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Spatiotemporal evolution of high-power relativistic laser pulses in electron-positron-ion plasmas
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The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-
positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is
studied. The dependence of the mechanism on the concentration of the background ions in electron positron

plasma is emphasized.
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I. INTRODUCTION

At high laser intensities the nonlinear interaction between
the laser beam and the surrounding plasma medium becomes
important, giving rise to a variety of physical effects [1-4],
which are not observed in the linear regime. These include
relativistic optical guiding, harmonic excitation, wake-field
generation, laser pulse frequency shifting, and pulse com-
pression, to mention a few. Akhiezer and Polovin [1] inves-
tigated analytically the propagation of very intense electro-
magnetic radiation in overdense plasmas and provided exact
traveling wave solutions. Dawson [2] investigated nonlinear
longitudinal electron oscillations in an infinite field-free cold
plasma. Sprangle et al. [3] developed a one-dimensional
(ID) nonlinear theory to model plasma wake-field genera-
tion, relativistic optical guiding and coherent harmonic radia-
tion production in intense laser plasma interactions. Pukhov
[4] discussed in his elegant review some of the important
physical effects emerging at relativistic laser intensities. In
earlier work [5], we have also put forward the possibility of
laser pulse amplification via a colliding beam scheme in a
plasma medium.

The interaction of ultraintense very short laser pulses with
plasmas [6—11] has attracted a great deal of attention re-
cently, both in fundamental research and for technological
applications, such as particle acceleration, inertial confine-
ment fusion, high harmonic generation, and x-ray lasers
[12-18]. The standard approach to produce ultrashort, ul-
traintense multiterawatt laser pulse is the chirped-pulse-
amplification (CPA) technique [19], in which a laser pulse is
stretched, amplified and recompressed. The CPA scheme has
shown the ability of generating subpicosecond petawatt laser
pulses with up to 500 Joules per pulse. This approach is
limited by the finite bandwidth of the active mm amplifiers
used in lasers. Ross et al. [20] investigated a new scheme of
parametric amplification to produce ultrashort and powerful
pulses. Super-radiant amplification of an ultrashort laser
pulse was observed by Shvets ef al. [21] who considered an
electromagnetic (em) beam colliding with a long counter-
propagating low-intensity pump in the plasma. The methods
reported in Refs. [20,21]. need at least two counterpropagat-
ing laser pulses, which makes practical realization of those
methods difficult.

Relativistic mass variation during laser-plasma interaction
is the origin for longitudinal self-compression of a laser
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pulse down to a single laser cycle in length, with a corre-
sponding increase in intensity. The main source of nonlinear-
ity is the relativistic mass increase due to the quiver motion
of the electrons in the field of the laser. In the last few years,
several scenarios have been proposed for the self-focusing
and self-compression of a laser pulse in plasma [22].
Shorokhov et al. [23] have employed a three-dimensional
(3D) particle-in-cell (PIC) simulation to show that a 30 fs
long laser pulse is efficiently compressed to 5 fs by using a
periodic plasma-vacuum structure to damp filamentation.
Tsung ef al. [24] reported a scheme to generate single-cycle
laser pulses based on photon deceleration in underdense
plasmas. This robust and tunable process is ideally suited for
lasers above critical power because it takes advantage of the
relativistic self-focusing of these lasers and the nonlinear fea-
tures of the plasma wake. Ren er al. [25] demonstrated the
compression and focusing of a short laser pulse by a thin
plasma lens. A set of analytical formulas for the spot size and
for the length evolution of a short laser pulse were derived in
their model. Shibu et al. [26] also proposed the possibility of
pulse compression in relativistic homogeneous plasma and
reported the interplay between transverse focusing and lon-
gitudinal

compression.

It was recently demonstrated numerically [27] that micro-
wave pulses can be compressed (with or without a frequency
shift) inside a magnetized plasma by changing the magnitude
or the direction of the magnetic field uniformly in space and
adiabatically in time. Balakin et al. [28] have investigated
the self focusing of few optical cycle pulses recently. They
showed that the wave-field self-focusing proceeds with over-
taking the steepening of the pulse longitudinal profile, lead-
ing to shock-wave formation. Consequently, a more complex
singularity is formed where an unlimited field increase is
followed by wave breaking with a broad power-law pulse
spectrum.

Most of earlier work outlined above [23-27] has focused
on pulse self-compression in homogeneous relativistic
plasma in relation with short ultraintense pulses. Some stud-
ies do exist on laser pulse propagation in inhomogeneous
(nonuniform) plasmas [29-32], but these are limited to trans-
verse beam focusing. Longitudinal pulse compression needs
more attention to be paid to, both analytically and numeri-
cally, due to its relevance in the development of a practical
model high-power ultrashort laser. A number of investiga-
tions have focused on the propagation of an em beam in
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axially inhomogeneous plasma, addressing effects such as
the relativistic self focusing of intense laser radiation in axi-
ally inhomogeneous plasma in relation with the fast ignitor
scheme [29], the propagation regime of circularly polarized
beam in relativistic inhomogeneous plasma with an indica-
tion of em beam penetration in overdense plasma [30], the
study of intense laser beam propagation in axially inhomo-
geneous relativistic plasma [31], the cumulative effects of an
axially inhomogeneous plasma column on the self focusing
and third harmonic generation of an em beam when the scale
length of the inhomogeneity is larger than the wavelength
[32].

Modern lasers (e.g., Vulcan Petawatt Upgrade at Ruther-
ford Appleton Laboratory’s Central Laser Facility and the
Gekko Petawatt Laser at the Gekko XII facility in the Insti-
tute of Laser Engineering at Osaka University) rely on CPA
techniques for amplifying an ultrashort laser pulse to ex-
tremely large intensities. Because of limitations e.g., in gain
bandwidth, high-power CPA systems are currently limited
from below to pulses of order 30 fs. The physical reason for
this limitation is the finite bandwidth of the active medium
amplifiers used in the lasers. The advantage of plasma as an
“active” medium for pulse compression is that it sustains
extremely high intensities. Nonlinearity becomes significant
only close to the relativistic threshold and thus high power
can be achieved.

In this paper, we are interested in investigating the self-
compression and self-focusing of a Gaussian-cross-section
relativistic laser pulse propagating in an electron-positron-
ion plasma. An earlier investigation by Berezhiani and Ma-
hajan [33] has focused on the nonlinear interaction of circu-
larly polarized electromagnetic waves in unmagnetized cold
e-p-i plasma, in fact exploring the possibility of finding a 1D
soliton solution in such a plasma configuration. In a recent
research Mahajan and Shatashvili [34] investigated the non-
linear propagation of high intensity em waves in a pair ion
plasma contaminated with a small fraction of a high mass
immobile ions (for symmetry breaking). They highlighted a
very remarkable property of this new and interesting state of
(laboratory created) matter, that it can strongly localize the
em radiation with finite density excess in the region of local-
ization. Another recent approach by Mahajan er al. [35] dem-
onstrated the nonlinear propagation of electromagnetic
waves in pair plasmas, in which the electrostatic potential
plays a very important role of a binding glue. It is shown that
the temperature asymmetry leads to a (localizing) nonlinear-
ity that is qualitatively different from the ones originating
from the intrinsic mass or density difference. The
temperature-asymmetry-driven focusing-defocusing nonlin-
earity supports stable localized wave structures in 13 dimen-
sions, which, for certain parameters, may have flat-top
shapes.

However, we focus here on the spatiotemporal dynamics
of the pulse, an aspect not covered earlier. We rely on a
nonlinear Schrodinger equation (NLSE) to study the spa-
tiotemporal dynamics of the em field envelope. Following
[36], we introduce a set of trial functions via the intensity
profile of the laser pulse, and follow their evolution in space/
time in the plasma. At a first step, we adopt a 1D model,
relying on the em wave equation as derived from Maxwell’s
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equations. A nonlinear Schrodinger equation is then obtained
and solved by using the paraxial formalism, to model the
occurrence of longitudinal pulse width compression and as-
sociated energy localization. The analysis is then extended to
a 3D pulse profile description. A pair of appropriate trial
functions are defined, accounting for the beam width (in
space) and the pulse duration (in time), whose evolution de-
scribes the dynamics of the pulse. Both longitudinal and
transverse self compression are examined for a finite extent
Gaussian laser pulse through this model. These functions are
determined by a system of coupled nonlinear differential
equations, which are integrated numerically to yield the spa-
tiotemporal laser pulse profile.

II. ANALYTICAL MODEL

We consider a three-component e-p-i plasma consisting of
electrons and positrons (denoted by the minus/plus subscript,
respectively, everywhere below) of opposite charge
q.=—q_=e and equal masses m-=m, in addition to a mas-
sive ion component in the background. Because of their large
inertia, the ions do not respond to the dynamics under con-
sideration and just provide a neutralizing background, hence
we take their density to be n;=n; y=constant. The equilibrium
state is characterized by an overall charge neutrality n_
=n, o+n;, where n- o are the unperturbed number densities
of the electrons/positrons (denoted by the minus/plus
subscript respectively).

In order to describe the propagation of electromagnetic
waves in such a plasma, we may use as a starting point
Maxwell’s equations. The system’s evolution in terms of the
vector (A) and the scalar (¢) potentials is governed by,

10A
E=——-V¢, B=V XA. (1)
c ot

In rescaled form, the field equations are expressed as [33]:

PA d
E—AA+a—tV¢+[n_v_—(l—a)n+v+]:0, (2)
and

Ap=[n_—(1-an,-al. (3)

The system is closed by invoking the hydrodynamic equa-
tions, consisting of the equation of motion

JP . JA
=+ V[1+(P.)?"]"?= = — F Vo, 4)

and the continuity equation

M V(n.v.)=0, (5)
Jat

for each of the mobile components (). Equations (2)—(5),
expressed in the gauge V-A =0, are dimensionless with the
following normalizations: the time and space variables are
measured in units of the inverse electron plasma frequency
w,'[=(47mge?/m,)""?], and the collisionless skin depth
c/w,; the vector and scalar potentials are normalized to
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m,c?/e; the relativistic momentum P to m,c; finally, n~ and
n* are scaled by their respective equilibrium densities n_j
and n, o. The coefficient a=n;/n_, denotes the ratio of the
ion density to the electron equilibrium density.

We consider the propagation of circularly polarized em
pulse along the z direction. The vector potential for em pulse
can be written as:

A(r,z,t) = A(r,z,t) (e, + iey)expli(kz — wt) ], (6)

where w and k are, respectively, the frequency and wave
number of pulse. The wave number of the em beam satisfies
the plasma dispersion relation, c?k’=w’ w2 a)p, where o,
(w,) is the electron (positron) plasma frequency An elegant
kinetic description of various linear modes in a nonrelativis-
tic pair magnetoplasma has been investigated by Iwamoto
[37]. Zank and Greaves [38] discussed the linear properties
of various electrostatic and electromagnetic modes in un-
magnetized and in magnetized pair plasmas, and also consid-
ered two-stream instability and nonenvelope (pulse) solitary
wave solutions.

The propagation of an em pulse in e-p-i plasma is de-
scribed by the following set of equations

9A 2 aPA (aZA 10A)
2ik— +
Jz (97‘2 ror
+A ¢2)[a 2-a)¢]=0, (7)

and

ﬁ_l[(HIAIZ)_(1—a)(1+|A|2)_} .
02 2| (1+¢)? (1- @) “I

[33], where 7=1—(z/v,) and v, is the group velocity of em
pulse. Assuming that the (normalized) spatial extension
(length) of the pulse is large, i.e., satisfies L;> (1+|A[?)'2,
then Eq. (8) implies
1 a |AP 0
T 22-a(1+]AP) ©)
It is evident from the above expression that ¢ is propor-
tional to « (for «<<1), and in fact vanishes in the absence of
background ions. It was shown in [39] that a pure electron
positron plasma (a=0) cannot sustain an electrostatic poten-
tial (¢). As a result, a circularly polarized electromagnetic
wave cannot be localized in pure electron positron plasma.
Also, ¢<<1 even for a large electromagnetic pulse. Combin-
ing Egs. (9) and (7) we are led to the nonlinear Schrédinger
Equation (NLSE)

A 2-adfA (&2A 1aA>
2ik— + -——
Jz vw 0"72 r or
2
_ 2\-2
4(2 A[l (1+]AP) 2] =0, (10)

where we have neglected terms of cubic or higher order in ¢.
The second, third (within parentheses) and fourth contribu-
tions to the left-hand side represent diffraction, dispersion
and nonlinearity. Note that the last (nonlinear) term becomes
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=7|A]?A in the small |A| limit, recovering the cubic NLS
derivation.

Equation (10) is the main outcome of this section, which
will now be relied upon, to proceed by studying the beam
profile dynamics. Note that nonlinearity is entirely due to the
ion background. We stress that have derived Eq. (10) by
considering the longitudinal and transverse spatial dynamics
of an em beam propagating in e-p-i plasma system. This is
clearly distinct from the derivation of Berezhiani and Ma-
hajan [33], who have derived a similar-structured equation
for the 1D dynamics of a circularly polarized em beam, and
also clearly different from the equation(s) derived in various
forms and via different physical approaches in earlier works
[22,36].

III. BEAM PROFILE DYNAMICS

To proceed, we shall follow the paraxial beam profile ap-
proach, as introduced by Sharma and co-workers in Ref.
[36]. We consider a beam whose initial profile presents a
Gaussmn intensity distribution, viz. A*(r,z=0,f)= A exp
(=121 rd)exp(~1?/ 73), where r=(x*+y?)"? is the radial coor-
dinate (in cylindrical polar coordinates), 7, is the initial pulse
width (in time) and r is the initial spot size (in space) of the
pulse. The solution of Eq. (10) can be expressed as [36]

A(r,z,1) = Ao(r,z,t)exp[— ikS(r,z,1)]. (11)

where both amplitude (A,) and eikonal (S) are real quanti-
ties. The eikonal S is related with the curvature of wavefront,
while the amplitude (square) represents the intensity profile.
Substituting for A from Eq. (11) in Eq. (10) and separating
the real from the imaginary parts, one obtains

dAG | 9 9AG (azs MS)

+ + St
0z dr or J ar

S 9(A) 2<a2s>
== 4= =0, 12
ar ot 0 s (12
and
as [aS\* [aS\* *a’A[l-(1+]4])7]
2—+|— ) +|— | = )
a9z ar at ck
(70, 1)
sz r dr
1 [(&PA
; ( °> (13)
A,
where @'=;5-. Adopting the paraxial theory [36,40,41],
we antlclpate a solutlon for Egs. (13) and Eq. (12) in the
form
A2 _p _P
A2(r,z,1) = 00 exp[ }exp[ , (14)
’ g@f@* L rgf@? ] | me(2)?
and
rPdf 1 dg
S(riz,=——+_—"""+ , 15
(r,z,7) 2fd: " 2gdz #(2) (15)
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where f(z) and g(z) are beam width (space) and pulse
width (time) parameters, whose evolution [governed by Egs.
(17) and (18), see below] determines the beam dynamics.
Identifying the components of the eikonal (S) in the latter
expression, the first term above is indicative of the spherical
curvature of the wavefront, while ¢ represents its departure
from the spherical nature. The latter two Eqs. (14) and (15)
have also recently been employed in [36] for Gaussian beam
propagation in collisional plasmas.

Using Eqgs. (11), (14), and (15), the spatiotemporal evolu-
tion of the em pulse in e-p-i plasma can be written as,

_ﬁ 7 dT p2

2oy < ALTOROP] { ? 4 P dr_
T T(2)R(2)? T(x)* 2 T(Q)dz R(z)?
1/2 2
€& _p~_dp
T R dz]’ (e

where T(z)=7,z is the pulse width (time) in plasma and
R(z)=p,z is the beam width (space) in the radial direction in
plasma. Here, T(0)=7=7yw is the initial dimensionless
pulse width (at 7=0), and R(0)=p,=pow/c is the initial di-
mensionless beam width.

The EM pulse profile in plasma can be obtained by solv-
ing the following two coupled second order ODEs for the
self-focusing parameter f(z) and self-compression parameter

g(2):
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For an initial plane wave the boundary conditions on Eqs.
(17) and (18) are taken at £=0 as
df _dg _,
¢ dg -
Equations (17) and (18) can be numerically integrated us-
ing the initial boundary conditions above, to evaluate the
beam width parameter f and pulse width parameter g as a
function of z. The numerical estimation of f and g as a func-
tion of propagation distance will allow us to predict the
variation of pulse width and beam radius in e-p-i plasma.
Concluding this part, we have derived a set of coupled
envelope equations for the evolution of the spot size and the
pulse (time) length. This clearly illustrates the simulta-
neously operating processes of focusing and compression in
a three-component plasma. These coupled equations enable
us to consider now how self-focusing may affect (and in fact
accelerates) the pulse compression rate. We emphasize that
these equations are idealized, since we have assumed that
one spot size describes the beam at any instant ¢.

and f=g=1.

IV. NUMERICAL INVESTIGATION

We have performed an extensive numerical investigation
of the beam profile dynamics for the following laser plasma
parameters [25]: [,=1.37X10"® W/cm?, A=1 um, r,

af 1 (2a’)Aé =20 um, 7,=10 psec, ny=4Xx10* cm?, w=10" rad sec”!,
'50752 = ﬁ - 2 fe(l +AYe) (17) and a=0.01. We have numerically integrated Eqgs. (17) and
: : 0 (18) (using the initial boundary conditions stated above), to
&g | (2a')A2 evaluate the bea'm width parameter f and pulse wi'dth param-
€O =T3-S ; —. (18) eter g as functions of the distance of propagation z. The
& 1g T%f g (L+Ayfg) numerical evaluation of f and g is used to obtain the spa-
(a) t=0 (b) t=300A/c (c) t=500n/c
1 5
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FIG. 1. (Color online) Normalized intensity (A2) plots as a function of time. The side-bar shows the variation in normalized intensity. The
region near to center (p=0, 7=0) shows maximum intensity (corresponding to the top of bar) while as we move away from the central
(p=0, 7=0) region, the intensity decreases (corresponding to the middle and lower part of the bar respectively).
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FIG. 2. (Color online) The dependence of normalized intensity (A2) plots (upper row) and potential (¢b) plots (lower row) as a function
of the ion-to-electron density ratio («). The side-bar shows the variation in normalized intensity (in upper row) and potential (in lower row).
The region near to center (p=0, 7=0) shows maximum intensity/potential (corresponding to the top of bar) while as we move away from the
central (p=0, 7=0) region, the intensity/potential decreases (corresponding to the middle and lower part of the bar respectively).

tiotemporal beam intensity profile [as given by Eq. (16)] in a
three-component plasma at different time instants 7 (equiva-
lent to a fixed distance z).

In Fig. 1, the intensity profile of a Gaussian beam is de-
picted at different time =0, 1, 3, 9, 12, and 14.5 (in units of
psec). The plots in Fig. 1 depict the transverse focusing of
the laser pulse, which is followed by a longitudinal pulse
compression due to the combined effect of relativistic mass
variation and admixture of ions in electron-positron plasma.
The numerical results suggest that transverse focusing com-
petes with the process of longitudinal self compression.

Equation (9) shows the proportionality of scalar potential
to « i.e., the ion equilibrium density. It was shown in [39]
that a pure electron positron plasma (@=0) cannot sustain an
electrostatic potential (¢). As a result, a circularly polarized
electromagnetic wave cannot be localized in pure electron

700,

a =0.05
600 8
QO
o
2 500 -
o
£
< 400~ R
8
.8 300~ o =0.03 ) =
3 @ =001
© L 4
g 200
2
100 ]
. [‘L B S a— & NS R o A
% 05 1 15 2 25 3 35 4 45 5
4
Propagation Distance, & x10

FIG. 3. (Color online) Normalized axial amplitude as a function
of propagation distance.

positron plasma. It is now straightforward, to combining Eqgs.
(16)—(18), as a basis in order to find out the possibility of
pulse compression in three component unmagnetized plasma.
We will show below how longitudinal pulse compression
occurs, in fact sheerly due to the presence of even a small
fraction of background ions (@<¢1) in an electron-positron
plasma.

An initially Gaussian pulse, with the pulse duration 7,
=10 psec, beam radius r,=20 wm, and the amplitude A,
=1, propagates through a e-p-i plasma of density ny=4
X 10%° ¢cm?® and =0, 0.01, 0.02, and 0.03. Figure 2 shows
how the pulse compression depends on the presence of « and
pulse intensity changes with increase of it, during its propa-
gation in e-p-i plasma in the pulse comoving reference sys-
tem. We observe a compression by more than 5 times for
a=0.03, and this process is energetically efficient.

0.01

0.008-

0.006-

0.004

Pulse Width Parameter (g)

0.0021-

L | L L L L L 1
d).01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

FIG. 4. (Color online) Pulse width parameter (g) as a function
of a.
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In order to trace the dependence of the normalized axial
amplitude on the background ion concentration via «, we
have numerically evaluated the axial variation amplitude ver-
sus the propagation distance &, for difference values of the
ion density (expressed via @); the result is shown in Fig. 3. A
Gaussian pulse, with initial pulse duration 7,=10 psec and
initial amplitude Ay=1, is seen to undergo a periodic varia-
tion of its axial amplitude. The same phenomenon is ob-
served for «=0.01, 0.03 and 0.05. Figure 3 shows that the
successive intensity peaks are higher for higher «, and that
these peaks correspond to the foci (beam intensity maxima)
corresponding to higher a value. One may conclude that the
successive foci become smaller in beam width and pulse
width as the ion-to-electron density ratio « decreases. We
clearly observe the compression of a picosecond pulse down
to the femtosecond range.

We have also depicted the pulse width parameter g for
different values of «, for the same parameters as in Fig. 2;
the result is shown in Fig. 4. The pulse width parameter is a
measure of the longitudinal compression of the initial pulse
width [T(z)=7,X g(z)]. We observe from Fig. 4 that a pulse
of initial pulse duration 10 psec can be compressed in the
range of femtosecond or subattosecond range for a=0.05.

V. CONCLUSIONS

From our models, we can identify the mechanism behind
the self-compression as a spatiotemporal interplay of plasma-
induced refraction, diffraction of the laser beam, and the
presence of ions in electron-positron plasmas. The role of
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e-p-i plasma is important in the compression process be-
cause it is responsible for the spatiotemporal coupling at high
(i.e., ionizing) laser intensities. The numerical results
strongly predict that the spatiotemporal dynamics of electro-
magnetic beam is sensitive due to the presence of ions in e-p
plasma system.

In conclusion, we demonstrate a numerical mechanism for
spatiotemporal pulse evolution in a plasma of electrons, pos-
itrons and massive ions for the first time. Previous investiga-
tions focused the em pulse compression in a plasma medium
consisting of electrons and massive ions. By propagating in-
tense, femtosecond pulses inside a e-p-i plasma system, we
demonstrate the temporal self-compression of a pulse with
transverse self-focusing. We have explored the possibility of
pulse compression in the range of subattosecond. Thus, our
work provides impetus for further development of 3D simu-
lation modeling of laser-plasma interactions, demonstrating
that fundamentally new physical phenomena can be found.
This result represents a significant simplification over other
pulse compression techniques at relativistic laser intensities,
and will be useful in many applications in high field and
plasma science. This mechanism is likely to scale to higher
intensities and pulse energies, and of relevance to the use of
plasma-based waveguides.
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