with the pulse propaga-
tion in higher-order nonlinear fibers, wherein the effect of
quintic and septic nonlinearities should be included. The
governing equation is now called the CQSNLS equation. The
CQSNLS equation can be written as follows:

��

�z
= i�
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l=4
il�l
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The parameter Aef f is known as the effective mode area �9�.
Its evaluation requires the use of its modal distribution,
F�x ,y� for the fundamental fiber mode. Clearly, Aef f depends
up on fiber parameters such as the core radius and the core-
cladding index difference. � is the typical wavelength for an
optical fiber ��=1.55 �m�. The quantities Aef f1 and Aef f2 are
given by
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+	

�F�x,y��2dxdy�3

	 	
−	

+	

�F�x,y��6dxdy

,

Aef f2 =

�	 	
−	

+	

�F�x,y��2dxdy�4

	 	
−	

+	

�F�x,y��8dxdy

, �3�

where the fundamental mode F�x ,y� is approximated by
a Gaussian distribution �17�. We obtain Aef f1= �3 /4�Aef f
and Aef f2= �1 /2�Aef f, where Aef f =�w2. w is the width pa-
rameter of the fiber. In the following analysis we take
the experimental values of the higher-order nonlinear re-
fractive index obtained in �7� as n2=2.7
10−13 cm2 /W,
n4=−7.8
10−23 cm4 /W, and n6=7.2
10−33 cm6 /W.
Thus, by choosing the effective fiber core area as Aef f

=40 �m2, we obtain the following nonlinear coefficients:
�1=2736 W−1 /Km, �2=−2.63 W−2 /Km and �3=9.2

10−4 W−3 /Km.

Equation �1�, which is the corresponding CQSNLS equa-
tion, models the propagation of ultrashort optical solitons in
highly nonlinear single-mode fibers. It includes different ef-
fects. � j �j=2,3 ,4� represents, respectively, the second-order
dispersion �SOD�, third-order dispersion �TOD�, and fourth-
order dispersion �FOD�. �1, �2, �3 are, respectively, the cu-
bic, quintic, and septic nonlinearity. R is the intrapulse Ra-
man scattering, which causes a self-frequency shift. S
represent the self-steepening term which results from the in-
tensity dependence of the group velocity. In practical appli-
cations the Raman and self-steepening coefficients are re-
lated to the cubic nonlinear term by R=�1TR and S=�1 /�0
�17�.

III. LINEAR STABILITY ANALYSIS

The steady-state solution of Eq. �1� can be written as

A�z,t� = 
P exp�i�NL� , �4�

where the nonlinear phase shift �NL is related to the optical
power P and the propagation distance as �NL= P��1+ P�2
+ P2�3�z. To analyze the MI of CW solution �4�, we intro-
duce the perturbed field

A�z,t� = �
P + a�t,z��exp�i�NL� , �5�

where the complex field �a�t ,z���
P. Thus, if the perturbed
field grows exponentially, the steady state becomes unstable.
By substituting Eq. �5� into Eq. �1� and collecting terms in a,
we obtain the linearized equation as

az = − i
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2
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�� . �6�

We assume for the perturbation a�t ,z�, the following ansatz

a�t,z� = u exp�i�Kz − t�� + v exp�− i�Kz − t�� , �7�

where K and  represent, respectively, the wave number and
the frequency of the modulation. Inserting Eq. �7� into Eq.
�6�, we obtain the dispersion relation
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The dispersion relation has the following solution:
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1
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where
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FIG. 1. �Color online� MI gain as a function of �4 and . �1=2736 W−1 /Km, �2=−2.63 W−2 /Km, TR=0.03 fs, P=500 W. �a� Two
gain peaks appear regardless of the sign of �2�4 and move away from the center when �4→0, �2=50 ps2 /Km, �3=0. �b� Two gain peaks
appear when �2�4�0, while the gain disappears when �2�4�0, �2=50 ps2 /Km, �3=−9.12
10−4 W−3 /Km. �c� Two gain peaks appear
when �2�4�0, while the gain disappears when �2�4�0, �2=50 ps2 /Km, �3=9.12
10−4 W−3 /Km. �d� Similar to �c�, �2

=−50 ps2 /Km, �3=−9.12
10−4 W−3 /Km, �e� Similar to �b�, �2=−50 ps2 /Km, �3=9.12
10−4 W−3 /Km
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The steady-state solution becomes unstable whenever K has
an imaginary part. The perturbation then grows exponentially
with the intensity given by the growth rate of the MI gain
defined as: g��=2�Im�K�� �9,17�. Hence we have

g�� =
− �r + ���
2

. �12�

Now we investigate the impact of the septic nonlinearity
in the gain spectra. Figure 1�a� shows the MI gain as a func-
tions of �4 and  in the normal dispersion regime in the
absence of the septic nonlinearity. In the case of a negative
value of the septic term �3, we obtain the gain spectrum
having two distinct side lobes in Fig. 1�b�, which exist re-
gardless of the sign of the FOD �4. We note also that the
maximum gain increases when �4�0. In the case of a posi-
tive value of the septic nonlinearity, Fig. 1�c� shows that the

gain spectrum also has two distinct side lobes, but, as com-
pared with Fig. 1�b�, the side lobes vanish when �4�0. Fig-
ures 1�d� and 1�e� plot the gain spectra for the anomalous
dispersion regime. In Fig. 1�d� we observe two similar side
lobes as in Fig. 1�c�, but the two side lobes vanish here when
�4�0. On the other hand we observe in Fig. 1�e� that the
two side lobes exist regardless of the sign of the FOD, but, as
compared with Fig. 1�b�, the maximum gain decreases when
�4�0.

Figure 2 displays the MI gain as function of �2 and 
with fixed �4 and P. In the case of negative value of the
septic term �3, we obtain two side lobes in Fig. 2�a� which
exist regardless of the sign of the product �2�4. In the case
of positive value of the septic terms �3, we observe that the
space between the two sidebands is reduced progressively
when �2 increases. The nonzero gain peaks appear only if
�2�4�0. The gain spectrum in Fig. 2�c� is similar to Fig.
2�b�. Finally, Fig. 2�d� presents also two side lobes as in Fig.
2�a�, but here, the space between the two sidebands is en-
hanced progressively when �2 increases.

We can then conclude that the gain is sensitive to the
septic nonlinearity. It should be emphasized that the linear
stability analysis is valid as long as the perturbation ampli-
tude remains small compared with the CW beam amplitude.
If the perturbation amplitude grows large enough to be com-
parable to that of the incident CW beam, the numerical
analysis must be adapted.

(a) (b)

(c) (d)

FIG. 2. �Color online� MI gain as a function of �2 and . �a� Two gain peaks appear regardless of the sign of �2�4 and move away from
the center when �4→0. �b� Two gain peaks appear when �2�4�0, while the gain disappears when �2�4�0. �c� Two gain peaks appear
when �2�4�0, while the gain disappears when �2�4�0. �d� Similar to �a�.
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IV. NUMERICAL SIMULATIONS

The next step of the analysis is to run a direct simulation
of Eq. �1�, adding small initial modulational perturbations to
CW states with the objective to identify nonlinear patterns
generated by the MI. The MI is induced by injecting an input
signal in the form �9,17�

��0,t� = 
P�1 + am sin�2�mt��exp�i�NL� , �13�

where am=0.001 is the modulation amplitude and m=0.2 is
the frequency of a weak sinusoidal modulation imposed on
the CW beam. Equation �1� with initial condition �Eq. �13��
is solved utilizing the split-step fourier method �9,17�.

As an example, we consider the case �2=50 ps2 /Km,
�3=0.04 ps3 /Km, �4=0.05 ps4 /Km, �1=2760 W−1 /Km,
�2=−2.63 W−2 /Km, �3=−9.12
10−4 W−3 /Km and TR
=0.03 fs, which belong to the coefficients of the MI spec-
trum in Fig. 1. Figures. 3�a� and 3�c� plot the evolution of the
amplitude of the CW state when the septic nonlinearity is set
to zero. In the absence of septic nonlinearity the outcome is
generation of a regular array of localized peaks and leads to
the establishment of a periodic-train of solitary pulses, its
period which is the same as imposed by the initial modula-
tional perturbation. Obviously this solution is of direct inter-
est to applications in terms of the generation of a pulse array
in fiber lasers, but, as shown in Fig. 3�b�, the presence of the

septic nonlinearity could influence the evolution of the peri-
odic soliton. The initially perturbed CW is stable at the initial
stage of the evolution, but after certain propagation distance
we observed that the train of solitons turns into a chaotic
pulse. Figures 3�c� and 3�d� plot the evolution of the peak
power in the case of anomalous dispersion regime. The re-
sults are similar to the case of normal dispersion �Figs. 3�a�
and 3�b��. We can then conclude that the septic nonlinearity
influences the evolution of the train of solitons.

V. CONCLUSION

In this work we have used the higher-order nonlinear
Schrödinger equation with cubic-quintic-septic nonlinearity,
modeling the propagation of an ultrashort femtosecond opti-
cal pulses. An analytic expression for the MI gain have been
obtained and shown to be sensitive of the septic nonlinearity.
Direct simulations of the CQSNLS equation have been per-
formed. The outcomes of the instability development depend
up on the septic nonlinearity. The results, especially the for-
mation of the stable periodic array of localized pulses, may
find straightforward applications in nonlinear optics.
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FIG. 3. �Color online� Evolution of CW showing the effects of the septic nonlinear term. �a� �4=0.05 ps4 /Km, �2=50 ps2 /Km, �3

=0, �b� �4=0.05 ps4 /Km, �2=50 ps2 /Km, �3=9.12
10−4 W−3 /Km, �c� �4=0.05 ps4 /Km, �2=−50 ps2 /Km, �3=0, �d� �4

=−0.05 ps4 /Km, �2=−50 ps2 /Km, �3=9.12
10−4 W−3 /Km.
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