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Effect of bending stiffness on the deformation of liquid capsules enclosed
by thin shells in shear flow
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Shear-induced deformation of liquid capsule enclosed by thin shell causes the development of in-plane
tensions and bending moments due to the shell thickness or to a preferred three-dimensional unstressed
configuration. This paper considers the effect of bending stiffness due to a preferred three-dimensional struc-
ture on the deformation and motion of the liquid capsule. To perform the numerical simulations, an improved
formulation for computing the forces generated on the capsule surface during deformation is proposed. This
formulation takes full account of large deformation kinematics and the development of in-plane tensions and
bending moments. The deformation and orientation dynamics of capsules with different reference shapes are
studied under various shear rates, viscosity ratios, and bending modulus. The numerical results show that the
bending stiffness not only restricts the deformation but also affects the motion mode of the capsules. In
addition, raising bending stiffness amplifies the shape deformation oscillations in tank-treading mode but

reduces the oscillations in tumbling mode.
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I. INTRODUCTION

The mechanical properties of plasma membranes have
been shown in recent years to play an important role in
physiology and cell biology. An archetypal system for study
is the erythrocyte membrane of which the elastic properties
determine many of the flow characteristics of blood and en-
able the red blood cells (RBCs) to deform and migrate in the
blood vessels. The interest in the mechanical properties of
the erythrocyte membrane stems from multiple sources. For
example, blood disorder such as sickle cell anemia has been
shown to be associated with structural alterations in the
erythrocyte membrane and the resulting changes in mechani-
cal response [1]. In addition, useful mechanical properties of
the RBC membrane suggest potential synthetic applications
such as synthetic capsules with polymerized membranes in
drug delivery.

Much effort has been devoted to study the dynamics of
red blood cells and synthetic capsules in the flows using
experimental [2—6], analytical [7—10], and numerical [11-17]
methods. Experimental and theoretical studies have revealed
complex interaction of different physical properties of the
capsule and the fluid that affect the deformations of the sus-
pended capsule in the flow. In a simple shear flow, capsules
exhibit primarily two types of motion [18-20]: a tank-
treading motion in which the capsule shape and orientation
are steady and the membrane rotates continuously as a tank
tread, and a tumbling motion in which the capsule undergoes
a periodic flipping motion. Recently, swinging motion in
which the capsule exhibits periodic oscillations in both de-
formation and orientation superimposed on a tank-treading
mode has been observed both experimentally [6,21] and
computationally [22-24].

The type of motion a capsule or RBC undergoes depends
on capsule shape, viscosity ratio between the internal and
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suspending fluids, applied shear rate, and membrane flexural
stiffness. The membrane stiffness is determined by the
modulus of elasticity for in-plane deformation and bending
modulus. Bending stiffness is believed to play an important
part in determining the equilibrium configuration and the de-
formation of biological membranes consisting of lipid bilay-
ers, including the membrane of red blood cells [13,25]. How-
ever, little effort has been devoted to investigate the effect of
bending stiffness on the deformation and motion of the cap-
sule and most of the previous theory and numerically studies
neglected bending resistance. Pozrikidis [13] proposed a for-
malism that allowed the coupling of bending moments and
membrane tensions to the fluid mechanics and thereby facili-
tated numerical simulations for the capsule deformation. The
effect of bending stiffness on the shear-induced deformation
of liquid capsules in Stokes flow has also been illustrated in
[13]. However, significant inaccuracies and numerical insta-
bilities arise at high deformation due to inadequate spatial
resolution and very small time step is required for stability in
the presence of bending moments. Another restriction is the
requirement that the reference shape has a uniform curvature.
Sui et al. [15] studied the effect of bending stiffness on the
deformation of two-dimensional (2D) elastic capsules in
shear flow. Although the 2D study maintains most common
features of the three-dimensional (3D) capsule motion, it
does not capture the effect of bending stiffness on the defor-
mation of the full 3D capsule in quantitative terms.

In the present study, we model the capsule membrane as a
thin shell that develops the bending moments by two physi-
cal mechanisms. First, stresses developing over the cross sec-
tion of the thin shell may be integrated over the shell thick-
ness to yield the tangential bending moments. These
tangential bending moments have neglected effect on the de-
formation of very thin membrane. However, these bending
moments play a crucial role in the determination of the fold-
ing pattern of the membrane including wrinkles and their
number and size [26]. Second, bending moments are gener-
ated due to a preferred three-dimensional unstressed configu-
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ration of the membranes consisting of lipid bilayers [25]. The
corresponding energy function of the membrane may be ex-
pressed in terms of membrane curvatures and bending modu-
lus [27]. This bending modulus accounts for the bending
flexural stiffness and is generally distinct from the elastic
modulus for in-plane deformation. Owing to the extreme
thinness of the membrane, we only consider the effect of
bending moments generated due to a preferred three-
dimensional unstressed configuration.

In the present work, the numerical method is based on the
implicit immersed boundary method [24,28] with subdivi-
sion thin-shell model [29] for simulating large deformation
of liquid capsules immersed in the fluid. The implicit method
allows using relative large time step without loss of stability
especially in the presence of bending resistance. The numeri-
cal stability can be improved further by the use of the sub-
division surface [30] to represent the capsule membrane.

Our goals in this work are as follows. First is to extend
our previous work on thin-shell model [24,29] to take into
account the bending moments generated due to the preferred
three-dimensional unstressed configuration of the membrane.
Consideration of the effect of these bending moments is mo-
tivated by a need to develop an integrated model to study
fluid-structure interaction. In this model, the equations of
shell mechanics are developed in surface curvilinear coordi-
nates and implemented in terms of the principle of virtual
displacements. Second is to investigate the effect of bending
stiffness on the deformations as well as the types of motion
of capsules with various unstressed shapes in shear flow.
Simulations are performed for different dimensionless shear
rates and viscosity ratios under a broad range of bending
flexural stiffness.

II. FORMULATION AND NUMERICAL METHOD

In the present study, we consider the shear-induced defor-
mation of a capsule containing a viscous fluid and suspended
in another fluid of different viscosity. During the capsule
deformation, the capsule membrane develops anisotropic
tensions and bending moments. In describing the kinematics
of the capsule membrane, we adopt the thin-shell model
[31,32] formulated based on the Kirchhoff-Love hypothesis.

A. Kinematic description of the shell

Consider a shell body )5 whose undeformed thickness is
denoted by % and undeformed and deformed middle surfaces
are denoted by I" and T, respectively. The surface basis vec-
tors corresponding to I' and T" are

a,=X(,8) . a,=X(&,8), (1)

respectively, where X and X are the positions of a material
point associated with the curvilinear coordinates (¢!, &%) on
the shell middle surface in its undeformed and deformed
configurations, respectively. Here and henceforth, a comma
is used to denote partial differentiation, greek indices take
the values of 1 and 2 and lowercase latin indices range from
1 to 3. The local covariant basis vectors on the undeformed
and deformed configurations are defined as

PHYSICAL REVIEW E 82, 016318 (2010)
§a=‘_la+§363,a’ §3=‘_l3’

ga=aa+§3(7]a3),w 83 = mnas, (2)

where & is the thickness coordinate, 7 is the thickness
stretch, and a3 and a; are the unit normal vectors to the
middle surfaces. Contravariant basis vectors g' and g' are
defined such that g;-g/= 8/ and g;-g’= &, where &/ is the Kro-
necker delta. The corresponding covariant and contravariant
components of the metric tensors in both configurations are

g@j=§i‘§j’ 8ii=8i&j>

7=g7. ¢'=gg (3)
In terms of the covariant and contravariant basis vectors, the

deformation gradient tensor F for the shell body may be
expressed in the form

F X _oX ®g ®g (4)
- (9} - 9 fi 8 =8 g,
where here and henceforth summation over the repeated in-
dex i is implied in the range from 1 to 3.

B. Equilibrium deformations of hyperelastic shells

To describe the mechanical response of the thin shell we
assign strain-energy functions W, per unit undeformed vol-

ume of ﬁ, and H, per unit area of I', respectively. The total
strain energy of the thin shell is defined by

S=| WdQg+ f Hdrl'. (5)
Qg r

For the incompressible hyperelastic material, we consider the
neo-Hookean elastic energy function per unit undeformed
volume,

E .
W= g(gijglj_3)s (6)

where E is the Young’s modulus. To model for the RBC
membrane, we use the strain-energy function proposed by
Skalak et al. [33] and given in [24]. In addition, we consider
the Helfrich [27] bending energy function for biological
membranes, given by

H=2KB(Km_ Kﬁt)z’ (7)

where «j is the scalar bending modulus and «® is the refer-
ence mean curvature. The mean curvature «,, is computed as
Km:KaBg"B/Z, where k,g=a, g a3 is the component of the
curvature tensor.

The Kirchhoff stress tensor can be expressed as

T= legl@g_]? (8)

with the components 77/=2(dW/dg;;)—p,g”, where p; de-
notes the hydrostatic pressure. The hydrostatic pressure can
be calculated from the plane stress assumption by requiring
that 73=0. The thickness strain gs; and thickness stretch 7
can be computed from the incompressibility condition,
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det F=1. Following [31,32], we define the stress resultant n’
and the moment resultant m® as

! A
n'=|  7-g'vd€,

—h/2

) s s
me=| 7 -g'&vdé, (9)
—h/2

where v accounts for the curvature of the shell in the volume

integration. The bending stress follows from Eq. (7) by the
work conjugacy, with the result

w_ OH
aKaﬁ

q = 2kp(1 = K3,)8 . (10)

To derive the equilibrium equations of the shell body in
weak form, we start from the fact that the potential energy of
the shell body is stationary at equilibrium, i.e.,

oll = oIl + oIl =0, (11)

where Ol is the variation of the potential energy of the
external forces. The variation of the potential of the internal
forces can be expressed as

oW — oH

b‘Him:f —:5Fd95+f e Skapdl. (12)
ﬁ JF FC?KDZB

S

Substituting Eq. (4) into Eq. (12) and through a straightfor-
ward manipulation we arrive at the following formulation:

f [n®- Sa,+ nn’ - das+m® - (ndas) JdT
r

+f q“ﬁ[ﬁaa’ﬁ-a3+aa,ﬁ'5a3]dr+5l_[ext=0. (13)
r

Details for the derivation of the first integral of Eq. (12) were
given in [24,31].

C. Spatial discretization of the thin shell

Here, we follow the C'-interpolation scheme based on the
subdivision surface proposed in [29,31] for thin-shell analy-
sis. The main idea behind subdivision surfaces is to represent
the smooth shell middle surface by a control mesh containing
a set of NP control points x;, where /=1, ... ,NP. This mesh
may be taken as a basis for introducing an interpolation of
the form

x(£,8) = 2 N'(&', &)x,, (14)
I

where I is the local numbering of the nodes and N'(&!, &) is
the box-spline basis function [30]. Introducing the interpo-
lated parametric Eq. (14) into the weak form (13), we arrive
at the formulation for the internal force at node I as
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da oa oa -
f1=f [n”“—a+7]n3-—3+m“-(7]—3) ]dr
r 1.9} 1.9} IX;/ 4

da da
+f q“’{(—a) -a3+aa,5~—3}dr. (15)
r 8X1 B &XI

The internal force at node I is the sum of element contribu-
tions as in the standard finite element method. The contribu-
tion to the internal force at node / from a generic element can
be calculated by a one-point quadrature rule [31] with the
barycenter of the element as the Gaussian quadrature point.
The stress and moment resultants at the quadrature point are
computed by numerical integration of the stresses across the
thickness of the shell using the three-point Simpson rule.

D. Front-tracking method

The coupling between the fluid and the capsule deforma-
tion is done using a front-tracking method that is based on
the implicit immersed boundary method [28]. In this method,
the force density is computed at the control points and is
distributed to a fixed (Eulerian) fluid grid using a discrete
representation of the delta function,

NP

) = 2 fELEND(x —x,())AEAE,  (16)
=1

where fi(&',&,1) is the force per unit area at the control
point X, whose label is (&', &%). Here, x is the Eulerian grid
and D,,(x) is a three-dimensional discrete delta function [34].
Once the force density is computed at the control points and
distributed to the grid, the Navier-Stokes equations with the
forcing terms are then solved for the pressure and velocity
field u(x,r) [28]. The velocity field is then interpolated to
find the velocity at the control points, which is used to ad-
vance the position of the thin shell, x;, in time in an implicit
manner [24,28].

In the numerical simulations, we consider capsules with
spherical and oblate spherical initial shapes and biconcave
capsules resembling the resting shapes of red blood cells. To
describe an oblate spheroid with aspect ratio of b/a, we use
the mapping x,,;=Rx, Yo,=Ry, Z,,=(b/a)Rz, where
(x,y,z) is the coordinate of a point on the unit sphere and the
radius R is adjusted to preserve the volume. Similarly, to
describe the biconcave disk shape assumed by red blood
cells at rest, we use the mapping [35]

Xrbe = R)C, Vrbe = Ry’

Zpe= = 0.5RV1 = r2(Co+ Ci7% + Cor*),

where r?=x’+y?=1, C,=0.2072, C,;=2.0026, and C,
=-1.1228.

To test the development of bending moments, we study
the relaxation of capsules in the fluid under the influence of
bending moments alone. The reference configuration of the
shell is a flat sheet with zero mean curvature and the viscos-
ity ratio is unity. Figure 1(a) shows the evolution of the trace
of the surface of an ellipsoidal capsule with axes ratio 2:2:1
in the (x,z) plane at a sequence of dimensionless time
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FIG. 1. (Color online) Relaxation of (a) an ellipsoid with axes
ratio 2:2:1 at =0,0.25,0.75,5.0 and (b) a biconcave disk at 7
=0,0.2,0.5,1.4,5.0. (c) Convergence of the three axes of the spher-
oid shown in (a), normalized to a,,.

f=trp! (,uaiq). Here, a,, is the radius of the sphere that has
the same volume as that of the considering capsule and u is
the suspending fluid viscosity. Figure 1(b) shows the corre-
sponding evolution of a biconcave disk. In both cases, the
capsules relax gradually to steady states with spherical
shapes. Figure 1(c) illustrates the convergence of the three
axes of the ellipsoidal capsule to the steady state. The simu-
lations presented in Fig. 1 were performed with dimension-
less time step Af= AtKB/(,ua =0.005, which is about ten
times larger than that used in [413] The capsules converge to
the stationary spherical shapes without numerical instabili-
ties. The change in the volume of the capsules was less than
0.03%, which is typical of all simulations presented in the
next section.

III. RESULTS

The present method is used to study the deformation of
capsules enclosed by thin shells with spherical, spheroidal,
and biconcave unstressed shapes in simple shear flow given
by the velocity u=(yz,0,0), where v is the shear rate. Simu-
lations are performed for different dimensionless shear rates
G= ,u,)'/aeq/(El_z), reduced bending modulus f<B=KB/(a§qEﬁ),
and viscosity ratios N. The equivalent volumetric radius a,,
is chosen to be sufficiently small so that the inertia effect is
neglected. The center of the capsule is placed at the center of
a cube of side 10a,,. This computational domain is large
enough so that boundary effects are not important [36,37].
Boundary conditions for the velocity are of the Dirichlet type
at z= * Sa,, and periodic at other boundaries. In the subse-
quent simulations, the initial capsule shape is taken to be a
reference state for the in-plane tensions. Simulations are per-
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(b)

FIG. 2. (Color online) Contours of deformed stationary capsules
with  spherical initial shape at (a) G=0.05, kz=0,0.01,
0.025,0.0375 and (b) G=0.2, k=0,0.04,0.1,0.15.

formed on a 96 X 96 X 96 fluid grid with an unstructured sur-
face mesh of 10 242 nodes and 20 480 elements. The defor-
mation of the capsule is described by the Taylor shape
parameter D,,=(L—B)/(L+B), where L and B are the maxi-
mum and minimum radial distances of an ellipsoid with the
same inertia tensor [12].

A. Spherical capsules

The effect of bending stiffness on the deformation of
spherical capsules enclosed by neo-Hookean thin shells in
the shear flow is studied by varying the reduced bending
modulus kp. The reference shape concerning the bending
moments is a flat sheet with vanishing reference curvature.
Simulations were performed for two dimensionless shear
rates G at A=1 and different bending moduli. The results
show that the initial spherical capsules deform to nearly el-
lipsoidal steady shapes which are inclined with respect to the
x axis at well-defined angles, and the capsule membranes
rotate around the interior fluid in a tank-treading mode [12].
Figure 2(a) shows the contours of deformed stationary cap-
sules in the (x,z) plane at G=0.05 and &Ky
=0,0.01,0.025,0.0375. Figure 2(b) shows the corresponding
contours at higher shear rate G=0.2 and &kp
=0,0.04,0.1,0.15. As expected, the bending stiffness re-
stricts the overall capsule deformation. An increase in the
bending modulus xz leads to smaller deformation and re-
duced alignment with the undisturbed flow. This can be seen
from the evolution of the Taylor deformation parameter and
inclination angle in Fig. 3. The same effect has been ob-
served in [13,15]. The results are compared with those ob-
tained using the boundary element method (BEM) [13] and
Fig. 3 shows reasonable agreement between the two meth-
ods.

Additional simulations were performed for viscosity ratio
A=5. Figure 4 shows the evolution of the deformation pa-
rameter and inclination angle at G=0.05 and &y
=0,0.01,0.025,0.0375. The figure confirms the effect of
bending stiffness on the capsule deformation and orientation.
The deformation parameter and inclination angle are com-
pared with those obtained in [13,24]. At k=0, Fig. 4 shows
excellent agreement between the present algorithm with sub-
division elements and the thin-shell model with quadratic
triangular elements [24]. For nonzero bending modulus,
good agreement between the present method and the BEM
[13] can also be observed in Fig. 4.

B. Oblate spherical capsules

Here, we consider a neo-Hookean oblate spheroid of as-
pect ratio b/a=0.9, inclined at the angle 6,=m/4 with re-
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FIG. 3. (Color online) Evolution of deformation parameter D,,
for (a) G=0.05 and (b) G=0.2; inclination angle for (c) G=0.05 and
(d) G=0.2. The diamonds are obtained using the BEM [13].

spect to the streamlines of the unperturbed flow. The initial
oblate spherical shape is taken to be a reference state for the
bending moments. The deformation parameter D, and the
inclination angle 6 are calculated for G=0.05, A=1 at four
different bending moduli kz=0.0,0.005,0.01,0.025. As can
be seen in Fig. 5, the oblate spheroid capsules undergo peri-
odic oscillations in both the deformation parameter and the
inclination angle superimposed on the tank-treading motion
for all bending moduli. This mode of motion has also been
observed in [6,23] and is referred to as swinging motion. At
k=0, Sui er al. [15] observed a steady tank-treading mode
in their 2D calculation which is different from the swinging
mode observed in the present 3D calculation and in [12,24].
Since the oblate spheroid with b/a=0.9 is a nearly spherical
capsule, its deformation trends are similar to those of the
spherical capsule. An increase in the bending modulus & at
constant G and A\ leads to smaller deformation and decreased
alignment with the undisturbed flow. In the swinging mode,
increasing bending modulus amplifies the oscillations in both
the deformation parameter and the inclination angle. The nu-
merical results also show that raising the bending modulus
increases the oscillation frequency and tank-treading fre-
quency. However, when the capsule exhibits tumbling mo-

0.25 0.25 A
—kp =0.0
-kp = 0.01
kp = 0.025
0.2 R — 00375
02
0.15
3 §
Q =
0.1
0.15
0.05
0 i 2 3 2 5 01 i 2 3 7 5
(a) 4t (b) it

FIG. 4. (Color online) Evolution of the (a) deformation param-
eter and (b) inclination angle at A=5 and G=0.05. The solid lines
are obtained by the present algorithm with subdivision elements,
and the circles are found using the quadratic triangular elements
[24]. The diamonds are obtained using the BEM [13].
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FIG. 5. (Color online) Evolution of (a) the deformation param-
eter and (b) inclination angle for oblate spheroidal capsules with
b/a=0.9 at G=0.05 and A=1.

tion in which the capsule undergoes continuous rotation as
shown in Fig. 6(b), raising bending modulus reduces the os-
cillations in the deformation parameter. Figures 6(a) shows
the evolution of the deformation parameter for the oblate
capsules with  b/a=0.9 at G=0.005 and kp
=0.0,0.01,0.02,0.05. Moreover, raising bending modulus
reduces the oscillations in the phase angle [23] as seen in
Fig. 6(c). We note that the phase angle & is defined to quan-
tify the oscillations in the swinging and tumbling modes as

(1) = alt) - 6(1) - [a(0) - 6(0)],

where (1) is the tank-treading angle of a marker point on the
membrane compared to the undisturbed flow direction. To
make &(r) a continuous function of time, we manually sub-
tract 7 from a(f) or 6(¢) after their values make a half rota-
tion. If we increase Kz further the oscillations in both the
deformation parameter and phase angle will reduce toward
the value of zero corresponding to a rotating solid ellipsoid.

In addition to restricting the deformation, bending stiff-
ness can also affect the motion mode of the capsule. Figure
7(a) shows the time evolution of the inclination angle at G
=0.008, A=1 for three different bending moduli &y
=0.0,0.002,0.005. It can be seen that the capsule exhibits
swinging motion at kz=0 and tumbling motion at Ky
=0.005. At kz=0.002, we observe transient dynamics from

—iip = 0.0
---kp =0.01

LR =002
01 - fip =005

0 10 20 30 40 o 10 20 30 4C

(@) (b) "

(C) 0 10 22’1 30 40
FIG. 6. (Color online) Evolution of (a) the deformation param-
eter, (b) inclination angle, and (c) phase angle for oblate spheroidal
capsules with b/a=0.9 at G=0.005 and A=1.

016318-5



DUC VINH LE

0.5

7] —iip =00
i = 0.002
—iip = 0.005

60 (b) 9 -7 -5 6/¢r73 -1 1

( a')o"’o 10 20 30 40 50
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FIG. 7. (Color online) (a) Evolution of inclination angle and (b)
typical plot of inclination angle # vs phase angle & for oblate sphe-
roidal capsules with b/a=0.9 at G=0.008, A=1.

swinging to tumbling. Figure 7(b) shows the corresponding
plot of inclination angle 6 vs phase angle & for oblate sphe-
roidal capsules at different states of motion. The arrows in-
dicate the direction of time in the plot. In the swinging mo-
tion the inclination angle # undergoes periodic oscillations
while the phase angle 6 changes monotonically with time. In
the tumbling motion, the inclination angle 6 changes mono-
tonically with time while the phase angle & undergoes peri-
odic oscillations around a stationary value. Transition from
swinging to tumbling is represented by the dashed line in
Fig. 7(b).

Additional simulations were performed for the oblate cap-
sule with viscosity ratio A=5. Figure 8 shows the evolution
of the deformation parameter and inclination angle at G
=0.05 and k3=0,0.005,0.01,0.025. Similar effect of bend-
ing stiffness on the capsule deformation and orientation was
observed as in Fig. 5 for smaller viscosity ratios. We can
notice that an increase in the viscosity ratio N at constant G
and Ky leads to smaller deformation and greater alignment
with the undisturbed flow.

C. Biconcave capsules

Next, we perform simulations for the biconcave capsules
with Skalak’s strain-energy function [24] for red blood cell
membrane. In this energy function, the area dilatation modu-
lus is chosen to be large enough to maintain the constant area
of the biconcave capsule. The initial biconcave shape is also
the reference shape concerning elastic tensions and bending
moments. The healthy red blood cell membrane has the elas-
tic modulus Eh and bending modulus kz on the order of

1073 dyn/cm and 1072 dyn cm, respectively [25]. Taking
the volume of a red blood cell to be V=7 X 107! cm?, the

—hp =00
---fip = 0.005
v =0.01
== kp=0.025

(a) 0 10 20 30 40 (b) 00 10 20 30 40

—Fkp =00
005 ---kp = 0.005 0.05
wekp =0.01
== kp=0.025

At At

FIG. 8. (Color online) Evolution of (a) the deformation param-
eter and (b) inclination angle for oblate spheroidal capsules with
b/a=0.9 at G=0.05, A=5, and k3=0,0.005,0.01,0.025.
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At At

FIG. 9. (Color online) Evolution of (a) the deformation param-
eter and (b) inclination angle for biconcave capsules at G=0.5, \
=2, and k3=0,0.01,0.04.

reduced bending modulus &y is then on the order of 1072
Hence, simulations are performed for bending moduli &z
=0.0, 0.01, and 0.04 at various dimensionless shear rates and
viscosity ratios. Figure 9 shows the deformation parameter
and inclination angle of a biconcave capsule with A=2, ini-
tially inclined at 45° with respect to the x axis at G=0.5.
Simulations suggested that the capsules deform to nearly sta-
tionary shapes while undergoing shape oscillations, with the
membrane rotating around the inner fluid in a swinging
mode. As expected, the bending stiffness restricted the defor-
mation of the capsules. As the bending modulus increases,
the oscillation amplitude of the deformation parameter and
inclination angle becomes larger. This trend is similar to that
of the oblate spheroid considered previously. Without bend-
ing stiffness, the dimple of the biconcave capsules disappears
as observed in [29]. When there is bending modulus the cap-
sules try to keep the instantaneous curvature as closed as

(a)yt =0 (¢)yt =10

(h)t = 35 ()4t = 40

(g)¥t = 30

FIG. 10. (Color online) Shapes of the biconcave capsules at G
=0.5, A=2, and k3=0.04 during a tank-treading motion. The colors
represent the x component of the velocity on the surface of the
capsule.
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FIG. 11. (Color online) Evolution of the (a) deformation param-
eter and (b) inclination angle for biconcave capsules at G=0.1, \
=4, and k3=0,0.01,0.04.

possible to the spontaneous curvature to minimize the Hel-
frich’s bending energy as can be seen in Fig. 10. In this
figure the square symbol represents the same material point
on the membrane during the tank-treading motion. As the
material point rotates around the internal fluid, the capsule is
elongated and compressed by the shear flow periodically.

If we increase the bending modulus further the motion of
the capsule will change from swinging to tumbling as ob-
served for the oblate spheroid. In tumbling motion, raising
bending modulus also restricts the deformation of the cap-
sule from the initial shape. Figure 11 shows the results for
another set of simulations with A=4 and G=0.1. Unlike in
swinging mode, raising bending modulus in tumbling mode
reduces the oscillation in the deformation parameter. In terms
of the inclination angle, raising bending modulus reduces the
rotation periods as seen in Fig. 11(b). Figure 12 shows snap-
shots of a biconcave capsule during tumbling motion. Again,
when there is bending stiffness the capsules try to keep the
instantaneous curvature as closed as possible to the initial
curvature to minimize the Helfrich’s bending energy. With-
out bending modulus, as the capsule rotates the dimple be-
comes deeper and sharper at certain points in time as ob-
served in [29]. The surface area of the biconcave capsules in
our simulations varies by 0.5—1.0 %, which is consistent to
the fact that red blood cells deform at near constant area.

IV. CONCLUSIONS

We have studied the effect of bending stiffness on the
deformation and motion of liquid capsules enclosed by thin
shell in shear flow using the implicit immersed boundary
method. We have developed a formulation for describing
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FIG. 12. (Color online) Shapes of the biconcave capsules at G
=0.1, N\=4, and kz=0.04 during a tumbling motion. The colors
represent the x component of the velocity on the surface of the
capsule.

elastic tensions and bending moments developing on the
thin-shell middle surface during the capsule deformation.
The strict requirement of surface area incompressibility on
membranes consisting of lipid bilayers has not been included
in the present formulation. However, by using very large area
dilatation in the strain-energy function, the total surface area
of the red blood cell membrane varies within 1% during both
tank-treading and tumbling motions. Numerical results for
capsules with spherical, oblate spheroidal, and biconcave un-
stressed shapes have confirmed that the bending stiffness re-
stricts the overall deformation of capsules. And raising the
bending stiffness can lead to the transition of motion modes
of oblate spheroid and biconcave capsules from tank treading
to tumbling. In addition, raising the bending stiffness in-
creases the oscillation in the deformation parameter in tank-
treading mode but reduces the oscillation in tumbling mode.
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