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A rigorous theoretical investigation has been made of fully nonlinear ion-acoustic waves in nonrelativistic
and ultrarelativistic, collisionless, unmagnetized plasma containing of degenerate electrons and positrons, and
classical cold ions. In both �nonrelativistic and ultrarelativistic� regimes the electrons and positrons are as-
sumed to follow the corresponding Fermi distribution while the ions are described by the hydrodynamic
equations. An energy balancelike equation involving a Sagdeev-type pseudopotential is derived separately for
both the regimes. In addition, stationary periodic and solitary waves are also investigated for the two cases. The
present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in a degenerate
plasma such as in superdense white dwarfs.
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I. INTRODUCTION

Recently, there has been a great deal of interest in the
study of electron-positron plasma. Such plasmas are found in
solar atmospheres �1,2�, in active galactic nuclei �AGN�,
near the polar cusp regions of the pulsars and neutron star
atmospheres, in the inner region of accretion disks surround-
ing the central black hole, in quasar atmospheres and in the
Van Allen belts �3–7�. It is also known that the early
prestellar period of the evolution of the Universe was
presumably dominated by relativistic electrons and
positrons �8�. In the lepton epoch, which occurred
10−6 sec� t�10 sec after the Big Bang, temperatures
reached the values of 109 K�T�1013 K causing annihila-
tion of nucleon-antinucleon pairs resulting in matter which is
constituted of electrons, positrons, and photons in thermody-
namic equilibrium. Using ultraintense laser pulses the possi-
bility of the production of electron-positron pairs with den-
sity 1021 cm−3 has been shown �9�. Thus, there is a great
deal of interest in studying linear as well as nonlinear wave
motions in electron-positron plasmas. Tajima and Taniuti
�10� and Shukla et al. �11� investigated nonlinear interaction
of electromagnetic waves and acoustic modes in electron-
positron plasma. Medvedev �12� studied thermodynamics
and spectral properties of photons in pair plasma. Tsintsadze
�13� investigated sound waves in an electron-positron
plasma. Moreover, in a relativistically hot electron-positron
isothermal plasma, one-dimensional electromagnetic solitons
were obtained �14–19�. Dubinov and Sazonkin �20� devel-
oped an analytical nonlinear gas dynamic theory of ion-
acoustic waves in an electron-positron and ion plasma in
which all the plasma components in the wave undergo poly-
tropic compression and rarefaction. The ion-acoustic solitons
in electron-positron and ion plasmas were also studied by
Popel et al. �21� where they presented an investigation of the
nonlinear ion-acoustic waves in the presence of cold ions and

hot electrons positrons. Besides, some other authors also
studied nonlinear structures in plasmas �22–28�. The astro-
physical bodies, such as white dwarfs �29� contain very high-
density electrons and positrons, i.e., the electron/positron
components can be considered as a degenerate ideal gas. In
such an environment, one should apply the Thomas-Fermi
model for describing the degenerate gas of free electrons and
positrons �30–32�, while the ion components can be treated
as a classical gas. Recently, new quantum kinetic equations
�33�. have been derived that include both the degeneracy of
the particles and quantum effects �34�.

In this paper, we present the properties of nonlinear ion-
acoustic solitary waves �IASWs� in a degenerate Thomas-
Fermi electron-positron and cold ion plasma. The paper is
organized as follows. First in Sec. II we have derived a dis-
persion relation for ion acoustic wave in nonrelativistic de-
generate electron-positron and cold classical ion plasma and
then using the fluid model, derived the so called Sagdeev
equation. In the same section the stationary nonlinear ion-
sound waves are also discussed. In Sec. III, the dispersion
relation for ultrarelativistic case is derived. By using the fluid
model again the so called Sagdeev equation and the station-
ary nonlinear ion-acoustic waves in ultrarelativistic regime
are obtained. Finally, a brief summary and discussion of our
results is given in the last Sec. IV

II. ION ACOUSTIC SOLITARY WAVES
IN NONRELATIVISTIC THOMAS-FERMI

PLASMA

We consider a collisionless, unmagnetized three-
component plasma composed of cold ions, nonrelativistic de-
generate electrons and positrons. To derive ion-acoustic
wave �IAW� in such a plasma, we use linearized Poisson’s
equation

k2� = − 4�e��ne − �np − �ni� , �1�

where �ne, �np, and �ni are the electrons, positrons and
ions perturbed number densities, respectively, k is the wave
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number, � is the electrostatic potential and e is the magni-
tude of an electron charge. The equation of continuity and
the equation of motion for degenerate Thomas-Fermi plasma
are given by

�nj

�t
+ �� · �njuj� � = 0 �2�

and

�uj

�t
+ �uj� · �� �uj� = −

1

mjnj
�� PFj −

ej

mj
�� � , �3�

where nj, mj, and uj are the density, the mass and the fluid
velocity of the j species �j=electron , positron�. For degen-
erate electrons and positrons, the Fermi-pressure is defined
as PFj =

1
5 �3�2�2/3 �2

mj
nj

5/3.
Linearizing Eqs. �2� and �3�, i.e., nj =n0j +�nj and

uj =�uj, we obtain

��nj

�t
+ n0j�� · �uj� = 0 �4�

��uj�

�t
= −

1

mjnj
�� �PFj −

ej

mj
�� � . �5�

Assuming sinusoidal solution ei�k·r−�t�, Eqs. �4� and �5� give

��2 −
2

3

EFe

me
k2��ne

n0e
= −

k2e�

me
�6�

��2 −
2

3

EFp

mp
k2��np

n0p
=

k2e�

mp
. �7�

The classical cold ions are governed by the equation

�2�ni

n0i
=

k2e�

mi
, �8�

where n0e, n0p, and n0i are the densities of the electrons,
positrons and ions in equilibrium, mi is the mass of ion and �

is the frequency of ion-acoustic wave, EFe= �3�2�2/3 �2

2me
n0e

2/3

and EFp= �3�2�2/3 �2

2mp
n0p

2/3 are the Fermi energies of electrons
and positrons respectively.

By employing the Eqs. �6�–�8� in Eq. �1�, we can derive
the phase velocity of the IAW which is

Csi
2 =

2�

3�1 + �1/3�
EFe

mi
, �9�

where �=n0p /n0e and �=n0i /n0e.
In deriving the expression Eq. �9�, we have assumed that

the IAW is of long wavelength and the Fermi velocities of
electrons uFe and positrons uFp are much larger than the ion-
acoustic speed Csi �

uFe
�3

	
�
k and

uFp
�3

	
�
k �. The nonlinear elec-

trostatic ion-acoustic solitary waves �IASWs� in the nonrel-
ativistic Thomas-Fermi gas are governed by

�ni

�t
+

��niui�
�x

= 0 �10�

�ui

�t
+ ui

�ui

�x
+

e

mi

��

�x
= 0 �11�

�2�

�x2 = 4�e�ne − np − ni� , �12�

where the densities of the nonrelativistic degenerate elec-
trons and positrons are given, respectively by the Thomas-
Fermi law �30–32�.

ne = n0e�1 +
e�

EFe
�3/2

�13�

and

np = n0p�1 −
e�

EFp
�3/2

. �14�

In Eqs. �10�–�14�, ni, ne, and np are the total number den-
sities of ions, electrons and positrons, respectively, ui is the
ion fluid velocity.

In order to investigate the properties of finite amplitude
IASWs, we make all the dependent variables in Eqs.
�10�–�14� to depend on space coordinate and time as x−u0t,
where u0 is constant. From Eqs. �10� and �11� the following
expression for ion density is obtained

ni =
n0i

�1 −
2e�

miu0
2

, �15�

where we have imposed the boundary conditions for the
localized disturbances, i.e., �→0, ui→0 and ni→n0i at
x→ 
�

Substituting the expressions for electron, positron and ion
densities into the Poisson Eq. �12�, we get

�2�

�X2 = �1 + ��3/2 − ��1 − 
��3/2 − ��1 −
2��

M2 �−1/2

,

�16�

where the following dimensionless quantities have been in-
troduced


 = TFe/TFp, � = e�/EFe and X = x/�DFe.

Here M =u0 /Csi is the Mach number, TFe=EFe and
TFp=EFp are the Fermi temperatures �in energy units� of
electrons and positrons, respectively, �DFe= �

TFe

4�e2n0e
�1/2 is

Thomas-Fermi length of electrons and �= 3�1+�1/3�
2� . In equilib-

rium, we have �+�=1 �the neutrality condition of plasma�.
By multiplying both sides of Eq. �16� by d� /dX, integrat-

ing once and imposing the appropriate boundary conditions
for localized solutions, namely �→0 and d� /dX→0 at
X→ 
�, we obtain

1

2
�d�

dX
�2

+ V��� = 0, �17�

where the Sagdeev potential reads as
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V��� =
2

5
�1 − �1 + ��5/2� +

2�

5

�1 − �1 − 
��5/2�

+
�M2

�
�1 − �1 −

2��

M2 �1/2	 . �18�

Equation �17� can be regarded as an “energy integral” of an
oscillating particle of unit mass, with velocity d�

dX at position
� in a potential field V���.

It is clear from Eq. �17� that V���=0 and d� /dX=0
at �=0. IASW solutions of Eq. �17� exist if �i�
d2V /d�2 
�=0�0, so that the fixed point at the origin is un-
stable �ii� there exists a nonzero �m, the maximum �or mini-
mum� value of �, at which V��m�=0 and �iii� V����0
when � lies between 0 and �m. It is of interest to determine
the lower and upper limits of the Mach number M for which
solitons exist. Applying the condition �i�, the minimum Mach
number M is 1 which is independent of �, the positron to
electron number density ratio. It shows that the ion-acoustic
solitary waves in a nonrelativistic dense pair-ion plasma con-
taining degenerate electrons and positrons cannot be sub-
sonic for any value of �.

It may be noted that the Sagdeev potential Eq. �18� is
quite different from the usual Sagdeev potential found in
electron-ion plasmas in which ions play an important role,
but here in Eq. �18�, the role of positrons also become rel-
evant. The term 2� is greater than 
 for any concentration of
positrons in the plasma. This fact implies that there are two
possible values for the upper limit of Mach number M.

Case 1. Suppose, �m= 1

 and by applying the condition

�ii�, we have

2

5
�1 − �1 +

1



�5/2

+
�



	 +

�M2

�
�1 − �1 −

2�


M2�1/2	 = 0.

�19�

The solution of this equation for real positive Mach num-
ber M is

M =
2

5
��1 +

1



�5/2

− �1 +
�



�	

�� �


4

5
��1 +

1



�5/2

− �1 +
�



�	�
 − 2�2�

1/2
�20�

for ��0.3
Hence, the range of Mach number M can be calculated

from the following inequality

1 � M �
2

5
��1 +

1



�5/2

− �1 +
�



�	

�� �


4

5
��1 +

1



�5/2

− �1 +
�



�	�
 − 2�2�

1/2
�21�

which holds for ��0.3. For any value of Mach number M
satisfying the inequality Eq. �21�, the term 2� /
M2 remains
less than one. It is estimated that the last term
�1−2�� /M2�1/2 in Eq. �18� remains real for all values of M

and � even when the term �1−
��5/2 vanishes at �=1 /
.
Adopting the value of �=0.1 and the corresponding val-

ues of 
=4.64 and �=2.44, we obtain the range of Mach
number as 1�M �1.28. Increasing �, for example choosing
�=0.3 �for which the corresponding values of 
 and � are
2.23 and 3.58, respectively�, the range of Mach number
would extend to 1�M �1.80. It is clear that an increase of
the positron to electron number density ratio does not lead to
the propagation of subsonic solitons.

Case 2. Suppose, �m=M2 /2� and by applying again the
condition �ii�, we have

2

5
�1 − �1 +

M2

2�
�5/2	 +

2�

5

�1 − �1 − 


M2

2�
�5/2	 +

�M2

�
= 0,

�22�

which contains Mach number M real only for ��0.3. The
real and positive values of upper critical Mach number ob-
tained from Eq. �22� for different values of � are given be-
low in Table I.

For any value of M in the above range, it can be observed
that the term 
M2 /2� should be smaller than unity and that
the term �1−
��5/2 of Eq. �18� should be real for all values
of M and � even when the term �1−2�� /M2�1/2 vanishes.

Abdesalam et al. �2� suggested that an increase in the
positron-electron number density ratio � may lead to the
propagation of subsonic solitons. But as we have seen above,
the existence of subsonic solitons in the nonrelativistic
Thomas-Fermi electron-positron and classical-ion plasma is
not possible at all. This difference seems to arise due to two
reasons. First, the ion-acoustic speed in electron ion plasma
mostly depends upon the electron temperature and ion mass.
But in the case of pair-ion plasma, since positrons are as light
particles as electrons, the ion acoustic speed would not only
depend on the temperature of electrons, it must also take into
account the temperature of positrons. However, Abdesalam
et al. did not do that. Second, these authors chose 
�1,
which is not correct since n0e�n0p as is evident from the
neutrality condition and thus EFe�EFp which in turn, im-
plies that 
 must exceed unity.

In Figs. 1 and 2, we have numerically analyzed the
Sagdeev potential Eq. �18� and investigated how the positron
to electron number density ratio � and the Mach number M
change the profile of the potential well. An increase in �
leads to an increase of both the potential depth and the am-
plitude.

To study the dynamics of the small-but finite-amplitude
IASWs, we consider the case when ��1, i.e., the stationary
waves have weak nonlinearity. In this case all the terms in
Eq. �16� can be expanded in a power series to obtain

TABLE I. Real and positive values of the upper critical Mach
number obtained from Eq. �22� for different values of alpha.

� 0.4 0.5 0.6 0.7 0.8 0.9

M 2.029 2.015 2.007 2.004 2.001 2.000
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�2�

�X2 = ���1 −
1

M2�� −
3

8
��
2 +

4�2�

M4 − 1��2. �23�

We may note here in passing that if the last term in Eq.
�23� is neglected, there are two possibilities in the linear
approximation, one for M =�miu0

2 /EFe�1 and other for
M �1. The former represents the simple harmonic motion
with frequency f = 1

2�
���� 1

M2 −1�, while the latter condition
describes the Debye potential with the characteristic scale
length is given by

rD =
uFe

�2���pe�1 − Csi
2 /u0

2�1/2 . �24�

It shows that the effect of the Coulomb field extends up to a
distance of the order of rD which plays a role of the Debye
screening distance.

Now let us consider the structure of a solitary wave for
M �1. The solution of Eq. �23� in this case is

� =
4���1 − 1/M2�

��
2 + 4��2/M4 − 1�
sec h2�����1 − 1/M2�

2
X	 .

�25�

Resultantly, using equation �13�, we obtain the density

ne

n0e
= 
1 +

4���1 − 1/M2�
��
2 + 4��2/M4 − 1�

�sec h2�����1 − 1/M2�
2

X	�3/2

. �26�

We see that ne�n0e and ni�n0i, since ��0. Thus a solitary
wave in a quasiequilibrium nonrelativistic Thomas-Fermi
electron-positron and cold ion plasma is always a compres-
sional wave.

III. ION ACOUSTIC SOLITARY WAVES
IN ULTRARELATIVISTIC THOMAS-FERMI

PLASMA

Now we consider a collisionless, unmagnetized three-
component plasma composed of cold ions and degenerate
ultrarelativistic electrons and positrons. In deriving the ve-
locity of IAW in degenerate dense ultrarelativistic electron-
positron gas, the Eqs. �6� and �7� become

��2 −
1

3
c2k2��ne

n0e
= −

c2k2e�

EFe
�27�

��2 −
1

3
c2k2��np

n0p
=

c2k2e�

EFp
, �28�

where EFe= �3�2�1/3c�n0e
1/3 and EFp= �3�2�1/3c�n0p

1/3 are
Fermi energies of ultrarelativistic electrons and positrons re-
spectively and � is Planck constant.

Proceeding as before in Sec. II, we can derive the disper-
sion relation of ion acoustic wave in ultrarelativistic Thomas-
Fermi plasma as,

Csi
2 =

�EFe

3mi�1 + �2/3�
. �29�

The number densities of electrons and positrons in ultrarela-
tivistic regime can be calculated as

ne = n0e�1 +
e�

EFe
�3

�30�

and

np = n0p�1 −
e�

EFp
�3

. �31�

Using ne, np, and ni in the Poisson Eq. �12� and proceed-
ing as in the last section, we get

�2�

�X2 = �1 + ��3 − ��1 − �−1/3��3 − ��1 −
2��

M2 �−1/2

,

�32�

where �= 3
� �1+�2/3�.

In this case, the Sagdeev potential turns out to be

FIG. 1. The Sagdeev potential V��� �represented by Eq. �18��
against the potential �. Solitary pulse for �=0.1 �solid curve�,
�=0.2 �dashed curve�, and �=0.3 �dotted curve�.

FIG. 2. The Sagdeev potential V��� �represented by Eq. �18��
against the potential �. Solitary pulse for M =1.2 �dashed curve�,
M =1.23 �dotted curve�, and M =1.27 �solid curve�. Here, �=0.1,

=4.64, and �=2.44.

RASHEED, MURTAZA, AND TSINTSADZE PHYSICAL REVIEW E 82, 016403 �2010�

016403-4



V��� =
1

4
�1 − �1 + ��4� +

�4/3

4
�1 − �1 − �−1/3��4�

+
�M2

�
�1 − �1 −

2��

M2 �1/2	 . �33�

From the last term in V���, it is clear that � can have any
value but cannot be greater than M2 /2�. Therefore, we insert
�m=M2 /2� �the maximum value of � at which V���=0� in
Eq. �33� to determine the upper critical Mach number M.
Figures 3 and 4 show the variation of M with � and �, i.e., it
increases with � but decrease with �. However, the maxi-
mum value of M remains less than 2 giving the range
1�M �2.

In Figs. 5 and 6 we examine how � and the Mach number
M change the profile of the potential well. Figure 5 shows
that the potential variation with the Mach number M has the
same profile as in the nonrelativistic degenerate electron-
positron gas, i.e., the potential values associated with the
localized excitations expand as the Mach number M acquires
higher values, implying that faster pulse excitations will be
taller and wider. Figure 6 exhibits that an increase in � leads
to a decrease of both the potential depth and the amplitude
contrary to what was observed for nonrelativistic plasma.

To study stationary waves with weak nonlinearity., we
assume ��1 and expand all the terms in Eq. �32� in power
series and obtain

�2�

�X2 = ���1 −
1

M2�� − 3��1/3 +
�2�

2M4 − 1��2. �34�

The above equation has the solitary wave solution for M
�1

� =
4���1 − 1/M2�

��1/3 + ��2/2M4 − 1�
sec h2�����1 − 1/M2�

2
X�

�35�

giving

ne

n0e
= 
1 +

4���1 − 1/M2�
��
2 + 4��2/M4 − 1�

�sec h2�����1 − 1/M2�
2

X	�3/2

. �36�

We again see that ne�n0e and ni�n0i, since ��0. Thus the
solitary wave is a compressional wave in ultrarelativistic
case also.

FIG. 3. Variation of M with ��=n0p /n0e�.

FIG. 4. Variation of M with ��=n0i /n0e�.

FIG. 5. The Sagdeev potential V��� �represented by Eq. �33��
against the potential �. Solitary pulse for M =1.15 �dotted curve�,
M =1.16 �dashed curve�, and M =1.17 �solid curve�. Here, �=0.1,

=2.15, and �=4.05.

FIG. 6. The Sagdeev potential V��� �represented by Eq. �33��
against the potential �. Solitary pulse for �=0.2 �dashed curve�,
�=0.3 �dotted curve�, and �=0.4 �solid curve�.
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We also note that the Debye potential in this case has
scale length

rD =
�DFe

����1 − Csi
2 /u0

2�1/2 , �37�

where now all the parameters are defined in the ultrarelativ-
istic regime.

IV. SUMMARY

We have investigated the nonlinear ion-acoustic solitary
waves propagating in a collisionless unmagnetized nonrela-
tivistic and ultrarelativistic quantum/dense electron-positron-
ion plasma. The electrons and positrons are described by the
Thomas-Fermi law, while the ions are described by the ideal
hydrodynamic fluid equations. The dispersion relations for
ion-acoustic wave in both the regimes, nonrelativistic and
ultrarelativistic have been derived. An energy balancelike ex-
pression involving a Sagdeev potential has been derived
separately for both the cases. Analytical calculations show
that in both cases only supersonic ion-acoustic solitary wave
can exist for all values of the positron to electron number
density ratio. The dependence of the pseudopotential profile
and of the potential pulse excitation characteristics on the
positron to electron number density ratio and the Mach num-

ber has been investigated. It is significant to note that the
ion-acoustic speed in the degenerate pair ion plasma does not
only depend upon the electron temperature and the ion mass,
it also depends upon the concentration of the positrons and
the ions in the plasma. An increase in the positron number
density or a decrease in the ion number density reduces the
ion-acoustic speed and vice versa. It has been found that the
role of positrons along with the ions in the Sagdeev potential
determined in the degenerate nonrelativistic pair ion plasma
becomes relevant. The role of positrons dominates over that
of ions when there is the large concentration of ions �i.e., the
small concentration of positrons� in the plasma and vice
versa. Our results should elucidate the excitation of nonlinear
ion-acoustic shock waves in degenerate plasmas, particularly
in superdense astrophysical objects, e.g., in the interior of
white dwarfs.
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